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Fig. 1: This figure compares the quality of our degenerate curve and neutral surface extraction methods with existing work. In (a)
and (b) we extract degenerate curves from a simulated cylindrical steel rod, with the bottom fixed and a tangential force applied
on the top. In (a) we use the method of Palacios et al. [13], which is an adaptation of Zheng et al. [23]. In (b) we use our method.
Compare the broken curves in (a) to those extracted properly using our method (b). We also compare our neutral surface extraction
method in (d) with that of Palacios et al. [13] (c) for a deformation torus data set. We note that our method captures the neutral
surface more completely, including the thin features in the lower-right corner. In contrast, the method of Palacios et al., based on
A-patches [11], misses a significant part of the surfaces (holes in the surface in (c)). In addition to more robust extraction of these
features, our methods are also faster than the respective methods of Palacios et al. [13].

Abstract—3D symmetric tensor fields appear in many science and engineering fields, and topology-driven analysis is important in
many of these application domains, such as solid mechanics and fluid dynamics. Degenerate curves and neutral surfaces are important
topological features in 3D symmetric tensor fields. Existing methods to extract degenerate curves and neutral surfaces often miss parts
of the curves and surfaces, respectively. Moreover, these methods are computationally expensive due to the lack of knowledge of
structures of degenerate curves and neutral surfaces.
In this paper, we provide theoretical analysis on the geometric and topological structures of degenerate curves and neutral surfaces of
3D linear tensor fields. These structures lead to parameterizations for degenerate curves and neutral surfaces that can not only provide
more robust extraction of these features but also incur less computational cost.
We demonstrate the benefits of our approach by applying our degenerate curve and neutral surface detection techniques to solid
mechanics simulation data sets.

Index Terms—Tensor field visualization, 3D symmetric tensor fields, tensor field topology, traceless tensors, degenerate curve
extraction, neutral surface extraction

1 INTRODUCTION

Three-dimensional symmetric tensor fields have a wide spectrum of
applications in science, engineering, and medical applications, such as
solid and fluid mechanics and medical imaging. The topology of the
tensor field, such as the stress and strain tensors, can provide important
insights into the underlying physical phenomena.

The topology of 3D symmetric tensor fields consists of points where
at least one of the eigenvector fields of the tensor field becomes discon-
tinuous. For example, the medium eigenvector field is discontinuous
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at degenerate curves [22]. The dominant eigenvector field plays an
important role in tensor field analysis. It is the major eigenvector field
in linear regions (medium eigenvalue less than the average of the ma-
jor and minor eigenvalues) and the minor eigenvector field in planar
regions (medium eigenvalue larger than the average of the major and
minor eigenvalues). The dominant eigenvector field is discontinuous at
neutral surfaces [13]. These facts highlight the special roles of degener-
ate curves and neutral surfaces play in the topological structures in a
3D tensor field.

Despite their importance, both degenerate curves and neutral sur-
faces are difficult to extract. Not only are the existing methods relatively
slow, they can also lead to missing parts during the extraction (Figure 1
(a) and (c)). This is due to the fact that little is understood about their
geometric and topological structures. In this paper, we aim to provide
analysis on degenerate curves and neutral surfaces for 3D linear tensor
fields. In our analysis, the set of degenerate points in a 3D linear tensor
field can be shown to be diffeomorphic to an ellipse while the set of
neutral points diffeomorphic to the real projective space with a handle
attached. This analysis enables more robust and faster extraction of
degenerate curves and neutral surfaces in 3D symmetric fields, such as
those from simulation.

The rest of the paper is organized as follows. We review related

work in Section 2 and relevant background on tensor fields in Section 3.
We then describe our mathematical analysis and extraction method for
degenerate curves in Section 4 and for neutral surfaces in Section 5,
respectively. We provide performance results in Section 6. In Section 7
we show the results of applying our tensor field visualization to data
sets from solid mechanics. We summarize our work in Section 8 and
discuss limitations of our approaches as well as some possible future
research directions.

2 PREVIOUS WORK

Tensor field visualization is one of the most fundamental and well-
researched topics in visualization, with applications ranging from med-
ical imaging to fluid and solid mechanics. In this paper, we focus
on topology-driven visualization techniques for 3D symmetric tensor
fields and refer interested readers to recent surveys on tensor field
visualization [2, 10].

Tensor field topology is first studied for 2D symmetric tensor fields
by Delmarcelle and Hesselink [4], who define the notion of degenerate
points where eigenvector fields of the tensor field have directional dis-
continuity. Tricoche et al. [18] provide an algorithm for the topological
simplification of 2D symmetric tensor fields. Zhang et al. [19] achieve
a similar goal by adapting simplification algorithms for 2D vector field
topology.

Hesselink et al. [9] are the first to study degenerate points in 3D
symmetric tensor fields.

There are two types of degenerate points: (a) triple (three repeat-
ing eigenvalues), and (b) double (two repeating eigenvalues). Zheng
and Pang [21] point out that under structurally stable conditions, a 3D
symmetric tensor field can only have double degenerate points. More-
over, these points do not live as isolated points in the space. Instead,
they form curves. To extract degenerate curves, Zheng et al. [23] first
identify the intersection points of degenerate curves on the faces of the
mesh representing the underlying domain. These intersection points
are then either directly connected to approximate the degenerate curves
inside the cells of the mesh or connected through numerical integration.
Tricoche et al. [17] provide an alternative approach to extracting degen-
erate curves. By showing that degenerate curves are a subset of ridge
and valley lines of a function derived from the tensor field (the mode
function), they reuse ridge and valley line extraction techniques for the
extraction of degenerate curves in a tensor field. Palacios et al. [12]
develop a design system for 3D symmetric tensor fields, with applica-
tions in texture and geometry synthesis. At the core of their system is
the ability to deform, remove, and reconnect degenerate curves. Linear
tensor fields are the simplest tensor fields, whose behaviors can be used
to describe non-linear tensor fields near a point of interest, i.e., local
linearization. Zhang et al. [20] study the topology of 3D linear tensor
fields and provide a number of observations that are inspirational to this
research. Zobel and Scheuermann [24] introduce the notion of extreme
curves and surfaces for 3D symmetric tensor fields. Degenerate curves
are part of extreme curves.

Palacios et al. [13] introduce the notion of neutral surfaces and point
out their topological significance. They also provide a method to extract
neutral surfaces based on the A-patches technique [11]. In addition,
they adapt the degenerate curve extraction method of Zheng et al. [23]
from hexahedral meshes to tetrahedral meshes. Furthermore, they use
the A-patches technique to locate degenerate points on the faces of
the mesh, which can handle cases where there are multiple degenerate
points on a face.

In our paper, we provide analysis on the topological structure of the
set of degenerate points and the set of neutral points in a 3D linear
tensor field. Such structural analysis in turn leads to a parameterization
for both degenerate curves and neutral surfaces, which enable more
robust and faster extraction algorithms for 3D piece-wise linear tensor
fields, such as the stress and strain tensor fields from solid mechanics
simulation.

3 TENSOR BACKGROUND

In this section we briefly review relevant background on 3×3 symmet-
ric tensors and tensor fields.

Let K be the set of 3×3 tensors, which is a nine-dimensional linear
space. The trace of a tensor T = (Ti j) is T11 +T22 +T33. For reasons
to be made clear soon, we will equip an inner product in K as follows:
given two 3×3 tensors R = (Ri j) and S = (Si j), their inner product [15]
is defined to be

〈R,S〉=
3

∑
i=1

3

∑
j=1

Ri jSi j = trace(ST R) (1)

A tensor is symmetric if it equals its transpose. Given our focus in
the paper, we will omit symmetric when referring to symmetric tensors.

A 3×3 tensor T has three real eigenvalues λ1 ≥ λ2 ≥ λ3, referred
to as the major eigenvalue, medium eigenvalue, and minor eigenvalue,
respectively. When the eigenvalues are mutually distinct, T is non-
degenerate. In this case, it is possible to choose three unit eigenvectors
{v1,v2,v3} such that vi corresponds to λi for any 1 ≤ i ≤ 3 and vi’s
form a right-hand orthonormal basis of the space. The trace of T can
also be expressed as λ1 +λ2 +λ3.

A tensor T can be uniquely decomposed as trace(T )
3 I+A where

I is the three-dimensional identity matrix and A = T − trace(T )
3 I is

the deviator of T . A is a traceless tensor, i.e., trace(A) = 0. More
importantly, the directional information (eigenvectors) in T is contained
purely in its deviator in the following sense: a vector v is an eigenvector
of T if and only if v is an eigenvector of A. In fact, as we will discuss
later, the topology of a tensor field can be defined in terms of its deviator
tensor field. Another nice property of the set of traceless tensors is that
it is closed under matrix addition and scalar multiplication, making it a
five-dimensional linear subspace of the set of tensors. We refer to this
space as A. For the remainder of our paper, we will focus on traceless
tensors and therefore omit traceless.

A tensor T is referred to as being degenerate if it has repeating eigen-
values. A (traceless) degenerate tensor T has the form T = k(vvT − I

3 )
for some k ∈ R and some unit vector v. T is either triple degenerate
(all three eigenvalues are identical or equivalently k = 0) or double
degenerate (two eigenvalues are the same or equivalently k �= 0). For a
double degenerate tensor, the eigenvalue that is distinct from the repeat-
ing eigenvalues is referred to as the dominant eigenvalue. When k > 0,
the dominant eigenvalue is the major eigenvalue, and T is referred
to as being a linear degenerate tensor. When k < 0, the dominant
eigenvalue is the minor eigenvalue, and T is referred to as being a
planar degenerate tensor. The set of eigenvectors corresponding to the
dominant eigenvalue and the repeating eigenvalues are referred to as
dominant eigenvectors and repeating eigenvectors, respectively. For a
double degenerate tensor, the set of repeating eigenvectors form a plane
(repeating plane) whose normal is a dominant eigenvector.

A tensor T is referred to as being neutral if its medium eigenvalue is
the average of its major eigenvalue and minor eigenvalue. A (traceless)
neutral tensor has the form t = k(v1vT

1 −v3vT
3 ) for some k ∈R and unit

vectors v1⊥v3. While a triple degenerate tensor is also neutral, it is not
structurally stable. Instead, we consider neutral tensors that have three
distinct eigenvalues |k|, 0, −|k|.

The set of (traceless) degenerate tensors, referred to as D, is a non-
linear subset of A. Similarly, the set of (traceless) neutral tensors,
referred to as N, is also a non-linear subset of A.

A tensor field T (p) is a continuous tensor-valued function in R3.
A point p is a (linear, planar, triple) degenerate point if T (p) is a
degenerate tensor of a corresponding type. Given a generic tensor
field, the set of triple degenerate points is structurally unstable, i.e., the
structure does not persist under any arbitrarily small perturbation [3].
On the other hand, linear and planar degenerate points are structurally
stable, and they form curves. Existing degenerate points extraction
methods [13, 17, 21] have focused on double degenerate points, which
is a goal that we follow in this work as well. Similarly, a point p is
a neutral point if T (p) is a neutral tensor. Under structurally stable
conditions, the set of neutral points form surfaces [13].
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Fig. 1: This figure compares the quality of our degenerate curve and neutral surface extraction methods with existing work. In (a)
and (b) we extract degenerate curves from a simulated cylindrical steel rod, with the bottom fixed and a tangential force applied
on the top. In (a) we use the method of Palacios et al. [13], which is an adaptation of Zheng et al. [23]. In (b) we use our method.
Compare the broken curves in (a) to those extracted properly using our method (b). We also compare our neutral surface extraction
method in (d) with that of Palacios et al. [13] (c) for a deformation torus data set. We note that our method captures the neutral
surface more completely, including the thin features in the lower-right corner. In contrast, the method of Palacios et al., based on
A-patches [11], misses a significant part of the surfaces (holes in the surface in (c)). In addition to more robust extraction of these
features, our methods are also faster than the respective methods of Palacios et al. [13].

Abstract—3D symmetric tensor fields appear in many science and engineering fields, and topology-driven analysis is important in
many of these application domains, such as solid mechanics and fluid dynamics. Degenerate curves and neutral surfaces are important
topological features in 3D symmetric tensor fields. Existing methods to extract degenerate curves and neutral surfaces often miss parts
of the curves and surfaces, respectively. Moreover, these methods are computationally expensive due to the lack of knowledge of
structures of degenerate curves and neutral surfaces.
In this paper, we provide theoretical analysis on the geometric and topological structures of degenerate curves and neutral surfaces of
3D linear tensor fields. These structures lead to parameterizations for degenerate curves and neutral surfaces that can not only provide
more robust extraction of these features but also incur less computational cost.
We demonstrate the benefits of our approach by applying our degenerate curve and neutral surface detection techniques to solid
mechanics simulation data sets.
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1 INTRODUCTION

Three-dimensional symmetric tensor fields have a wide spectrum of
applications in science, engineering, and medical applications, such as
solid and fluid mechanics and medical imaging. The topology of the
tensor field, such as the stress and strain tensors, can provide important
insights into the underlying physical phenomena.

The topology of 3D symmetric tensor fields consists of points where
at least one of the eigenvector fields of the tensor field becomes discon-
tinuous. For example, the medium eigenvector field is discontinuous
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at degenerate curves [22]. The dominant eigenvector field plays an
important role in tensor field analysis. It is the major eigenvector field
in linear regions (medium eigenvalue less than the average of the ma-
jor and minor eigenvalues) and the minor eigenvector field in planar
regions (medium eigenvalue larger than the average of the major and
minor eigenvalues). The dominant eigenvector field is discontinuous at
neutral surfaces [13]. These facts highlight the special roles of degener-
ate curves and neutral surfaces play in the topological structures in a
3D tensor field.

Despite their importance, both degenerate curves and neutral sur-
faces are difficult to extract. Not only are the existing methods relatively
slow, they can also lead to missing parts during the extraction (Figure 1
(a) and (c)). This is due to the fact that little is understood about their
geometric and topological structures. In this paper, we aim to provide
analysis on degenerate curves and neutral surfaces for 3D linear tensor
fields. In our analysis, the set of degenerate points in a 3D linear tensor
field can be shown to be diffeomorphic to an ellipse while the set of
neutral points diffeomorphic to the real projective space with a handle
attached. This analysis enables more robust and faster extraction of
degenerate curves and neutral surfaces in 3D symmetric fields, such as
those from simulation.

The rest of the paper is organized as follows. We review related

work in Section 2 and relevant background on tensor fields in Section 3.
We then describe our mathematical analysis and extraction method for
degenerate curves in Section 4 and for neutral surfaces in Section 5,
respectively. We provide performance results in Section 6. In Section 7
we show the results of applying our tensor field visualization to data
sets from solid mechanics. We summarize our work in Section 8 and
discuss limitations of our approaches as well as some possible future
research directions.

2 PREVIOUS WORK

Tensor field visualization is one of the most fundamental and well-
researched topics in visualization, with applications ranging from med-
ical imaging to fluid and solid mechanics. In this paper, we focus
on topology-driven visualization techniques for 3D symmetric tensor
fields and refer interested readers to recent surveys on tensor field
visualization [2, 10].

Tensor field topology is first studied for 2D symmetric tensor fields
by Delmarcelle and Hesselink [4], who define the notion of degenerate
points where eigenvector fields of the tensor field have directional dis-
continuity. Tricoche et al. [18] provide an algorithm for the topological
simplification of 2D symmetric tensor fields. Zhang et al. [19] achieve
a similar goal by adapting simplification algorithms for 2D vector field
topology.

Hesselink et al. [9] are the first to study degenerate points in 3D
symmetric tensor fields.

There are two types of degenerate points: (a) triple (three repeat-
ing eigenvalues), and (b) double (two repeating eigenvalues). Zheng
and Pang [21] point out that under structurally stable conditions, a 3D
symmetric tensor field can only have double degenerate points. More-
over, these points do not live as isolated points in the space. Instead,
they form curves. To extract degenerate curves, Zheng et al. [23] first
identify the intersection points of degenerate curves on the faces of the
mesh representing the underlying domain. These intersection points
are then either directly connected to approximate the degenerate curves
inside the cells of the mesh or connected through numerical integration.
Tricoche et al. [17] provide an alternative approach to extracting degen-
erate curves. By showing that degenerate curves are a subset of ridge
and valley lines of a function derived from the tensor field (the mode
function), they reuse ridge and valley line extraction techniques for the
extraction of degenerate curves in a tensor field. Palacios et al. [12]
develop a design system for 3D symmetric tensor fields, with applica-
tions in texture and geometry synthesis. At the core of their system is
the ability to deform, remove, and reconnect degenerate curves. Linear
tensor fields are the simplest tensor fields, whose behaviors can be used
to describe non-linear tensor fields near a point of interest, i.e., local
linearization. Zhang et al. [20] study the topology of 3D linear tensor
fields and provide a number of observations that are inspirational to this
research. Zobel and Scheuermann [24] introduce the notion of extreme
curves and surfaces for 3D symmetric tensor fields. Degenerate curves
are part of extreme curves.

Palacios et al. [13] introduce the notion of neutral surfaces and point
out their topological significance. They also provide a method to extract
neutral surfaces based on the A-patches technique [11]. In addition,
they adapt the degenerate curve extraction method of Zheng et al. [23]
from hexahedral meshes to tetrahedral meshes. Furthermore, they use
the A-patches technique to locate degenerate points on the faces of
the mesh, which can handle cases where there are multiple degenerate
points on a face.

In our paper, we provide analysis on the topological structure of the
set of degenerate points and the set of neutral points in a 3D linear
tensor field. Such structural analysis in turn leads to a parameterization
for both degenerate curves and neutral surfaces, which enable more
robust and faster extraction algorithms for 3D piece-wise linear tensor
fields, such as the stress and strain tensor fields from solid mechanics
simulation.

3 TENSOR BACKGROUND

In this section we briefly review relevant background on 3×3 symmet-
ric tensors and tensor fields.

Let K be the set of 3×3 tensors, which is a nine-dimensional linear
space. The trace of a tensor T = (Ti j) is T11 +T22 +T33. For reasons
to be made clear soon, we will equip an inner product in K as follows:
given two 3×3 tensors R = (Ri j) and S = (Si j), their inner product [15]
is defined to be

〈R,S〉=
3

∑
i=1

3

∑
j=1

Ri jSi j = trace(ST R) (1)

A tensor is symmetric if it equals its transpose. Given our focus in
the paper, we will omit symmetric when referring to symmetric tensors.

A 3×3 tensor T has three real eigenvalues λ1 ≥ λ2 ≥ λ3, referred
to as the major eigenvalue, medium eigenvalue, and minor eigenvalue,
respectively. When the eigenvalues are mutually distinct, T is non-
degenerate. In this case, it is possible to choose three unit eigenvectors
{v1,v2,v3} such that vi corresponds to λi for any 1 ≤ i ≤ 3 and vi’s
form a right-hand orthonormal basis of the space. The trace of T can
also be expressed as λ1 +λ2 +λ3.

A tensor T can be uniquely decomposed as trace(T )
3 I+A where

I is the three-dimensional identity matrix and A = T − trace(T )
3 I is

the deviator of T . A is a traceless tensor, i.e., trace(A) = 0. More
importantly, the directional information (eigenvectors) in T is contained
purely in its deviator in the following sense: a vector v is an eigenvector
of T if and only if v is an eigenvector of A. In fact, as we will discuss
later, the topology of a tensor field can be defined in terms of its deviator
tensor field. Another nice property of the set of traceless tensors is that
it is closed under matrix addition and scalar multiplication, making it a
five-dimensional linear subspace of the set of tensors. We refer to this
space as A. For the remainder of our paper, we will focus on traceless
tensors and therefore omit traceless.

A tensor T is referred to as being degenerate if it has repeating eigen-
values. A (traceless) degenerate tensor T has the form T = k(vvT − I

3 )
for some k ∈ R and some unit vector v. T is either triple degenerate
(all three eigenvalues are identical or equivalently k = 0) or double
degenerate (two eigenvalues are the same or equivalently k �= 0). For a
double degenerate tensor, the eigenvalue that is distinct from the repeat-
ing eigenvalues is referred to as the dominant eigenvalue. When k > 0,
the dominant eigenvalue is the major eigenvalue, and T is referred
to as being a linear degenerate tensor. When k < 0, the dominant
eigenvalue is the minor eigenvalue, and T is referred to as being a
planar degenerate tensor. The set of eigenvectors corresponding to the
dominant eigenvalue and the repeating eigenvalues are referred to as
dominant eigenvectors and repeating eigenvectors, respectively. For a
double degenerate tensor, the set of repeating eigenvectors form a plane
(repeating plane) whose normal is a dominant eigenvector.

A tensor T is referred to as being neutral if its medium eigenvalue is
the average of its major eigenvalue and minor eigenvalue. A (traceless)
neutral tensor has the form t = k(v1vT

1 −v3vT
3 ) for some k ∈R and unit

vectors v1⊥v3. While a triple degenerate tensor is also neutral, it is not
structurally stable. Instead, we consider neutral tensors that have three
distinct eigenvalues |k|, 0, −|k|.

The set of (traceless) degenerate tensors, referred to as D, is a non-
linear subset of A. Similarly, the set of (traceless) neutral tensors,
referred to as N, is also a non-linear subset of A.

A tensor field T (p) is a continuous tensor-valued function in R3.
A point p is a (linear, planar, triple) degenerate point if T (p) is a
degenerate tensor of a corresponding type. Given a generic tensor
field, the set of triple degenerate points is structurally unstable, i.e., the
structure does not persist under any arbitrarily small perturbation [3].
On the other hand, linear and planar degenerate points are structurally
stable, and they form curves. Existing degenerate points extraction
methods [13, 17, 21] have focused on double degenerate points, which
is a goal that we follow in this work as well. Similarly, a point p is
a neutral point if T (p) is a neutral tensor. Under structurally stable
conditions, the set of neutral points form surfaces [13].
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4 DEGENERATE CURVE EXTRACTION

4.1 3D Linear Tensor Fields
In this paper we focus on the extraction of degenerate curves and neutral
surfaces from a 3D tensor field defined on the vertices of a tetrahedral
mesh, i.e. piecewise linear tensor fields. Such data is common in
simulation. In addition, when studying the behavior of a tensor field
near a point of interest, the first term of the Taylor’s expansion leads to
a locally linear tensor field.

A linear traceless tensor field has the form of T (x,y,z) = T0 + xTx +
yTy + zTz where T0, Tx, Ty, and Tz are 3×3 traceless tensors. Let U be
the image of T , i.e. the set of all tensors that occur in the field.

Under structurally stable conditions, T0, Tx, Ty, Tz span a four-
dimensional linear subspace of the five-dimensional space of trace-
less tensors, A. Consequently, there exists a traceless tensor T ∈ A
which is perpendicular to T0, Tx, Ty, and Tz based on the aforemen-
tioned inner product (Equation 1). Additionally, we normalize T so
that 〈T ,T 〉 = 1. Note that T plays an important role in our parame-
terizations of the degenerate curves and neutral surfaces of the tensor
field T (x,y,z) = T0 + xTx + yTy + zTz. Therefore, we refer to T as the
normal of the tensor field T (x,y,z).

The tensor field, together with its normal, spans A. As a result, we
define the invertible linear map T : R5 → A given by

T(x,y,z,w,u) = xTx + yTy + zTz +wT0 +uT (2)

We call its inverse T−1 : A → R5. A tensor T can occur at location
(x,y,z) in the field if and only if T−1(T ) = (x,y,z,1,0). Consequently,
the process of finding degenerate curves is about finding degenerate
tensors for which T−1(T ) gives w = 1 and u = 0.

Since T is the normal of the tensor field, it can be used to find the u
coordinate of T−1(T ).

〈
T ,T(x,y,z,w,u)

〉

=
〈
T ,xTx + yTy + zTz +wT0 +uT

〉
(3)

= x〈T ,Tx〉+ y〈T ,Ty〉+ z〈T ,Tz〉+w〈T ,T0〉+u〈T ,T 〉 (4)
= u (5)

Since T−1 is a linear map, its other coordinates may also be written in
terms of the inner product 〈·, ·〉. Let

T−1(T ) =
(
〈T ′

x ,T 〉,〈T ′
y ,T 〉,〈T ′

z ,T 〉,〈T ′
0,T 〉,〈T ,T 〉

)
(6)

for some T ′
x , T ′

y , T ′
z , T ′

0 in A.
From classical linear algebra results on inverse maps [15], we have

that T ′
0 is orthogonal to Tx, Ty, Tz, and T , and has a dot product 1 with

T0. In fact, it is the unique tensor satisfying these properties. A similar
implication holds for T ′

x , T ′
y , and T ′

z .
The existence of the inverse map T−1 leads to an important property.

Proposition 1. Given a linear 3D tensor field T (x,y,z) = T0 + xTx +
yTy + zTz, any tensor value can occur at most once in the domain.
Moreover, if a tensor value appears in the domain, its multiples cannot
occur anymore in the field.

The proofs of the Proposition and other theoretical results can be
found in the appendix (supplementary material).

In the remainder of this section, we describe our analysis of degen-
erate curves of a 3D linear tensor field and an efficient algorithm to
extract degenerate curves from a piecewise linear tensor field using
this analysis. Our discussion on neutral surfaces will be presented in
Section 5.

4.2 Degenerate Point Parameterization
We start this section by providing the sufficient and necessary conditions
for which a degenerate tensor can occur in a linear tensor field.

Theorem 2. Let t be a degenerate tensor that occurs in a linear tensor
field T (x,y,z) = T0+xTx+yTy+zTz, and v be its dominant eigenvector.
Then vT T v = 0.

The reverse of the above theorem is true, too, as stated in the next
theorem.

Theorem 3. Given a linear tensor field T (x,y,z) = T0 + xTx + yTy +

zTz and a unit vector v that satisfies vT T v = 0, there exist x0,y0,z0 ∈
R such that T (x0,y0,z0) is a degenerate tensor and v is a dominant
eigenvector of T (x0,y0,z0). The dominant eigenvalue is given by k =

1
vT T ′

0 v .

It is useful to be able to explicitly calculate x, y, and z, given the
dominant eigenvector v. Since T−1(t) = (x,y,z,1,0), by a similar
calculation we have

x = kvT T ′
x v =

vT T ′
x v

vT T ′
0v

(7)

y = kvT T ′
y v =

vT T ′
y v

vT T ′
0v

(8)

z = kvT T ′
z v =

vT T ′
z v

vT T ′
0v

(9)

We can choose a new basis under which T =




a 0 0
0 b 0
0 0 −a−b




where a ≥ b ≥ 0. Note that if the eigenvalues of T has two negative
eigenvalues, we can simply choose −T which is still perpendicular to
T0, Tx, Ty, and Tz and has two positive eigenvalues. Also, changing the
basis in the XY Z space does not alter the degenerate curves in the field.

Now the set of degenerate points in the tensor field T (x,y,z) must
satisfy the following equations:

aα2 +bβ 2 = (a+b)γ2 (10)

α2 +β 2 + γ2 = 1 (11)

where v = (α,β ,γ) is a unit dominant eigenvector of the degenerate
tensor. Note that if (α,β ,γ) satisfies the above system of equations, so
does (−α,−β ,−γ).

Recall that a traceless degenerate tensor with the unit dominant

eigenvector (α,β ,γ) has the form k




α2 − 1
3 αβ αγ

αβ β 2 − 1
3 βγ

αγ βγ γ2 − 1
3


 for

some k ∈ R. Proposition 1 shows that any pair of solutions to Equa-
tions 10 and 11 can correspond to exactly one point in the original XY Z
domain. Consequently, T (from Equation 2) introduces a 2-to-1 map
between the solutions to Equations 10 and 11 and the set of degenerate
points in the field.

The solutions of Equations 10 and 11 can be visualized as a curve
on the unit sphere in the space of α , β , and γ (Figure 2). In this
figure, the degenerate curves are shown in the left of each subfigure,
where green indicates linear degenerate curves while yellow indicates
planar degenerate curves. In the right of each subfigure, we show a
visualization of the dominant eigenvector directions, which usually
form two loops with inversive symmetry. Every degenerate point in the
tensor field (left of each subfigure) corresponds to two antipodal points
on the curves (right of each subfigure). Starting from the upper-left
subfigure and travelling clockwise, we show six degenerate points in
the tensor field. For each selected degenerate point (left), we show
the repeating plane whose normal is highlighted by a black dot on the
loops in the corresponding right subfigure. Note that if two degenerate
curves approach ∞ in opposite directions, the dominant eigenvectors
approach the same limit vector. In the right subfigures, such limit
vectors are the boundary between linear degenerate points (green) and
planar degenerate points (yellow).

Notice that scaling (α,β ,γ) does not affect Equation 10. Keeping
this in mind, we may absorb Equation 11 and rescale (α,β ,γ) to replace
it with γ = 1. Then Equation 10 simplifies to

aα2 +bβ 2 = (a+b) (12)

(a) (b) (c)

( f ) (e) (d)

Fig. 2: This figure uses an example to show that under structurally stable conditions, there is a bijective map between the set of unit dominant
eigenvectors and the degenerate points in the field. Starting from the upper-left figure and travelling clockwise, we show six degenerate points and
their corresponding dominant eigenvectors (black dots on the elliptical curves surrounding the sphere). Planar degenerate points form yellow
curves while linear degenerate points form green curves.

This is the equation of an ellipse, centered at the origin of the αβ plane.
Geometrically, this means that the projection of the curve in Figure 2
onto a plane perpendicular to T ’s minor eigenvector is an ellipse. We
parameterize this ellipse using the angle θ = atan2(β ,α). Increasing
θ will travel counterclockwise around the ellipse (Figure 2).

It is also important to know the tangent vector of the degenerate
curve. We calculate this by taking the derivative of the parameterization.
First, we find the tangent vector dv

dθ = ( dα
dθ ,

dβ
dθ ,

dγ
dθ ) of the ellipse on

the sphere, to tell which way the dominant eigenvector will change as
we follow the curve. From the parameterization, dv

dθ is continuous and
nonzero. This tangent vector can then be turned into the change in the
x coordinate by differentiating Equation 7.

dx
dθ

=
d

dθ
vT T ′

x v
vT T ′

0v
(13)

= 2
vT T ′

x
dv
dθ

vT T ′
0v

−2
vT T ′

x v vT T ′
0

dv
dθ

(vT T ′
0v)2 (14)

Similarly, for y and z we have

dy
dθ

= 2
vT T ′

y
dv
dθ

vT T ′
0v

−2
vT T ′

y v vT T ′
0

dv
dθ

(vT T ′
0v)2 (15)

dz
dθ

= 2
vT T ′

z
dv
dθ

vT T ′
0v

−2
vT T ′

z v vT T ′
0

dv
dθ

(vT T ′
0v)2 (16)

These derivatives are continuous when vT T ′
0v �= 0, i.e. when the degen-

erate point is not at infinity.

4.3 Degenerate Curve Extraction Algorithm

The aforementioned parameterization of the degenerate points in a 3D
linear tensor field brings a number of benefits.

First, it is now possible to extract the set of degenerate points at any
given accuracy, by simply sampling the loop at sufficient resolutions.
This overcomes numerical issues associated with numerical integration
and finding a solution to a high-degree polynomial, both of which
are essential steps in existing degenerate curve extraction methods
such as [13, 17, 22]. See Figure 1 for a comparison. In this case, the
degenerate point extraction method of Palacios et al. [13] in Figure 1(a)
leads to broken degenerate curves and spurious degenerate points due to
numerical issues. Our approach, with the knowledge of the geometric
and topological structure of 3D linear tensor fields, does not suffer from
this (Figure 1(b)).

Second, by avoiding the expensive, sequential computation of Runge-
Kutta tracing and correction, the performance is greatly enhanced.

We now describe our algorithm for the input data, which comes
in the form of a tensor field defined over a tetrahedral mesh with a
piecewise linear interpolation.

Our method first extracts degenerate points on the faces in the mesh.
As a preprocessing step, we follow [13] and use the A-patches method
without subdivision [11] to quickly eliminate faces that have no degen-
erate points (We provide a review of the A-patches method in Section 5).
Given a face f between two tetrahedra c1 and c2, consider the plane
P that contains f . Note that the linear tensor fields T1(x,y,z) inside c1
and T2(x,y,z) inside c2 agree on P. Consequently, in the local coordi-
nate system of P the tensor field on P has the form T0,P + rTr,P + sTs,P
where r and s are the local coordinates. Under structurally stable condi-
tions, T0,P, Tr,P, and Ts,P span a three-dimensional linear subspace of
A (co-dimension two). Moreover, recall that A has an inner product
defined on it (Section 3). Therefore, there exist two 3× 3 traceless
tensors T1 and T2 such that they are both perpendicular to T0,P, Tr,P,
and Ts,P. Moreover, T1 is perpendicular to T2. Note that T1 and T2 can
be computed from T0,P, Tr,P and Ts,P with algorithms to compute the
basis for the orthogonal complement subspace [16].

If tensor t = T0,P + rTr,P + sTs,P, then vT T1v = 0 and vT T2v = 0
where v is a unit dominant eigenvector of t (Theorem 2). This leads to
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4 DEGENERATE CURVE EXTRACTION

4.1 3D Linear Tensor Fields
In this paper we focus on the extraction of degenerate curves and neutral
surfaces from a 3D tensor field defined on the vertices of a tetrahedral
mesh, i.e. piecewise linear tensor fields. Such data is common in
simulation. In addition, when studying the behavior of a tensor field
near a point of interest, the first term of the Taylor’s expansion leads to
a locally linear tensor field.

A linear traceless tensor field has the form of T (x,y,z) = T0 + xTx +
yTy + zTz where T0, Tx, Ty, and Tz are 3×3 traceless tensors. Let U be
the image of T , i.e. the set of all tensors that occur in the field.

Under structurally stable conditions, T0, Tx, Ty, Tz span a four-
dimensional linear subspace of the five-dimensional space of trace-
less tensors, A. Consequently, there exists a traceless tensor T ∈ A
which is perpendicular to T0, Tx, Ty, and Tz based on the aforemen-
tioned inner product (Equation 1). Additionally, we normalize T so
that 〈T ,T 〉 = 1. Note that T plays an important role in our parame-
terizations of the degenerate curves and neutral surfaces of the tensor
field T (x,y,z) = T0 + xTx + yTy + zTz. Therefore, we refer to T as the
normal of the tensor field T (x,y,z).

The tensor field, together with its normal, spans A. As a result, we
define the invertible linear map T : R5 → A given by

T(x,y,z,w,u) = xTx + yTy + zTz +wT0 +uT (2)

We call its inverse T−1 : A → R5. A tensor T can occur at location
(x,y,z) in the field if and only if T−1(T ) = (x,y,z,1,0). Consequently,
the process of finding degenerate curves is about finding degenerate
tensors for which T−1(T ) gives w = 1 and u = 0.

Since T is the normal of the tensor field, it can be used to find the u
coordinate of T−1(T ).

〈
T ,T(x,y,z,w,u)

〉

=
〈
T ,xTx + yTy + zTz +wT0 +uT

〉
(3)

= x〈T ,Tx〉+ y〈T ,Ty〉+ z〈T ,Tz〉+w〈T ,T0〉+u〈T ,T 〉 (4)
= u (5)

Since T−1 is a linear map, its other coordinates may also be written in
terms of the inner product 〈·, ·〉. Let

T−1(T ) =
(
〈T ′

x ,T 〉,〈T ′
y ,T 〉,〈T ′

z ,T 〉,〈T ′
0,T 〉,〈T ,T 〉

)
(6)

for some T ′
x , T ′

y , T ′
z , T ′

0 in A.
From classical linear algebra results on inverse maps [15], we have

that T ′
0 is orthogonal to Tx, Ty, Tz, and T , and has a dot product 1 with

T0. In fact, it is the unique tensor satisfying these properties. A similar
implication holds for T ′

x , T ′
y , and T ′

z .
The existence of the inverse map T−1 leads to an important property.

Proposition 1. Given a linear 3D tensor field T (x,y,z) = T0 + xTx +
yTy + zTz, any tensor value can occur at most once in the domain.
Moreover, if a tensor value appears in the domain, its multiples cannot
occur anymore in the field.

The proofs of the Proposition and other theoretical results can be
found in the appendix (supplementary material).

In the remainder of this section, we describe our analysis of degen-
erate curves of a 3D linear tensor field and an efficient algorithm to
extract degenerate curves from a piecewise linear tensor field using
this analysis. Our discussion on neutral surfaces will be presented in
Section 5.

4.2 Degenerate Point Parameterization
We start this section by providing the sufficient and necessary conditions
for which a degenerate tensor can occur in a linear tensor field.

Theorem 2. Let t be a degenerate tensor that occurs in a linear tensor
field T (x,y,z) = T0+xTx+yTy+zTz, and v be its dominant eigenvector.
Then vT T v = 0.

The reverse of the above theorem is true, too, as stated in the next
theorem.

Theorem 3. Given a linear tensor field T (x,y,z) = T0 + xTx + yTy +

zTz and a unit vector v that satisfies vT T v = 0, there exist x0,y0,z0 ∈
R such that T (x0,y0,z0) is a degenerate tensor and v is a dominant
eigenvector of T (x0,y0,z0). The dominant eigenvalue is given by k =

1
vT T ′

0 v .

It is useful to be able to explicitly calculate x, y, and z, given the
dominant eigenvector v. Since T−1(t) = (x,y,z,1,0), by a similar
calculation we have

x = kvT T ′
x v =

vT T ′
x v

vT T ′
0v

(7)

y = kvT T ′
y v =

vT T ′
y v

vT T ′
0v

(8)

z = kvT T ′
z v =

vT T ′
z v

vT T ′
0v

(9)

We can choose a new basis under which T =




a 0 0
0 b 0
0 0 −a−b




where a ≥ b ≥ 0. Note that if the eigenvalues of T has two negative
eigenvalues, we can simply choose −T which is still perpendicular to
T0, Tx, Ty, and Tz and has two positive eigenvalues. Also, changing the
basis in the XY Z space does not alter the degenerate curves in the field.

Now the set of degenerate points in the tensor field T (x,y,z) must
satisfy the following equations:

aα2 +bβ 2 = (a+b)γ2 (10)

α2 +β 2 + γ2 = 1 (11)

where v = (α,β ,γ) is a unit dominant eigenvector of the degenerate
tensor. Note that if (α,β ,γ) satisfies the above system of equations, so
does (−α,−β ,−γ).

Recall that a traceless degenerate tensor with the unit dominant

eigenvector (α,β ,γ) has the form k




α2 − 1
3 αβ αγ

αβ β 2 − 1
3 βγ

αγ βγ γ2 − 1
3


 for

some k ∈ R. Proposition 1 shows that any pair of solutions to Equa-
tions 10 and 11 can correspond to exactly one point in the original XY Z
domain. Consequently, T (from Equation 2) introduces a 2-to-1 map
between the solutions to Equations 10 and 11 and the set of degenerate
points in the field.

The solutions of Equations 10 and 11 can be visualized as a curve
on the unit sphere in the space of α , β , and γ (Figure 2). In this
figure, the degenerate curves are shown in the left of each subfigure,
where green indicates linear degenerate curves while yellow indicates
planar degenerate curves. In the right of each subfigure, we show a
visualization of the dominant eigenvector directions, which usually
form two loops with inversive symmetry. Every degenerate point in the
tensor field (left of each subfigure) corresponds to two antipodal points
on the curves (right of each subfigure). Starting from the upper-left
subfigure and travelling clockwise, we show six degenerate points in
the tensor field. For each selected degenerate point (left), we show
the repeating plane whose normal is highlighted by a black dot on the
loops in the corresponding right subfigure. Note that if two degenerate
curves approach ∞ in opposite directions, the dominant eigenvectors
approach the same limit vector. In the right subfigures, such limit
vectors are the boundary between linear degenerate points (green) and
planar degenerate points (yellow).

Notice that scaling (α,β ,γ) does not affect Equation 10. Keeping
this in mind, we may absorb Equation 11 and rescale (α,β ,γ) to replace
it with γ = 1. Then Equation 10 simplifies to

aα2 +bβ 2 = (a+b) (12)

(a) (b) (c)

( f ) (e) (d)

Fig. 2: This figure uses an example to show that under structurally stable conditions, there is a bijective map between the set of unit dominant
eigenvectors and the degenerate points in the field. Starting from the upper-left figure and travelling clockwise, we show six degenerate points and
their corresponding dominant eigenvectors (black dots on the elliptical curves surrounding the sphere). Planar degenerate points form yellow
curves while linear degenerate points form green curves.

This is the equation of an ellipse, centered at the origin of the αβ plane.
Geometrically, this means that the projection of the curve in Figure 2
onto a plane perpendicular to T ’s minor eigenvector is an ellipse. We
parameterize this ellipse using the angle θ = atan2(β ,α). Increasing
θ will travel counterclockwise around the ellipse (Figure 2).

It is also important to know the tangent vector of the degenerate
curve. We calculate this by taking the derivative of the parameterization.
First, we find the tangent vector dv

dθ = ( dα
dθ ,

dβ
dθ ,

dγ
dθ ) of the ellipse on

the sphere, to tell which way the dominant eigenvector will change as
we follow the curve. From the parameterization, dv

dθ is continuous and
nonzero. This tangent vector can then be turned into the change in the
x coordinate by differentiating Equation 7.

dx
dθ

=
d

dθ
vT T ′

x v
vT T ′

0v
(13)

= 2
vT T ′

x
dv
dθ

vT T ′
0v

−2
vT T ′

x v vT T ′
0

dv
dθ

(vT T ′
0v)2 (14)

Similarly, for y and z we have

dy
dθ

= 2
vT T ′

y
dv
dθ

vT T ′
0v

−2
vT T ′

y v vT T ′
0

dv
dθ

(vT T ′
0v)2 (15)

dz
dθ

= 2
vT T ′

z
dv
dθ

vT T ′
0v

−2
vT T ′

z v vT T ′
0

dv
dθ

(vT T ′
0v)2 (16)

These derivatives are continuous when vT T ′
0v �= 0, i.e. when the degen-

erate point is not at infinity.

4.3 Degenerate Curve Extraction Algorithm

The aforementioned parameterization of the degenerate points in a 3D
linear tensor field brings a number of benefits.

First, it is now possible to extract the set of degenerate points at any
given accuracy, by simply sampling the loop at sufficient resolutions.
This overcomes numerical issues associated with numerical integration
and finding a solution to a high-degree polynomial, both of which
are essential steps in existing degenerate curve extraction methods
such as [13, 17, 22]. See Figure 1 for a comparison. In this case, the
degenerate point extraction method of Palacios et al. [13] in Figure 1(a)
leads to broken degenerate curves and spurious degenerate points due to
numerical issues. Our approach, with the knowledge of the geometric
and topological structure of 3D linear tensor fields, does not suffer from
this (Figure 1(b)).

Second, by avoiding the expensive, sequential computation of Runge-
Kutta tracing and correction, the performance is greatly enhanced.

We now describe our algorithm for the input data, which comes
in the form of a tensor field defined over a tetrahedral mesh with a
piecewise linear interpolation.

Our method first extracts degenerate points on the faces in the mesh.
As a preprocessing step, we follow [13] and use the A-patches method
without subdivision [11] to quickly eliminate faces that have no degen-
erate points (We provide a review of the A-patches method in Section 5).
Given a face f between two tetrahedra c1 and c2, consider the plane
P that contains f . Note that the linear tensor fields T1(x,y,z) inside c1
and T2(x,y,z) inside c2 agree on P. Consequently, in the local coordi-
nate system of P the tensor field on P has the form T0,P + rTr,P + sTs,P
where r and s are the local coordinates. Under structurally stable condi-
tions, T0,P, Tr,P, and Ts,P span a three-dimensional linear subspace of
A (co-dimension two). Moreover, recall that A has an inner product
defined on it (Section 3). Therefore, there exist two 3× 3 traceless
tensors T1 and T2 such that they are both perpendicular to T0,P, Tr,P,
and Ts,P. Moreover, T1 is perpendicular to T2. Note that T1 and T2 can
be computed from T0,P, Tr,P and Ts,P with algorithms to compute the
basis for the orthogonal complement subspace [16].

If tensor t = T0,P + rTr,P + sTs,P, then vT T1v = 0 and vT T2v = 0
where v is a unit dominant eigenvector of t (Theorem 2). This leads to
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the following system of quadratic equations:

vT T1v = 0 (17)
vT T2v = 0 (18)

vT v = 1 (19)

Similar to Equation 10, Equations 17 and 18 do not depend on the
length of v, so we may absorb Equation 19 and normalize v at the end.
Equations 17 and 18 are then two conic sections, and we need to find
their intersections. By Bézout’s theorem [6], there are at most four
real-valued intersection points of the two conics. Note that this could be
implemented by solving a quartic. Instead, we use the method in [14]
(Section 11.4) that converts the problem to finding a linear combination
of T1 and T2 that is singular, for which we use the solver in Eigen [8].

Given a solution v0 to Equations 17, 18, and 19, we construct the
family of tensors k(vT

0 v0 − I) and look for k0 such that k0(vT
0 v0 −

I) = T0,P + rTr,P + sTs,P. This is again solved by finding the basis for
complement subspace [16].

Note that if v0 is a solution, so is −v0 since both give rise to the same
degenerate tensor. Therefore, inside any face of the mesh, there are at
most four degenerate points. Finally, we use the barycentric coordinates
of the degenerate points, i.e., (ri,si), to decide which degenerate points
are inside the face f (not just in the plane containing f ). Only those
solutions are valid solutions.

Once degenerate points inside all faces have been detected, we pro-
cess each tetrahedron c as follows. First, we collect all the degenerate
points at any face of c (Figure 3 (left)) and compute the corresponding
points on the elliptical curve (Figure 3 (right)). Next, for each of these
points we calculate whether going counterclockwise around the ellipse
will enter or exit the tetrahedron, by finding the curve tangent calcu-
lated in Section 4.2 and taking the dot product with the face normal.
Going counterclockwise from each entrance point to the next exit point
will give those segments of the degenerate curve that are inside the
tetrahedron. These sections on the loop are then sampled using the
parameterization of the ellipse. The samples are placed uniformly in
the parameter θ ∈ [0,2π) at intervals of 2π

1000 , which implies that a
tetrahedron covering almost the whole ellipse receives 1000 samples.
Tetrahedra that cover a smaller portion of the ellipse receive fewer
samples.

(a) (b)

Fig. 3: Illustration of the degenerate curve extraction algorithm. The
darker curve segments on the sphere (b) correspond to degenerate curve
segments inside the tetrahedron (a).

It is worth noting that the parameterization is not uniform, as it maps
a closed curve to an infinite space. However, the derivation of the
tangent vector in Section 4.2 shows that it, for the most part, cannot
change too rapidly from one sample to the next. Excluding structurally
unstable cases, there may be long sections of degenerate curve in R3

with very few points on them, but they are where the degenerate curve
is almost a straight line and does not need many samples (see Figure 2
(c-d) for an example). Also, given that the input data is in a finite region,
those points with the worst distortion are outside the tet.

The main numerical challenge is the presence of structurally unstable
cases, such as tetrahedra for which T0, Tx, Ty, Tz are linearly dependent,

and degenerate curves intersecting the vertices and edges of the mesh.
To avoid these issues we add a small amount of noise (∼10−11 times
the magnitude of the original tensor) to the input data. This is sufficient
to avoid such cases in practice.

Note that this process is highly parallelizable, of which we take
advantage to speed up the computation.

5 NEUTRAL SURFACE EXTRACTION

Neutral surfaces are another important feature in a 3D tensor field.
Existing methods such as the Marching Tetrahedron method, while
fast, often has topological errors during the extraction [13]. Making
the observation that the neutral surface in a 3D linear tensor field is a
level set of a cubic polynomial (thus an algebraic surface), Palacios
et al. [13] adapt the A-patches method [11], which is a well-known
technique in extracting algebraic curves and surfaces by the CAGD
community. While the A-patches method is more robust than the
Marching Tetrahedron method, it requires iterative mesh subdivision
and does not guarantee the process will eventually terminate. Therefore,
this method can still miss a significant part of the surface. In addition,
the data structure needed by the A-patches method incur high memory
and computational cost. Similar to degenerate curve extraction, we
aim to find a parameterization for neutral surfaces. In this section,
we describe such a parameterization, based on our novel tensor field
analysis.

5.1 Neutral Point Parameterization
We will again consider a linear tensor field T (x,y,z) = T0 +xTx +yTy +
zTz. Under structurally stable conditions, T0, Tx, Ty, and Tz span a
four-dimensional space in the set of 3×3 traceless, symmetric tensors.
Let T be the normal of the tensor field. We have the following theorem:

Theorem 4. ∀w,x,y,z ∈R, let v1, v2, and v3 be respectively the major,
medium, and minor eigenvectors of a neutral tensor t = wT0 + xTx +
yTy + zTz. Then vT

1 T v1 = vT
3 T v3.

Theorem 4 indicates that given a neutral tensor in the linear tensor
field T (x,y,z), its unit major and minor eigenvectors must reside on
the same level set of the quadratic function vT T v on the unit sphere
α2 +β 2 + γ2 = 1 where v = (α,β ,γ).

We now consider the following question: given a unit vector as the
medium eigenvector, how many different ways can we find a unit major
eigenvector and unit minor eigenvector, which must reside on the same
level set of vT T v? The following results together address this question.

Theorem 5. Given a medium eigenvector v2 which resides on the
k-th level set of vT T v, the corresponding major and minor eigenvectors
must reside on the − k

2 -th level set of vT T v.

This implies that the number of solutions given the medium eigen-
vector v2 is dependent on the number of intersection points of the plane

whose normal is v2 and the level set with the value − vT
2 T v2

2 .
The following theorem characterizes the shape of these level sets.

Theorem 6. Under structurally stable condition that T is non-
degenerate, a level set of vT T v on the unit sphere must be two non-
intersecting non-circular spherical ellipses, except one situation where
it is the union of two great circles, residing in two intersecting planes.

Figure 4(a) illustrates this with an example. Note that while v1, v2,
and v3 are all unit vectors, we wish to parameterize the neutral surface
of a 3D linear tensor field with as few parameters as possible. It turns
out that we can use the medium eigenvectors to parameterize the neutral
tensors with two singularities.

Given a unit medium eigenvector v2, the plane P that passes though
the origin whose normal is v2 will intersect a typical level set vT T v at
four points, two per non-circular ellipse. Note that if v resides on one
ellipse, −v will reside on the other ellipse. Furthermore, if u and w are
respectively the major and minor eigenvectors of a tensor, so are −u
and −w. Consequently, we only need to consider the intersection of the
plane P with one ellipse. The two solutions u and w lead to two neutral

(a) (b)

Fig. 4: In (a): a level set of vT T v on the unit sphere α2 +β 2 + γ2 = 1
(where v = (α,β ,γ)) consists of two ellipses except in the degenerate
case when it consists of two intersecting great circles (not shown in the
example). In (b), the medium eigenvector manifold where the line field
corresponds to one of the bisector fields between the major and minor
eigenvector fields. The singularities (the yellow dots) correspond to the
two degenerate cases in (a).

tensors, with opposite signs. However, only one of them can occur in
the field due to Proposition 1. This means that for all but two planes
whose normals are the medium eigenvectors, there is one corresponding
neutral tensor in the tensor field. Thus, we can parameterize the neutral
points in the field with the unit sphere modulo the inversive symmetry,
except at two points. The following proposition makes this observation
more rigourous.

Proposition 7. Given a unit vector v, the tensor at (x,y,z) has v as
its medium eigenvector if and only if

M




x
y
z


=−T0v (20)

where M is the matrix
[
Txv Tyv Tzv

]
.

Let us consider a map from a neutral tensor t to a tangent line field on
the unit sphere as follows (Figure 4(b)). We map the pair of antipodal
points on the unit sphere corresponding to the medium eigenvector
of t, i.e., ±v2. Then, the unit tangent directions at these points are
defined as v1+v3

|v1+v3| , a bisector of the unit major eigenvector and the
minor eigenvector of t. Note that this bisector is an eigenvector of the
projection of T onto the plane orthogonal to v2. This leads to a line
field on the unit sphere (Figure 4(b)). Note that this line field has four
wedges, corresponding to two pairs of antipodal points. In fact, each
pair corresponds to the same singularity.

The two singularities correspond to the case when

vT
1 T v1 = vT

3 T v3 = b (21)

where b is the medium eigenvalue of T . In this case, the two planes
normal to the given eigenvectors intersect the level sets at a circle, thus
having infinitely many solutions for v1 and v3. In fact, these solutions
can be parameterized by a circle with antipodal points identified. We
refer to these two pairs of antipodal points as the singularities in the
parameterization of the neutral surface. In addition, we refer to this
sphere with two pairs of singularities, or, more precisely, an RP2 with
two singularities, as the medium eigenvector manifold. For visualization
purposes, we represent the medium eigenvector manifold as a sphere
(Figure 4(b)) since RP2 is a non-orientable surface.

The following theorem shows that each singularity in the medium
eigenvector manifold corresponds to a straight line in the domain of the
tensor field.

Theorem 8. Given a unit vector v where the projection of T onto the
plane orthogonal to v is a degenerate two-dimensional tensor, the set of

points on the neutral surface that have v as their medium eigenvector
is a line.

Figure 5 shows the neutral surfaces of two example tensor fields,
each of which contains two straight lines (yellow) that correspond to
the singularities of their respective medium eigenvector manifold.

(a) (b)

Fig. 5: There are two configurations of neutral surfaces in a linear
tensor field. In the first configuration (a) the handle is finite, while
the second configuration (b) has the handle that connects at infinity.
The singularities in the neutral surface are straight lines (yellow). The
color encodes the medium eigenvectors and uses x, y and z components
of the normalized medium eigenvectors as the red, green and blue
components, respectively.

Topologically speaking, the neutral surface can be considered as the
real projective space RP2 (sphere modulo antipodal identification) with
two Möbius bands attached, one per the aforementioned singularity.
Figure 6 illustrates the neighborhood of a singularity O (left) with some
hyperstreamlines. Recall that the singularity is a topological circle in
the medium eigenvector manifold. Consequently, lifting O onto a circle
leads to a rectangular band (Figure 6 (b)) where O is a line segment
(middle, red) so that the left side and right side are identified in reversed
orientations. This leads to a Möbius band. Attaching two Möbius
bands (one per singularity) to RP2 is equivalent to attaching a handle
to RP2 [1].

Some extracted neutral surfaces are shown in Figure 5 where the
handle is either finite (a) or infinite (b). Notice that when the handle
is finite, the neutral surface intersects ∞ at one topological circle. In
contrast, when the handle is infinite, the neutral surface intersects ∞ at
two topological circles.
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Fig. 6: This figure illustrates the fact that the medium eigenvector
manifold near a singularity can be modelled as attaching a Möbius
band. Shown in (a) is a rectangular neighborhood of a singularity O
(one of the yellow dots in Figure 4(b)) with some hyperstreamlines
(colored curves). The singularity O corresponds to a topological circle.
Consequently, the neighborhood can be better visualized as a rectangle
(b) inside which the line corresponding to O is in the middle (red). The
hyperstreamlines shown in (a) are also shown in (b) with the same
colors. Note that the left side of the rectangle is identified with the right
side of the rectangle in the reverse order in (b).
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the following system of quadratic equations:

vT T1v = 0 (17)
vT T2v = 0 (18)

vT v = 1 (19)

Similar to Equation 10, Equations 17 and 18 do not depend on the
length of v, so we may absorb Equation 19 and normalize v at the end.
Equations 17 and 18 are then two conic sections, and we need to find
their intersections. By Bézout’s theorem [6], there are at most four
real-valued intersection points of the two conics. Note that this could be
implemented by solving a quartic. Instead, we use the method in [14]
(Section 11.4) that converts the problem to finding a linear combination
of T1 and T2 that is singular, for which we use the solver in Eigen [8].

Given a solution v0 to Equations 17, 18, and 19, we construct the
family of tensors k(vT

0 v0 − I) and look for k0 such that k0(vT
0 v0 −

I) = T0,P + rTr,P + sTs,P. This is again solved by finding the basis for
complement subspace [16].

Note that if v0 is a solution, so is −v0 since both give rise to the same
degenerate tensor. Therefore, inside any face of the mesh, there are at
most four degenerate points. Finally, we use the barycentric coordinates
of the degenerate points, i.e., (ri,si), to decide which degenerate points
are inside the face f (not just in the plane containing f ). Only those
solutions are valid solutions.

Once degenerate points inside all faces have been detected, we pro-
cess each tetrahedron c as follows. First, we collect all the degenerate
points at any face of c (Figure 3 (left)) and compute the corresponding
points on the elliptical curve (Figure 3 (right)). Next, for each of these
points we calculate whether going counterclockwise around the ellipse
will enter or exit the tetrahedron, by finding the curve tangent calcu-
lated in Section 4.2 and taking the dot product with the face normal.
Going counterclockwise from each entrance point to the next exit point
will give those segments of the degenerate curve that are inside the
tetrahedron. These sections on the loop are then sampled using the
parameterization of the ellipse. The samples are placed uniformly in
the parameter θ ∈ [0,2π) at intervals of 2π

1000 , which implies that a
tetrahedron covering almost the whole ellipse receives 1000 samples.
Tetrahedra that cover a smaller portion of the ellipse receive fewer
samples.

(a) (b)

Fig. 3: Illustration of the degenerate curve extraction algorithm. The
darker curve segments on the sphere (b) correspond to degenerate curve
segments inside the tetrahedron (a).

It is worth noting that the parameterization is not uniform, as it maps
a closed curve to an infinite space. However, the derivation of the
tangent vector in Section 4.2 shows that it, for the most part, cannot
change too rapidly from one sample to the next. Excluding structurally
unstable cases, there may be long sections of degenerate curve in R3

with very few points on them, but they are where the degenerate curve
is almost a straight line and does not need many samples (see Figure 2
(c-d) for an example). Also, given that the input data is in a finite region,
those points with the worst distortion are outside the tet.

The main numerical challenge is the presence of structurally unstable
cases, such as tetrahedra for which T0, Tx, Ty, Tz are linearly dependent,

and degenerate curves intersecting the vertices and edges of the mesh.
To avoid these issues we add a small amount of noise (∼10−11 times
the magnitude of the original tensor) to the input data. This is sufficient
to avoid such cases in practice.

Note that this process is highly parallelizable, of which we take
advantage to speed up the computation.

5 NEUTRAL SURFACE EXTRACTION

Neutral surfaces are another important feature in a 3D tensor field.
Existing methods such as the Marching Tetrahedron method, while
fast, often has topological errors during the extraction [13]. Making
the observation that the neutral surface in a 3D linear tensor field is a
level set of a cubic polynomial (thus an algebraic surface), Palacios
et al. [13] adapt the A-patches method [11], which is a well-known
technique in extracting algebraic curves and surfaces by the CAGD
community. While the A-patches method is more robust than the
Marching Tetrahedron method, it requires iterative mesh subdivision
and does not guarantee the process will eventually terminate. Therefore,
this method can still miss a significant part of the surface. In addition,
the data structure needed by the A-patches method incur high memory
and computational cost. Similar to degenerate curve extraction, we
aim to find a parameterization for neutral surfaces. In this section,
we describe such a parameterization, based on our novel tensor field
analysis.

5.1 Neutral Point Parameterization
We will again consider a linear tensor field T (x,y,z) = T0 +xTx +yTy +
zTz. Under structurally stable conditions, T0, Tx, Ty, and Tz span a
four-dimensional space in the set of 3×3 traceless, symmetric tensors.
Let T be the normal of the tensor field. We have the following theorem:

Theorem 4. ∀w,x,y,z ∈R, let v1, v2, and v3 be respectively the major,
medium, and minor eigenvectors of a neutral tensor t = wT0 + xTx +
yTy + zTz. Then vT

1 T v1 = vT
3 T v3.

Theorem 4 indicates that given a neutral tensor in the linear tensor
field T (x,y,z), its unit major and minor eigenvectors must reside on
the same level set of the quadratic function vT T v on the unit sphere
α2 +β 2 + γ2 = 1 where v = (α,β ,γ).

We now consider the following question: given a unit vector as the
medium eigenvector, how many different ways can we find a unit major
eigenvector and unit minor eigenvector, which must reside on the same
level set of vT T v? The following results together address this question.

Theorem 5. Given a medium eigenvector v2 which resides on the
k-th level set of vT T v, the corresponding major and minor eigenvectors
must reside on the − k

2 -th level set of vT T v.

This implies that the number of solutions given the medium eigen-
vector v2 is dependent on the number of intersection points of the plane

whose normal is v2 and the level set with the value − vT
2 T v2

2 .
The following theorem characterizes the shape of these level sets.

Theorem 6. Under structurally stable condition that T is non-
degenerate, a level set of vT T v on the unit sphere must be two non-
intersecting non-circular spherical ellipses, except one situation where
it is the union of two great circles, residing in two intersecting planes.

Figure 4(a) illustrates this with an example. Note that while v1, v2,
and v3 are all unit vectors, we wish to parameterize the neutral surface
of a 3D linear tensor field with as few parameters as possible. It turns
out that we can use the medium eigenvectors to parameterize the neutral
tensors with two singularities.

Given a unit medium eigenvector v2, the plane P that passes though
the origin whose normal is v2 will intersect a typical level set vT T v at
four points, two per non-circular ellipse. Note that if v resides on one
ellipse, −v will reside on the other ellipse. Furthermore, if u and w are
respectively the major and minor eigenvectors of a tensor, so are −u
and −w. Consequently, we only need to consider the intersection of the
plane P with one ellipse. The two solutions u and w lead to two neutral

(a) (b)

Fig. 4: In (a): a level set of vT T v on the unit sphere α2 +β 2 + γ2 = 1
(where v = (α,β ,γ)) consists of two ellipses except in the degenerate
case when it consists of two intersecting great circles (not shown in the
example). In (b), the medium eigenvector manifold where the line field
corresponds to one of the bisector fields between the major and minor
eigenvector fields. The singularities (the yellow dots) correspond to the
two degenerate cases in (a).

tensors, with opposite signs. However, only one of them can occur in
the field due to Proposition 1. This means that for all but two planes
whose normals are the medium eigenvectors, there is one corresponding
neutral tensor in the tensor field. Thus, we can parameterize the neutral
points in the field with the unit sphere modulo the inversive symmetry,
except at two points. The following proposition makes this observation
more rigourous.

Proposition 7. Given a unit vector v, the tensor at (x,y,z) has v as
its medium eigenvector if and only if

M




x
y
z


=−T0v (20)

where M is the matrix
[
Txv Tyv Tzv

]
.

Let us consider a map from a neutral tensor t to a tangent line field on
the unit sphere as follows (Figure 4(b)). We map the pair of antipodal
points on the unit sphere corresponding to the medium eigenvector
of t, i.e., ±v2. Then, the unit tangent directions at these points are
defined as v1+v3

|v1+v3| , a bisector of the unit major eigenvector and the
minor eigenvector of t. Note that this bisector is an eigenvector of the
projection of T onto the plane orthogonal to v2. This leads to a line
field on the unit sphere (Figure 4(b)). Note that this line field has four
wedges, corresponding to two pairs of antipodal points. In fact, each
pair corresponds to the same singularity.

The two singularities correspond to the case when

vT
1 T v1 = vT

3 T v3 = b (21)

where b is the medium eigenvalue of T . In this case, the two planes
normal to the given eigenvectors intersect the level sets at a circle, thus
having infinitely many solutions for v1 and v3. In fact, these solutions
can be parameterized by a circle with antipodal points identified. We
refer to these two pairs of antipodal points as the singularities in the
parameterization of the neutral surface. In addition, we refer to this
sphere with two pairs of singularities, or, more precisely, an RP2 with
two singularities, as the medium eigenvector manifold. For visualization
purposes, we represent the medium eigenvector manifold as a sphere
(Figure 4(b)) since RP2 is a non-orientable surface.

The following theorem shows that each singularity in the medium
eigenvector manifold corresponds to a straight line in the domain of the
tensor field.

Theorem 8. Given a unit vector v where the projection of T onto the
plane orthogonal to v is a degenerate two-dimensional tensor, the set of

points on the neutral surface that have v as their medium eigenvector
is a line.

Figure 5 shows the neutral surfaces of two example tensor fields,
each of which contains two straight lines (yellow) that correspond to
the singularities of their respective medium eigenvector manifold.

(a) (b)

Fig. 5: There are two configurations of neutral surfaces in a linear
tensor field. In the first configuration (a) the handle is finite, while
the second configuration (b) has the handle that connects at infinity.
The singularities in the neutral surface are straight lines (yellow). The
color encodes the medium eigenvectors and uses x, y and z components
of the normalized medium eigenvectors as the red, green and blue
components, respectively.

Topologically speaking, the neutral surface can be considered as the
real projective space RP2 (sphere modulo antipodal identification) with
two Möbius bands attached, one per the aforementioned singularity.
Figure 6 illustrates the neighborhood of a singularity O (left) with some
hyperstreamlines. Recall that the singularity is a topological circle in
the medium eigenvector manifold. Consequently, lifting O onto a circle
leads to a rectangular band (Figure 6 (b)) where O is a line segment
(middle, red) so that the left side and right side are identified in reversed
orientations. This leads to a Möbius band. Attaching two Möbius
bands (one per singularity) to RP2 is equivalent to attaching a handle
to RP2 [1].

Some extracted neutral surfaces are shown in Figure 5 where the
handle is either finite (a) or infinite (b). Notice that when the handle
is finite, the neutral surface intersects ∞ at one topological circle. In
contrast, when the handle is infinite, the neutral surface intersects ∞ at
two topological circles.
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Fig. 6: This figure illustrates the fact that the medium eigenvector
manifold near a singularity can be modelled as attaching a Möbius
band. Shown in (a) is a rectangular neighborhood of a singularity O
(one of the yellow dots in Figure 4(b)) with some hyperstreamlines
(colored curves). The singularity O corresponds to a topological circle.
Consequently, the neighborhood can be better visualized as a rectangle
(b) inside which the line corresponding to O is in the middle (red). The
hyperstreamlines shown in (a) are also shown in (b) with the same
colors. Note that the left side of the rectangle is identified with the right
side of the rectangle in the reverse order in (b).
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(a) (b) (c) (d)

Fig. 7: From left to right, this figure illustrates our neutral surface extraction algorithm with an example tensor field. Starting from the input
tensor field in a tetrahedron (a), we compute the corresponding medium eigenvector manifold which has two pairs of singularities (red dots).
Also, the ∞ forms a loop ((b): blue). Next, we triangulate this manifold to ensure that the singularities are vertices of the triangle mesh (b). Due to
the mapping between the medium eigenvector manifold and the neutral surface, we construct a triangulation of the neutral surface (c). Triangles
totally outside the tetrahedron are discarded for efficiency. Finally, the neutral surface is clipped against the boundary of the tetrahedron, thus
finding the neutral surface inside the tet.

5.2 Neutral Surface Extraction Algorithm

By using the parameterization defined in the previous section, we can
generate the neutral surface at any given resolution. Given an input
tensor field, we extract the neutral surface inside each tetrahedron in the
mesh that tessellates the domain. The collection of the neutral surfaces
inside the tetrahedra forms the neutral surface of the input tensor field.
Next, we focus on finding the neutral surface of a linear tensor field
inside each tetrahedron.

Given a linear tensor field T (x,y,z) = T0 + xTx + yTy + zTz and a
tetrahedron c (an example is shown in Figure 7(a)), our pipeline of
extracting the neutral surface of T (x,y,z) inside c is achieved as follows.

We start by triangulating the RP2 (half of the unit sphere) for the
medium eigenvector (Figure 7(b)). This is achieved by considering the
unit sphere as a round icosahedron and performing a number of Loop
subdivisions to it. This guarantees the antipodal symmetry of RP2.

Next, we modify the mesh so that each singularity in the parameter-
ization is also a vertex. This results in a triangulation of the medium
eigenvector manifold (Figure 7(b)). We then find the x, y, z coordinates
for each non-singularity vertex (Figure 7(c)) and connect three vertices
in R3 as a triangle if their corresponding vertices form a triangle in the
medium eigenvector manifold (Figure 7(b)).

Recall that a singularity in the parameterization corresponds to a
line. Consequently, we extract the neutral surface around a singularity
as follows (Figure 8). Given the 1-ring neighborhood of a singularity O
(Figure 8 (a)), we convert O into a polygon (Figure 8 (b): red pentagon)
whose number of sides matches the number of vertices adjacent to
O. Each triangle in (a) is now a quad in (b) which can be split into
two triangles by adding a diagonal. The corresponding neighborhood
in R3 is shown in (c), which is a rectangular region bounded on the
left and right by ∞. Since the singularity corresponds to a line, the
parameterization is discontinuous and the limit approaching it from
different directions gives different points. We use this to find the xyz
coordinates of OA, by calculating the limit of the parameterization
as we approach the singularity((c): the red line in the middle) along
the line OA. The detail of this step is given in Appendix B. The 3D
locations of the OB through OE can be determined in a similar fashion.

Finally, we clip the triangle against the tetrahedron. For efficiency,
we first cull all triangles that are entirely outside the tetrahedron. We
then clip the remaining triangles against the faces of the tetrahedron
in sequence. Each triangle that crosses the plane of a face is either
split into a new triangle, or two quads that are then split into triangles.
The intersection point of the neutral surface edge with the plane is
determined by finding the point on the edge of the medium eigenvector
manifold that maps to a point on this plane.

Note that the neutral surface intersects ∞ along a curve, which corre-
sponds to a loop in the medium eigenvector manifold that goes through

each singularity (Figure 7(b): blue loop). A triangle intersecting with
the ∞ loop is invalid. However, after clipping any such triangle must
lie entirely outside the tetrahedron and thus has been removed.

Observing that the neutral surface can be rather flat except near the
handle, we wish to combine our technique with simpler techniques
such as the A-patches method.

The A-patches method [11] is an iterative method that computes the
zeroth level set of a given polynomial defined in a tetrahedron. The
idea is to compute the Bernstein coefficients of the polynomial [11]
and record them on a grid (Figure 9: the grid formed by colored dots).
The A-patches method analyzes the signs of the coefficients (Figure 9:
red for positive coefficients and blue for negative coefficients), which
results in four scenarios. In the first, all coefficients are either all
positive or all negative (Figure 9 (1a and 1b)). In this case, there is
no zeroth level set in the tet. In the second and third scenarios, there
is a single sheet (topological disk) of the zeroth level set, touching
three faces (three-sided A-patch) or four faces (four-sided A-patch)
of the tetrahedron, respectively (Figure 9 (2a and 2b)). In the likely
case where the tests for these scenarios fail, the A-patches method will
divide the tetrahedron into smaller tetrahedra, each of which will be
again tested for A-patches. This process continues until either all tets
(including the ones from subdivision) have all converged (no patch, a
three-sided patch, or a four-sided patch), or the maximum number of
iterations have been exceeded without convergence. Note that there is
no guarantee the A-patches method will converge in finite iterations.

The difficulty with the A-patches method is that it assumes the
surface is relatively flat and is mostly aligned with at least one face
(three-sided A-patch) or one pair of opposing edges (four-sided A-
patch) of the tetrahedron. This assumption breaks down where the
surface has high curvature, such as the neutral surfaces near the handles
(Figure 9 (3a and 3b)). This is where our method is more robust.

Consequently, we combine the strength of both methods. First, we
perform the A-patches method without any subdivision. That is, if a tet
fails the A-patches test, no subdivision is performed. Instead, for these
tets we apply our parameterization-based neutral surface extraction
method. This leads to more robust extraction of the neutral surfaces
without incurring high computational cost and memory consumption
with tetrahedral subdivision. Figure 1 (c-d) shows a comparison of
the neutral surfaces extracted from our method (d) and from the pure
A-patches method (c). Notice our method has fewer artifacts.

6 PERFORMANCE

Measurements were taken on a computer with an Intel(R) Xeon(R)
E3-1230 CPU running at 3.40GHz, 64GB of RAM, and an NVIDIA
Quadro K420 GPU. The datasets that we used in this paper have a tetra-
hedral count on the order of 106. The running time for our degenerate
curve extraction method is between 0.5 and 1 seconds. This represents
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Fig. 8: This figure illustrates the extraction of neutral surfaces around
a singularity in the parameterization. In (a) we show the 1-ring neigh-
borhood of a singularity O in the medium eigenvector manifold where
the line of ∞ (blue) passes through O. The singularity corresponds to a
topological circle in the neutral surface. Consequently, for triangulation
purposes we expand O into a polygon ((b): the red pentagon) whose
number of sides matches the number of vertices adjacent to O. This
turns each triangle in the original triangulation (a: yellow triangles) into
a quad in (b). We split each quad into two triangles. The corresponding
neighborhood in R3 is shown in (c). Note that since this is a Möbius
band, the left and right sides of the rectangle are connected in reverse
like in Figure 6. Also notice that the vertices on either side of the
singularity line do not match up, thus producing T-junctions. This is a
limitation of our extraction method.

an order of magnitude of speed gain over the method of Palacios et
al. [13]. For extracting neutral surfaces, the running time of our method
is between 1 and 10 seconds. On average, the time to extract neutral
surfaces using our method is about 67% of the time using the A-patches
method [13].

7 APPLICATIONS

The engineering community has high interest in structural deformation
for research in areas such as material science, astrophysics and geo-
science where novel materials, rocks, and soil are subject to some kind
of pressure. In medical research, the stress analysis of an implant inside
bones is needed [5]. Despite such a wide range of applications, a scalar
representation of this stress tensor is predominantly used due to the lack
of visualization tools to extract meaningful knowledge from the stress
tensor fields. Our topology-driven visualization system extracts and
visualizes important topological features of such stress tensors which
can help in improving fundamental understanding of tensor fields.

Figure 10 shows a torus (representing a tire) that has boundary
conditions at the top and the bottom. When a tire is pressed to the
ground during rolling, the top side of the tire is indirectly constrained
due to the axle that connects the tire to the car, and the bottom side of
the tire is displaced by the ground. Here, we investigate the topology
in stress tensors when the torus is fixed at the top over a line region
and is displaced at the bottom side with another line region that is
symmetrically placed as shown in Figure 10(a). Due to the required
flexibility in joining the axles to the tires, sometimes there is a camber
that allows the tire to be tilted. We shorten the line region on the top by

(1a) (1b)

(2a) (2b)

(3a) (3b)

Fig. 9: This figure shows the cases of the A-patches method [11]. The
signs of the coefficients are color coded at each grid point: red for
positive and blue for negative. If they are all the same sign (1a and
1b), then there is no zeroth level inside the tetrahedron. If a layer exists
that separates the grid into two sides such that the coefficients on one
side are all positive (red) and on the other side all negative (blue), then
there is one sheet of the zeroth level set that either intersects three faces
(three-sided A-patch) (2a) or four faces (four-sided A-patch) (2b) of
the tet. When no such separation layer exists (cases 3a and 3b), then
the tet is subdivided recursively.

half as shown in Figure 10(b) to approximate this real life situation.
We name the symmetric boundary case, symmetric-boundary; and

the other case, camber-boundary. In Figure 11 ((a) and (e)), we compare
the degenerate curves detected for these two cases. Note that the
camber-boundary results in Figure 11(e) clearly indicate the asymmetry
in loading. In Figure 11 ((b) and (f)), we compare the corresponding
neutral surfaces. There is a continuous neutral surface on the outer
contour of the torus in Figure 11(f) while there are 4 disjoint groups of
neutral surfaces in Figure 11(b) due to the symmetric-boundary. The
camber-boundary allows a larger free region on the top side and enables
continuous propagation of stress. This difference in the neutral surfaces
reflects the difference in the loading.

In addition to boundary conditions, engineers focus on material
description. In Figure 11 ((a) and (c)), we contrast the degenerate
curves for the same torus with different material compressibility levels
for the symmetric-boundary case. The material in Figure 11(a) is highly
incompressible rubber-polymer while the material in Figure 11(c) is
compressible for some special construction polymer. Notice that the
degenerate curves on the left and right are aligned with the torus. In
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(a) (b) (c) (d)

Fig. 7: From left to right, this figure illustrates our neutral surface extraction algorithm with an example tensor field. Starting from the input
tensor field in a tetrahedron (a), we compute the corresponding medium eigenvector manifold which has two pairs of singularities (red dots).
Also, the ∞ forms a loop ((b): blue). Next, we triangulate this manifold to ensure that the singularities are vertices of the triangle mesh (b). Due to
the mapping between the medium eigenvector manifold and the neutral surface, we construct a triangulation of the neutral surface (c). Triangles
totally outside the tetrahedron are discarded for efficiency. Finally, the neutral surface is clipped against the boundary of the tetrahedron, thus
finding the neutral surface inside the tet.

5.2 Neutral Surface Extraction Algorithm

By using the parameterization defined in the previous section, we can
generate the neutral surface at any given resolution. Given an input
tensor field, we extract the neutral surface inside each tetrahedron in the
mesh that tessellates the domain. The collection of the neutral surfaces
inside the tetrahedra forms the neutral surface of the input tensor field.
Next, we focus on finding the neutral surface of a linear tensor field
inside each tetrahedron.

Given a linear tensor field T (x,y,z) = T0 + xTx + yTy + zTz and a
tetrahedron c (an example is shown in Figure 7(a)), our pipeline of
extracting the neutral surface of T (x,y,z) inside c is achieved as follows.

We start by triangulating the RP2 (half of the unit sphere) for the
medium eigenvector (Figure 7(b)). This is achieved by considering the
unit sphere as a round icosahedron and performing a number of Loop
subdivisions to it. This guarantees the antipodal symmetry of RP2.

Next, we modify the mesh so that each singularity in the parameter-
ization is also a vertex. This results in a triangulation of the medium
eigenvector manifold (Figure 7(b)). We then find the x, y, z coordinates
for each non-singularity vertex (Figure 7(c)) and connect three vertices
in R3 as a triangle if their corresponding vertices form a triangle in the
medium eigenvector manifold (Figure 7(b)).

Recall that a singularity in the parameterization corresponds to a
line. Consequently, we extract the neutral surface around a singularity
as follows (Figure 8). Given the 1-ring neighborhood of a singularity O
(Figure 8 (a)), we convert O into a polygon (Figure 8 (b): red pentagon)
whose number of sides matches the number of vertices adjacent to
O. Each triangle in (a) is now a quad in (b) which can be split into
two triangles by adding a diagonal. The corresponding neighborhood
in R3 is shown in (c), which is a rectangular region bounded on the
left and right by ∞. Since the singularity corresponds to a line, the
parameterization is discontinuous and the limit approaching it from
different directions gives different points. We use this to find the xyz
coordinates of OA, by calculating the limit of the parameterization
as we approach the singularity((c): the red line in the middle) along
the line OA. The detail of this step is given in Appendix B. The 3D
locations of the OB through OE can be determined in a similar fashion.

Finally, we clip the triangle against the tetrahedron. For efficiency,
we first cull all triangles that are entirely outside the tetrahedron. We
then clip the remaining triangles against the faces of the tetrahedron
in sequence. Each triangle that crosses the plane of a face is either
split into a new triangle, or two quads that are then split into triangles.
The intersection point of the neutral surface edge with the plane is
determined by finding the point on the edge of the medium eigenvector
manifold that maps to a point on this plane.

Note that the neutral surface intersects ∞ along a curve, which corre-
sponds to a loop in the medium eigenvector manifold that goes through

each singularity (Figure 7(b): blue loop). A triangle intersecting with
the ∞ loop is invalid. However, after clipping any such triangle must
lie entirely outside the tetrahedron and thus has been removed.

Observing that the neutral surface can be rather flat except near the
handle, we wish to combine our technique with simpler techniques
such as the A-patches method.

The A-patches method [11] is an iterative method that computes the
zeroth level set of a given polynomial defined in a tetrahedron. The
idea is to compute the Bernstein coefficients of the polynomial [11]
and record them on a grid (Figure 9: the grid formed by colored dots).
The A-patches method analyzes the signs of the coefficients (Figure 9:
red for positive coefficients and blue for negative coefficients), which
results in four scenarios. In the first, all coefficients are either all
positive or all negative (Figure 9 (1a and 1b)). In this case, there is
no zeroth level set in the tet. In the second and third scenarios, there
is a single sheet (topological disk) of the zeroth level set, touching
three faces (three-sided A-patch) or four faces (four-sided A-patch)
of the tetrahedron, respectively (Figure 9 (2a and 2b)). In the likely
case where the tests for these scenarios fail, the A-patches method will
divide the tetrahedron into smaller tetrahedra, each of which will be
again tested for A-patches. This process continues until either all tets
(including the ones from subdivision) have all converged (no patch, a
three-sided patch, or a four-sided patch), or the maximum number of
iterations have been exceeded without convergence. Note that there is
no guarantee the A-patches method will converge in finite iterations.

The difficulty with the A-patches method is that it assumes the
surface is relatively flat and is mostly aligned with at least one face
(three-sided A-patch) or one pair of opposing edges (four-sided A-
patch) of the tetrahedron. This assumption breaks down where the
surface has high curvature, such as the neutral surfaces near the handles
(Figure 9 (3a and 3b)). This is where our method is more robust.

Consequently, we combine the strength of both methods. First, we
perform the A-patches method without any subdivision. That is, if a tet
fails the A-patches test, no subdivision is performed. Instead, for these
tets we apply our parameterization-based neutral surface extraction
method. This leads to more robust extraction of the neutral surfaces
without incurring high computational cost and memory consumption
with tetrahedral subdivision. Figure 1 (c-d) shows a comparison of
the neutral surfaces extracted from our method (d) and from the pure
A-patches method (c). Notice our method has fewer artifacts.

6 PERFORMANCE

Measurements were taken on a computer with an Intel(R) Xeon(R)
E3-1230 CPU running at 3.40GHz, 64GB of RAM, and an NVIDIA
Quadro K420 GPU. The datasets that we used in this paper have a tetra-
hedral count on the order of 106. The running time for our degenerate
curve extraction method is between 0.5 and 1 seconds. This represents
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Fig. 8: This figure illustrates the extraction of neutral surfaces around
a singularity in the parameterization. In (a) we show the 1-ring neigh-
borhood of a singularity O in the medium eigenvector manifold where
the line of ∞ (blue) passes through O. The singularity corresponds to a
topological circle in the neutral surface. Consequently, for triangulation
purposes we expand O into a polygon ((b): the red pentagon) whose
number of sides matches the number of vertices adjacent to O. This
turns each triangle in the original triangulation (a: yellow triangles) into
a quad in (b). We split each quad into two triangles. The corresponding
neighborhood in R3 is shown in (c). Note that since this is a Möbius
band, the left and right sides of the rectangle are connected in reverse
like in Figure 6. Also notice that the vertices on either side of the
singularity line do not match up, thus producing T-junctions. This is a
limitation of our extraction method.

an order of magnitude of speed gain over the method of Palacios et
al. [13]. For extracting neutral surfaces, the running time of our method
is between 1 and 10 seconds. On average, the time to extract neutral
surfaces using our method is about 67% of the time using the A-patches
method [13].

7 APPLICATIONS

The engineering community has high interest in structural deformation
for research in areas such as material science, astrophysics and geo-
science where novel materials, rocks, and soil are subject to some kind
of pressure. In medical research, the stress analysis of an implant inside
bones is needed [5]. Despite such a wide range of applications, a scalar
representation of this stress tensor is predominantly used due to the lack
of visualization tools to extract meaningful knowledge from the stress
tensor fields. Our topology-driven visualization system extracts and
visualizes important topological features of such stress tensors which
can help in improving fundamental understanding of tensor fields.

Figure 10 shows a torus (representing a tire) that has boundary
conditions at the top and the bottom. When a tire is pressed to the
ground during rolling, the top side of the tire is indirectly constrained
due to the axle that connects the tire to the car, and the bottom side of
the tire is displaced by the ground. Here, we investigate the topology
in stress tensors when the torus is fixed at the top over a line region
and is displaced at the bottom side with another line region that is
symmetrically placed as shown in Figure 10(a). Due to the required
flexibility in joining the axles to the tires, sometimes there is a camber
that allows the tire to be tilted. We shorten the line region on the top by

(1a) (1b)

(2a) (2b)

(3a) (3b)

Fig. 9: This figure shows the cases of the A-patches method [11]. The
signs of the coefficients are color coded at each grid point: red for
positive and blue for negative. If they are all the same sign (1a and
1b), then there is no zeroth level inside the tetrahedron. If a layer exists
that separates the grid into two sides such that the coefficients on one
side are all positive (red) and on the other side all negative (blue), then
there is one sheet of the zeroth level set that either intersects three faces
(three-sided A-patch) (2a) or four faces (four-sided A-patch) (2b) of
the tet. When no such separation layer exists (cases 3a and 3b), then
the tet is subdivided recursively.

half as shown in Figure 10(b) to approximate this real life situation.
We name the symmetric boundary case, symmetric-boundary; and

the other case, camber-boundary. In Figure 11 ((a) and (e)), we compare
the degenerate curves detected for these two cases. Note that the
camber-boundary results in Figure 11(e) clearly indicate the asymmetry
in loading. In Figure 11 ((b) and (f)), we compare the corresponding
neutral surfaces. There is a continuous neutral surface on the outer
contour of the torus in Figure 11(f) while there are 4 disjoint groups of
neutral surfaces in Figure 11(b) due to the symmetric-boundary. The
camber-boundary allows a larger free region on the top side and enables
continuous propagation of stress. This difference in the neutral surfaces
reflects the difference in the loading.

In addition to boundary conditions, engineers focus on material
description. In Figure 11 ((a) and (c)), we contrast the degenerate
curves for the same torus with different material compressibility levels
for the symmetric-boundary case. The material in Figure 11(a) is highly
incompressible rubber-polymer while the material in Figure 11(c) is
compressible for some special construction polymer. Notice that the
degenerate curves on the left and right are aligned with the torus. In
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(a) (b)

Fig. 10: A symbolic structure of a tire standing on the ground. From
the weight of the vehicle this tire supports, the top portion of the
torus comes downward. A line segment at the top of the torus moves
downward in (a) when a concentrated force (shown with red arrows
pointing downwards) is applied to it. Only half of the line segment
used in (b) moves as shown with red arrows pointing downwards. The
contact with the ground (shown as blue cross symbols at the bottom of
(a) and (b)) is fixed in space through a line segment that symmetrically
mirrors the segment on top in (a).

contrast, some degenerate curves ((c): green degenerate curves on the
left and right side) run perpendicularly to the torus’s shape, indicating
undesirable behavior due to the compressible nature of the material. The
corresponding neutral surfaces are shown in Figures 11 ((b) and (d)).
The incompressible material in Figure 11(b) creates a higher amount
of shear deformation and this leads to a larger area of neutral surface
than that in Figure 11(d). Such a difference is extremely difficult
to measure in engineering practices for rubber polymers that have
different chemical and physical constructions. These neutral surfaces
can potentially be a feasible device to differentiate materials in terms
of their deformation behavior.

Figure 1(d) is an angled view of the bottom right quadrant of the
neutral surface of the compressible torus volume used in Figure 11(d).
In Figure 1(c), the same neutral surface is extracted with the method
of Palacios et al. [13]. Our method captures the neutral surface more
completely, including features that the method of Palacios et al. missed,
such as the thin features on the lower-left corner. With more accurate
extraction of neutral surfaces, we can better interpret the physics behind
the simulations of real life phenomena. This is the benefit of our new
extraction method; otherwise, with broken surfaces, the interpretation
can be erroneous.

8 CONCLUSION AND FUTURE WORK

In this paper we have developed novel topological analysis of the
degenerate curves and neutral surfaces of 3D symmetric tensor fields,
which leads to a parameterization respectively for degenerate curves
and neutral surfaces and consequently more robust and faster extraction
methods.

Our technique is not without limitations. For example, our methods
assume structurally stable conditions. That is, degenerate points form
curves and neutral points form surfaces. While we have not observed a
problem with this assumption in practice, it would be desirable to extend
our analysis to handle other theoretically possible scenarios such as
when degenerate points form surfaces and volumes while neutral points
form curves and volumes. Also, the sampling rate of the degenerate
curve and neutral surface parameterizations breaks down when there
is nearly a bifurcation, a place where the degenerate curve or neutral
surface is not a manifold. Another limitation of our neutral surface
extraction method is that it still makes use of the A-patches methods, a
relatively expensive process. In the future, we wish to explore faster

(a) (b)

(c) (d)

(e) ( f )

Fig. 11: Side view of degenerate curves and neutral surfaces for the
symmetric-boundary (a-d) and the camber-boundary cases (e-f). The
distribution of the degenerate curves is symmetric reflecting the sym-
metric boundary condition in (a) and (c). Symmetric segments of the
neutral surfaces in (b) and (d) also reflect the boundary conditions. The
degenerate curves and neutral surfaces for the camber-boundary case
are shown in (e) and (f) respectively. The material used in (a), (b), (e),
and (f) is highly incompressible, and is highly compressible in (c) and
(d).

techniques.
In the future, we plan to extend our research to 3D asymmetric tensor

fields as well as time-varying tensor fields. In addition, the analysis that
we have developed can find use in applications in geometry processing.
We plan to leverage on discoveries in this field.
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Fig. 10: A symbolic structure of a tire standing on the ground. From
the weight of the vehicle this tire supports, the top portion of the
torus comes downward. A line segment at the top of the torus moves
downward in (a) when a concentrated force (shown with red arrows
pointing downwards) is applied to it. Only half of the line segment
used in (b) moves as shown with red arrows pointing downwards. The
contact with the ground (shown as blue cross symbols at the bottom of
(a) and (b)) is fixed in space through a line segment that symmetrically
mirrors the segment on top in (a).

contrast, some degenerate curves ((c): green degenerate curves on the
left and right side) run perpendicularly to the torus’s shape, indicating
undesirable behavior due to the compressible nature of the material. The
corresponding neutral surfaces are shown in Figures 11 ((b) and (d)).
The incompressible material in Figure 11(b) creates a higher amount
of shear deformation and this leads to a larger area of neutral surface
than that in Figure 11(d). Such a difference is extremely difficult
to measure in engineering practices for rubber polymers that have
different chemical and physical constructions. These neutral surfaces
can potentially be a feasible device to differentiate materials in terms
of their deformation behavior.

Figure 1(d) is an angled view of the bottom right quadrant of the
neutral surface of the compressible torus volume used in Figure 11(d).
In Figure 1(c), the same neutral surface is extracted with the method
of Palacios et al. [13]. Our method captures the neutral surface more
completely, including features that the method of Palacios et al. missed,
such as the thin features on the lower-left corner. With more accurate
extraction of neutral surfaces, we can better interpret the physics behind
the simulations of real life phenomena. This is the benefit of our new
extraction method; otherwise, with broken surfaces, the interpretation
can be erroneous.

8 CONCLUSION AND FUTURE WORK

In this paper we have developed novel topological analysis of the
degenerate curves and neutral surfaces of 3D symmetric tensor fields,
which leads to a parameterization respectively for degenerate curves
and neutral surfaces and consequently more robust and faster extraction
methods.

Our technique is not without limitations. For example, our methods
assume structurally stable conditions. That is, degenerate points form
curves and neutral points form surfaces. While we have not observed a
problem with this assumption in practice, it would be desirable to extend
our analysis to handle other theoretically possible scenarios such as
when degenerate points form surfaces and volumes while neutral points
form curves and volumes. Also, the sampling rate of the degenerate
curve and neutral surface parameterizations breaks down when there
is nearly a bifurcation, a place where the degenerate curve or neutral
surface is not a manifold. Another limitation of our neutral surface
extraction method is that it still makes use of the A-patches methods, a
relatively expensive process. In the future, we wish to explore faster
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Fig. 11: Side view of degenerate curves and neutral surfaces for the
symmetric-boundary (a-d) and the camber-boundary cases (e-f). The
distribution of the degenerate curves is symmetric reflecting the sym-
metric boundary condition in (a) and (c). Symmetric segments of the
neutral surfaces in (b) and (d) also reflect the boundary conditions. The
degenerate curves and neutral surfaces for the camber-boundary case
are shown in (e) and (f) respectively. The material used in (a), (b), (e),
and (f) is highly incompressible, and is highly compressible in (c) and
(d).

techniques.
In the future, we plan to extend our research to 3D asymmetric tensor

fields as well as time-varying tensor fields. In addition, the analysis that
we have developed can find use in applications in geometry processing.
We plan to leverage on discoveries in this field.
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