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Abstract—In this paper, we introduce a new approach to computing a Morse decomposition of a vector field on a triangulated manifold

surface. The basic idea is to convert the input vector field to a piecewise constant (PC) vector field, whose trajectories can be

computed using simple geometric rules. To overcome the intrinsic difficulty in PC vector fields (in particular, discontinuity along mesh

edges), we borrow results from the theory of differential inclusions. The input vector field and its PC variant have similar Morse

decompositions. We introduce a robust and efficient algorithm to compute Morse decompositions of a PC vector field. Our approach

provides subtriangle precision for Morse sets. In addition, we describe a Morse set classification framework which we use to color code

the Morse sets in order to enhance the visualization. We demonstrate the benefits of our approach with three well-known simulation

data sets, for which our method has produced Morse decompositions that are similar to or finer than those obtained using existing

techniques, and is over an order of magnitude faster.

Index Terms—Morse decomposition, vector field topology.

Ç

1 INTRODUCTION

VECTOR field visualization has a wide range of applica-
tion in dynamic systems, fluid nd solid mechanics,

electromagnetism [3], computer vision [25], population
theory, and economics. Vector field topology can provide
a compact representation of essential structures in a vector
field, and has gained much attention from the visualization
community since its introduction to the community by
Helmann and Hesselink [12].

Most of the current approaches to vector field topology
rely on the ability to accurately compute trajectories such as
periodic orbits and separatrices. Such approaches are prone
to errors resulting from inaccuracy of numerical integration.
Morse decomposition is a relatively new tool in vector field
visualization, which has been used to define and extract
vector field topology in a numerically stable and rigorous
fashion in [6]. Morse decomposition consists of a finite
number of disjoint Morse sets that contain all recurrent
dynamics of the flow, in particular periodic orbits and
stationary points. Morse sets are typically classified accord-
ing to their Conley index [7]. In particular, the Conley index
allows one to distinguish Morse sets similar to stationary
points and periodic orbits. Morse decompositions naturally
support multiscale analysis. Roughly speaking, a coarser
one can be obtained by replacing two neighboring Morse
sets with the union of both of them and their connecting
trajectories [7] (where neighbors are defined by means of

the flow). The work [5] uses these properties to build a
unified framework for extracting vector field features and to
design a vector field simplification algorithm.

There are a number of reasons for our interest in Morse
decompositions and Conley index theory. Morse decom-
position provides a unified framework for recognizing and
extracting recurrent vector field features. In particular,
standard features such as periodic orbits or stationary
points can be interpreted as the same object: Morse set.
However, Morse sets can also be more complicated. This is
important since the success of traditional approaches relies
on the ability to find a finite number of nondegenerate
isolated stationary points and periodic orbits. They may fail
for vector fields that have infinite number of such features.
In the 2D case, this could be a vector field that contains a
ring consisting of periodic orbits (which can still be a valid
Morse set). In 3D case, a typical chaotic attractor (such as
the Lorenz attractor [22]) contains an infinite number of
hyperbolic periodic orbits. While attempting to compute all
of them is pointless, methods based on Conley index theory
have been successfully used in rigorous computer-assisted
analysis of chaotic attractors [26], in particular to prove the
existence of infinite number of periodic trajectories [27].
Similar issues may arise in vector fields that are not known
exactly, but only up to an error. Such vector fields are
ubiquitous in science and engineering, where inaccuracies
may arise from numerical or measurement errors. One can
think of a trajectory of such vector field as a curve whose
velocity is within the error bound from the input vector
field. In particular, this means that a generic periodic orbit
is not isolated: one can perturb the velocity vector at any of
its points and then steer it back to the same point (staying
within the error bound) so that it stays periodic and has a
similar period. Thus, a natural way to study the topology of
such systems in terms of sets of trajectories rather than
individual trajectories. In particular, the approach of [30] to
a similar problem based on a probabilistic model of error
uses density distributions (that can be thought of as sets
with fuzzy membership function) to model topological
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features. Generalizations of Morse decompositions and
Conley index that are suitable for the deterministic error
model have been developed in [23] and [29]. An extension
of the PC framework introduced in this paper in this
direction is proposed in [34].

The standard approach to compute Morse decomposi-
tions [4], [6] relies on numerical integration of trajectories of
a large number of particles to generate the graph repre-
sentation that is needed to determine the decomposition.
This process is expensive and can still suffer from
numerical integration errors. In addition, the precision of
the resulting Morse decomposition is restricted by the
underlying mesh resolution, since Morse sets are unions of
triangles. These challenges have greatly limited the poten-
tial of using Morse decompositions to describe and study
vector field topology as they are often too coarse and too
computationally expensive to be practical. In this paper, we
introduce a method to compute a Morse decomposition of a
vector field on a triangulated manifold surface that
addresses these issues. The key idea behind our approach
is to convert the input vector field (typically, vertex-based,
i.e., defined by vector values at mesh vertices) to a
piecewise constant (PC) one. A PC vector field is constant
in the interior of a triangle. Its trajectories can be defined
using simple geometric rules. If the mesh is fine, the input
vector field and its PC variant have similar Morse
decompositions. Although our algorithm does require
numerical calculations, they are simpler and more efficient
than standard numerical integration. Furthermore, our
approach allows Morse sets to have subtriangle precision.
High precision Morse decompositions are usually easier to
understand (Fig. 1), since their Morse sets tend to
correspond to stationary points or periodic orbits.

There are some fundamental difficulties associated with
topological analysis of PC vector fields, such as the
discontinuity along the edges in the mesh (the standard
theory of ordinary differential equations no longer applies)
and the ambiguity in the definition of trajectories (there
can be multiple trajectories emanating from a single point).
We address both difficulties by developing a multivalued
flow framework based on the theory of differential

inclusions. We provide analysis for the correctness and
efficiency of this framework. We show that trajectories of
the PC vector field constructed using our algorithm
converge to the trajectories of the underlying smooth
vector field as the mesh gets finer and closer to the domain
of that vector field (Appendix A in the supplementary
material, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TVCG.2011.88). Since Morse decompositions are
known to be robust under perturbation [6], [7], one can
expect that a vector field and its PC variant have similar
Morse decompositions if the mesh is sufficiently fine.
Experiments that support this claim are described in
Section 7.2. We also prove that our algorithm produces a
correct Morse decomposition for the PC vector field
(Appendix C, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TVCG.2011.88). This is important since it
guarantees the integrity of the result.

To the best of our knowledge, this is the first time a
rigorous topological analysis framework is proposed for
general, i.e., not necessarily gradient, PC vector fields. We
also introduce a new classification scheme for Morse sets
based on fixed point index and stability, i.e., categoriza-
tion as attracting, repelling or neither attracting nor
repelling. This scheme yields information similar to the
Conley index and allows one to distinguish Morse sets
corresponding to sinks, sources, saddles, and attracting or
repelling periodic orbits.

The paper is organized as follows: in Section 2, we
include a brief discussion of the related work on vector field
visualization and vector field topology. Section 3 describes
PC vector fields on a triangulated manifold surface. A
transition graph, a finite representation of all trajectories of
a PC vector field, is described in Section 4. The procedure to
compute the Morse decomposition from a transition graph
and to classify its Morse sets is described in Section 5.
Section 6 discusses the complexity of our algorithm.
Experimental results are presented in Section 7. Finally,
Section 8 discusses future research directions that may be
motivated by this work.
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Fig. 1. Morse sets obtained using the approach of [4] (left) and the algorithm described in this paper (right), color-coded by type (red: classified as
equivalent to a repelling fixed point or periodic orbit, green: attracting fixed point or periodic orbit, blue: saddle; Morse sets shown in magenta are
trivial, i.e., contain no features or features that cancel each other; all other—complex—Morse sets are shown in black). Our algorithm produces a
more detailed result, in terms of both a fineness of the Morse decomposition (topological) and the precision of individual Morse sets (geometric). In
particular, it leads to Morse sets that can be interpreted as simple flow features (stationary points or periodic orbits). Because of the inherent low
precision of the approach of [4], [6], the resulting Morse sets are larger. Some of them contain many flow features, and therefore are classified as
complex. Consequently, they are hard to interpret. Moreover, the classification scheme described in [4] is not guaranteed to be accurate and
therefore colors of some Morse sets shown on the left may not be correct. For the results shown here, the parameters of the algorithm of [4] were
selected so that it requires roughly an order of magnitude more time than the algorithm introduced in this paper. More precisely, the running times
were 435 and 25 seconds, respectively.



2 PRIOR WORK

Vector field visualization has been an active research topic
during the past two decades. It is beyond the scope of this
paper to review all research related to vector field
visualization and analysis. Thus, we will only review the
most relevant work, namely, topology-driven vector field
visualization, and refer the readers to the surveys [17], [18],
[24] for more thorough reviews of vector field visualization.

Considerable amount of work on extracting vector field
topology has been done in recent years. In most cases, the
focus was on computing basic features such as stationary
points, periodic orbits, and separatrices. Stationary points
and separatrices can be found using the technique of [12].
Periodic orbits can be computed by following trajectories
until they converge to a limit cycle [40]. An approach based
on a geometric interpretation of periodic trajectories as
intersections of stream surfaces of the flow ‘lifted’ to the 3D
space has been proposed in [36].

In [5], Morse decomposition is used to identify stationary
points and periodic orbits. They are incorporated into a
topological graph called the Entity Connection Graph
(ECG), which extends the original definition of vector field
topology of [13]. Numerical instability intrinsically asso-
ciated with vector field topology defined in terms of
individual trajectories is discussed in [6]. One can use
Morse decomposition to obtain a more robust representa-
tion of vector field topology. An algorithm to compute a
Morse decomposition and the Morse Connection Graph
(MCG), that is similar to ECG but represents connections
between Morse sets rather than periodic orbits and
stationary points, is described in [6]. Generally, the MCG
is less detailed than the ECG but is more stable and less
dependent on numerical integration method. An adaptive
refinement scheme for Morse decompositions that can lead
to more efficient and more precise analysis was recently
introduced in [4].

In contrast to [4], [6], our approach has subtriangle
precision (i.e., produces Morse sets that are not necessarily
unions of mesh triangles). PC vector fields also support a
simple method to accurately classify the Morse sets (classi-
fication in [4] is based on an upper bound on the Conley index
and is not guaranteed to be accurate). Finally, analysis of a PC
vector field is over an order of magnitude faster than analysis
performed using the approach of [4], [6] (Section 7). Piecewise
constant vector fields have been used as a tool to study
separation and attachment line features (similar to the
exploding and imploding edges, Section 3.1) in [37].

Let us stress that high performance of our algorithm and
high precision of its output are achieved at the cost of
approximation accuracy. More precisely, in our approach,
trajectories of the input vector field are generally not
approximated as well as by one of the standard numerical
integration methods. Therefore, the approach of [4], [6] may
still be a better choice if high accuracy is desired. While the
PC framework can be used to obtain Morse decompositions
guaranteed to be correct for a given continuous vector field
(as discussed in the forthcoming paper [34]), this signifi-
cantly increases the computational cost and memory usage
and leads to a coarser result.

An approach based on discrete vector fields motivated by
Forman’s discrete Morse theory [10] is proposed in [32].

Trajectories of a discrete vector field can only move along
edges of the dual graph and, in general, do not converge to
the trajectories of the original vector field as triangle sizes go
to zero. For a PC vector field, the trajectories are also
restricted by the mesh—they have to follow straight lines
inside triangles—but convergence to the original vector field
can be established under mild assumptions (Appendix A,
which can be found on the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/TVCG.
2011.88).

3 PIECEWISE CONSTANT VECTOR FIELDS

A planar PC vector field is constant and equal to fð�Þ in the
interior of a triangle � of a triangulated domain D. Naively,
a PC vector field can be defined by gðxÞ :¼ fð�Þ for any
x 2 �, where � is a mesh triangle. However, this definition
is ambiguous for points on edges or at the vertices of the
triangulation. No matter how these ambiguities are re-
solved, the resulting vector field is generally not continuous
at these points. Therefore, the existence of its trajectories
(i.e., solutions of an initial value problem _x ¼ gðxÞ,
xð0Þ ¼ x0) is not guaranteed by the general theory of
ordinary differential equations. Even though one could
attempt to trace the trajectories numerically, the resulting
flow would be discontinuous, making reliable interpreta-
tion of results problematic. Examples demonstrating non-
existence of trajectories and discontinuity of the flow are
shown in Fig. 2.

In this section, we describe a solution of these funda-
mental problems based on multivalued flows.

3.1 Definition

Let M be a manifold triangle mesh embedded in the 3D
space. For each triangle �, let fð�Þ be a nonzero vector
parallel to �, but not to any edge of �.

An edge e of a triangle � attracts the flow in � if and only
if the vector fð�Þ points toward the edge e. Analytically,
e ¼ �ab attracts the flow in � ¼ �abc if and only if

signððð ~ab� ~acÞ � ~abÞ � fð�ÞÞ 6¼ signððð ~ab� ~acÞ � ~abÞ � ~acÞ;

e repels the flow in � if it does not attract the flow in �. An
imploding (exploding) edge is an edge that attracts (respec-
tively, repels) the flow in both of its incident triangles. Fig. 2
shows an exploding edge (left) and an imploding edge
(right). A crossing edge attracts the flow in one of its incident
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Fig. 2. Two examples illustrating the fundamental issues of the naive
definition of PC vector fields. Black arrows represent vectors associated
with the triangles that contain them. Left: Trajectories (red lines) starting
at points arbitrarily close to the edge separating the two triangles, but on
different sides, diverge when traced forward in time. The flow is
discontinuous. Right: Trajectories cannot be traced forward in time from
the red point because of the contradictory velocity constraints in both
triangles.



triangles and repels in the other. A PC vector field is
defined by

. A function f that assigns a nonzero vector to any mesh
triangle � and any exploding or imploding mesh edge
e. fð�Þ is required to be parallel to �, but not to any
�’s edge. fðeÞ is required to be parallel to e.

. A set of stationary points S, consisting of mesh
vertices.

3.2 Trajectories and Multivalued Flow

The goal of this section is to discuss the multivalued flow
induced by a PC vector field. First (Section 3.2.1), we define
the multivalued unstable vector field F� that assigns a set of
vectors F�ðxÞ to every point x 2M. F� is defined in terms of
the assignment f and the set of stationary points S
described in Section 3.1. F� is used to define trajectories in
Section 3.2.2. Section 3.2.3 describes the flow near a spiral
sink or source. Finally, in Section 3.2.4 we discuss
conditions that the flow needs to fulfill in order to ensure
the applicability of topological analysis.

3.2.1 Unstable Vector Field

For a point x 2M, let the set of vectors F0ðxÞ consist of
1) vectors fð�Þ for all triangles � containing x, 2) vectors
fðeÞ for all edges containing x, and 3) the zero vector if x is a
vertex of M and x 2 S.

We say that a vector w 2 F0ðxÞ is an unstable direction at x
if and only if xþ tw 2M and w 2 F0ðxþ twÞ for all
sufficiently small positive t values. Intuitively, by moving
from x in the unstable direction by a small amount we reach
a point at which one of the vectors assigned by F0 points
away from x. The unstable vector field F� assigns the set of all
unstable directions at x to every x 2M.

It turns out that F�ðxÞ is easy to determine.
If x is in the interior of a triangle � then F�ðxÞ ¼ ffð�Þg.
Let x be a point that is not a mesh vertex, belonging to an

edge e with incident triangles �1 and �2. If e is exploding,
F�ðxÞ ¼ ffð�1Þ; fð�2Þ; fðeÞg. If e is imploding, F�ðxÞ ¼
ffðeÞg. If e is a crossing edge, F�ðxÞ ¼ ffð�iÞg, where i 2
f1; 2g is such that e repels the flow in �i.

For a mesh vertex v, F�ðvÞ consists of

. fðeÞ for any edge e ¼ �vw incident to v such that
fðeÞ � ~vw � 0.

. fð�Þ for any triangle � incident upon v such that
both edges of � incident upon v repel the flow in �.

. zero vector if v 2 S.

For example, for the vertex shown in Fig. 3a, F�ðvÞ contains
the vectors assigned by f to the horizontal edge to the right of

v and both of its incident triangles, and possibly the zero
vector if v 2 S. For the vertex shown in Fig. 3b, it contains
vertical vectors assigned to the top and bottom triangles and
the zero vector if v 2 S. For the vertex shown in Fig. 3c, F�ðvÞ
can only contain the zero vector. Vertices shown in (b) and (c)
have to be stationary by the requirements discussed in
Section 3.2.4 (see also Section 3.3.4).

Stable directions are defined in a similar manner. A
vector w is a stable direction at x 2M if xþ tw 2M and
�w 2 F0ðxþ twÞ for small positive t values. Intuitively,
trajectories can leave x along unstable directions. They
arrive at x from stable directions. Trajectories are discussed
in the next section.

3.2.2 Trajectories and Multivalued Flow

Trajectories of a PC vector field can be obtained by solving
the differential inclusion _x 2 F�ðxÞ, instead of the differential
equation _x ¼ gðxÞ traditionally used for a single-valued
vector field g. In the theory of differential inclusions [11],
solutions are defined not as continuously differentiable
functions, but as functions of a wider class of functions in
order to guarantee desirable properties of the solution set.
In the setting of this paper, the solutions are continuous
piecewise linear paths in M, with knots at the vertices of the
mesh or on its edges, possibly with infinite number of linear
segments. They can be built by following a simple set of
rules described below.

When a trajectory enters the interior of a triangle �, it
moves along a straight line, with velocity fð�Þ, until it hits
�’s boundary.

From a point on a mesh edge e (but not at a vertex), a
trajectory can move along this edge if it is exploding (Fig. 4,
left) or imploding (Fig. 4, middle). If e is exploding, the
trajectory can leave e at any point, along a direction
assigned to one of its incident triangles. If e is a crossing
edge (Fig. 4, right) the trajectory has to immediately enter its
incident triangle �, in which e repels the flow.

For a vertex v of the mesh, a trajectory can stay at v for
some time, possibly forever, if v is stationary. Otherwise, it
has to leave v immediately, moving along any vector in
F�ðvÞ (however, spiral sinks are an exception to this
rule—Section 3.2.3). Note that in order to ensure the
correctness of our algorithm, requirements discussed in
Section 3.2.4 need to be satisfied, in particular, F�ðvÞ 6¼ ; for
any vertex v. This means that a trajectory can be continued
indefinitely. A number of examples of trajectories near a
vertex are shown in Fig. 3.

Trajectories leaving a point are not unique, for example,
for any point on an exploding edge or at any vertex with
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Fig. 3. Three examples of flow defined by a PC vector field near a vertex.
Trajectories arriving to the vertex are shown in green. Trajectories
leaving the vertex are shown in red. Trajectories in the hyperbolic
sectors (two for the vertex on the left and four for the vertex on the right)
are shown in blue.

Fig. 4. Trajectories (red lines) in two adjacent triangle in the mesh. Black
arrows represent the vectors assigned by f to these triangles and to the
edge they share, if it is exploding or imploding. Left: an exploding edge.
Middle: an imploding edge. Right: a crossing edge. Note that exploding
and imploding edges are related to separation and attachment lines
studied in fluid flow analysis [31], [37].



more than one unstable direction. Tracking a particle x
forward along all trajectories starting at x over time t leads
to a set of locations, which we denote by �ðx; tÞ. Formally,
�ðx; tÞ is defined as the set of all endpoints of trajectory
segments � : ½0; t� ! D starting at x. � is the multivalued flow
of the PC vector field.

3.2.3 Spiral Sinks and Sources

Spiral sinks and sources in PC vector fields behave in a
slightly different way than in the standard smooth vector
field setting. Note that they are stationary points by the
requirements discussed in Sections 3.2.4 (see also Sec-
tion 3.3.4). First, let us look at a spiral sink shown in Fig. 7b.
Trajectories approaching the vertex v in the middle are
polygonal logarithmic spirals and therefore have finite
length. Since their velocity does not decrease as they get
closer to v, they arrive at v in finite time, despite spiraling
around it infinitely many times and hence intersecting
mesh edges infinitely many times before reaching v. After a
trajectory hits v, it stays at v. Trajectories starting at a spiral
source vertex v (Fig. 3c) are identical to trajectories arriving
at a spiral sink with time reversed. One of them stays at v
all the time. Others leave v along polygonal logarithmic
spirals at some time t. Note that the spirals traced by these
trajectories are similar: one can be obtained from any other
by means of a uniform scale with center at v.

3.2.4 Requirements

Our algorithm is based on topological analysis of the
multivalued flow �. To ensure the applicability of topolo-
gical tools to the flow, we assume that it is admissible [11].
There are two properties that need to be satisfied in order to
ensure admissibility of �. First, the flow is required to be
upper semicontinuous. Upper semicontinuity is a general-
ization of continuity to the multivalued case. It means that
the limit of a convergent sequence of trajectory segments
traced over time interval ½0; t�, is also a trajectory segment
(Fig. 5). Second, there must exist a positive number h such
that the set Sðx0; hÞ of trajectories starting at any point x0 2
M defined on time interval ½0; h� is a nonempty acyclic set,
i.e., has trivial reduced homology [33]. Acyclic sets have to
be simply connected (and therefore also connected). Also,
any contractible set is acyclic.

Theoretical results in [11], [14], and [29] guarantee that
the algebraic topological tools such as the fixed point index
or Conley index are applicable to admissible flows. In
Appendix B, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TVCG.2011.88,we prove that the multivalued flow
induced by a PC vector field constructed as described in
Section 3.3 is admissible.

3.3 Construction

The goal of this section is to construct a PC vector field that
induces an admissible multivalued flow on M and is close
to an input vector field defined by vector values at the
mesh vertices. Our construction consists of the following
simple steps:

. Determine fð�Þ for each triangle �.

. Determine fðeÞ for any exploding or imploding
edge e.

. Determine S: mesh vertices need to be stationary in
order to ensure admissibility of the flow.

3.3.1 Computing fð�Þ
Simulation vector fields used in Section 7 are defined by
vector values given at mesh vertices rather than mesh
triangles. For such vector fields, we define fð�Þ as the
perpendicular projection of the average of vector values at
the vertices of � to the �’s plane. Note that the algorithm
can be used with other choices of fð�Þ.

3.3.2 Flow along an Exploding or Imploding Edge

At this point, the definition given in Section 3.1 can be used
to classify mesh edges as exploding, imploding, or crossing.

To each imploding or exploding edge e ¼ �ab, we assign
the vector fðeÞ specifying the direction of the flow along e.
fðeÞ is the perpendicular projection of a weighted average
w0fð�0Þ þ w1fð�1Þ onto e, where �0 and �1 are e’s
incident triangles. We use wi ¼ �i=ð�0 þ �1Þ, where

�i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fð�1�iÞ2 � ðfð�1�iÞ �~eÞ2

q
ði 2 f0; 1gÞ

and ~e is a unit vector parallel to e.
The weights are designed so that if �0 and �1 are

coplanar, the weighted average is parallel to e, and
therefore fðeÞ belongs to the convex hull of fð�0Þ and
fð�1Þ. This is motivated by the theory of differential
inclusions [11]. Solution sets of differential inclusions tend
to be more regular for convex-valued vector fields. This has
been confirmed by our early experiments, that were
originally based on weights w0 ¼ w1 ¼ 0:5. This choice
typically leads to slightly larger transition graphs and
slightly higher number of Morse sets.

In principle, the construction can be carried over with
fðeÞ defined as any nonzero vector pointing along the
edge, although we generally recommend to use the
weighting scheme described above for cleaner results.
The approximation result in Appendix A, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TVCG.2011.88 holds
if fðeÞ is a weighted average of fð�0Þ and fð�1Þ. Also,
the algorithm is insensitive to the magnitude of the vector
fðeÞ: the output depends only on its direction.

3.3.3 Degenerate Cases

A few types of degeneracies can arise in our construction.
First, fð�Þ computed as described in Section 3.3.1 can be

zero. If this is the case, we treat fð�Þ as an infinitesimal
vector pointing in an arbitrary direction parallel to �.

Second, fð�Þ can be parallel to one of �’s edges, e. In
this case, we simulate an infinitesimal perturbation of that
vector to make it not parallel to e. In our implementation,
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Fig. 5. Upper semicontinuity. The convergent sequence of trajectories
starting at xi defined for time values in ½0; t� (black) is required to
converge to a trajectory starting at x� ¼ limxi (blue). Note that in the
multivalued case, trajectories out of each of the points are not unique.



this boils down to treating e as either attracting or repelling
the flow in �. We make sure that this choice is consistent
with the projection along fð�Þ, used in the transition graph
refinement (Section 4.2.2). If the numerically computed
projection of a vertex v of � is strictly between projections
of the other two, then both edges incident upon v have to
either attract or repel the flow in � (Fig. 6). Our
implementation uses the projection to determine which
edges attract and which repel the flow to enforce con-
sistency for all triangles.

Finally, fðeÞ can be zero or undefined, which happens if
�0 ¼ �1 ¼ 0. Then, we treat fðeÞ as an infinitesimal nonzero
vector pointing in arbitrarily chosen direction along e.

3.3.4 Stationary Vertices

At this point, we know all nonzero vectors in F�ðxÞ for any
point x 2M (Section 3.2.1). The only component of the
definition of a PC vector field that has not been determined
yet is the set S of stationary vertices.

The decision whether a vertex v should be included in S
is based on the sector structure of v. Its objective is to ensure
admissibility of the flow. To define the sector structure of a
vertex in a PC vector field, one can use a simple variation of
the definition in [38] and [39]. Pick a small neighborhood U
of v. Hyperbolic sectors in the vicinity of v are formed by
trajectory segments contained in U that both start and end
on the boundary of U and do not pass through v. Elliptic
sectors consist of trajectory segments contained in U that
both start and end at v. Unstable parabolic sectors are
unions of trajectory segments that start at v and end on the
boundary of U . Stable parabolic sectors are unions of
trajectories that start on the boundary of U and end at v.

A number of examples are shown in Figs. 3 and 7, where
trajectories in hyperbolic, elliptic, stable parabolic, and
unstable parabolic sectors are shown in blue, brown, green,
and red, respectively. Note that in some cases, parabolic

sectors degenerate to a single line. For example, the vertex
shown in Fig. 7d has two degenerate stable sectors and one
degenerate unstable sector.

Sector structure of a vertex v in a PC vector field can be
defined and analyzed using the approach of [38], [39], as
described in Section 3.3.5. It turns out that a vertex v needs
to be declared stationary if

. v has at least one elliptic sector, or

. the number of v’s unstable parabolic sectors is other
than 1 or the number of its stable parabolic sectors is
other than 1. This case includes all sources and sinks,
also of spiral type.

We include a formal proof of admissibility of the resulting
flow in Appendix B, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TVCG.2011.88. Here, we illustrate the argu-
ment on a number of examples as shown in Fig. 7

a. A vertex with an elliptic sector. There are periodic
trajectories, shown in brown, that are arbitrarily
close to the vertex. Since they accumulate at the
vertex, it has to be stationary by upper semiconti-
nuity of the flow.

b. A spiral sink has to be stationary, since otherwise no
trajectory would start at it.

c. A source also needs to be declared stationary. To see
why, assume that it is not. Consider the set �ðv; tÞ for
a small positive t. It is a polygonal loop around
the vertex (shown in magenta), since the trajectories
are not allowed to stay at the vertex for any positive
time. Since there is no imploding edge incident to a
vertex, for each point on the polygonal loop there is
a unique trajectory in Sðv; tÞ ending at that point.
This one-to-one correspondence can be used to
argue that Sðv; tÞ is a topological circle and therefore
is not acyclic. A spiral source (Fig. 3c) also has to be
stationary by the same argument.

d. A saddle-like vertex with two unstable sectors (red;
one extends along the edge e to the right of the
vertex). If trajectories are not allowed to stay at v,
�ðv; tÞ is disconnected: it consists of the polygonal
line to the left of v and a single point on e, both
shown in magenta. Thus, Sðv; tÞ can be split into two
closed sets, consisting of trajectories ending in the
same component of �ðv; tÞ: it is not connected and
hence also not acyclic.

e. A vertex with one stable, one unstable, and no
elliptic sectors. This one can be treated as nonsta-
tionary without breaking the desirable properties of
the flow. For each point of �ðv; tÞ, the magenta line,
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Fig. 6. Projection along fð�Þ at or near degeneracy. Green lines show
the numerically computed projections of �’s vertices. In the left and
center figures, projection of a is strictly between the projections of b and
c. In the case shown on the left, edges �ab and �ac have to be treated as
attracting the flow and in the case shown in the center—as repelling the
flow. In the case shown in the right, numerically computed projections of
a and b are the same, so one can choose the status of �ab (i.e., whether it
attracts or repels the flow) arbitrarily to simulate an infinitesimal
perturbation of fð�Þ.

Fig. 7. Should a vertex be declared stationary? It should if it has precisely one stable and one unstable parabolic sector and no elliptic sectors.



there is unique trajectory ending at that point. This
correspondence can be used to argue that Sðx0; tÞ is
homeomorphic to a closed interval and therefore is
contractible.

3.3.5 Structure of the Flow Near a Vertex

The procedure described in Section 3.3.4 is based on sector
structure of a vertex. We perform the sector analysis using
the method of [38], [39]. However, our setting is slightly
different. First, we work in the multivalued PC vector field
setting. Second, the analysis of a vertex v needs to be done
beforeF�ðvÞ is fully determined, i.e., without knowing if v is
stationary. Therefore, we include a brief description of the
sector analysis procedure in this section. Note that our
algorithm requires us only to count the number of stable
parabolic, unstable parabolic, hyperbolic, and elliptic
sectors of each vertex.

First, we determine the stable and unstable directions of
v. The set of unstable directions has already been described
previously (Section 3.2.1). A similar procedure is used to
determine stable directions of v.

If a vertex has no stable or unstable directions, it is a
spiral sink, spiral source or possibly a center in the singular
case. Our algorithm does not require more detailed analysis
of these vertices. They are treated as stationary points.

In what follows, we assume there is at least one stable or
unstable direction. We scan the stable and unstable
directions in counterclockwise order around the vertex.
Consecutive sequences of stable (respectively, unstable)
directions define stable (unstable) parabolic sectors. A
number of examples can be seen in shown in Figs. 3 and
7, where the stable sectors are shown in green and unstable
sectors—in red. Note that, in some cases, the stable or
unstable parabolic sectors reduce to a line. Pairs of
consecutive directions of distinct types (one stable, one
unstable) define boundaries of a hyperbolic or elliptic
sector. Such sectors are shown in blue or brown in Figs. 3
and 7. In a hyperbolic sector, the flow moves from the stable
to the unstable sector boundary (as seen by an observer at
v). In an elliptic sector, it moves the other way. All cases that
can be encountered when distinguishing hyperbolic and
elliptic sectors are shown in Fig. 8.

4 TRANSITION GRAPH

A PC vector field F� on a manifold mesh M can be
represented by a finite directed transition graph defined in
this section. The abstract definition of the transition graph is

given in Section 4.1. An algorithm for constructing the
transition graph is described in Section 4.2.

4.1 Preliminaries

By an edge piece, we mean a closed line segment contained in
an edge of M. We say that a finite set of edge pieces P forms
a subdivision if the following two conditions are satisfied:

1. The union of edge pieces in P is the same as the
union of all edges of M (denoted by M1).

2. Any two edge pieces in P are either disjoint or
intersect at a single point.

The nodes of a transition graph G are the elements of V [ P ,
where V is the set of vertices of M and P is a set of edge
pieces that form a subdivision. Thus, a node is of one of two
types: it either corresponds to a vertex of M or to an edge
piece in P . In what follows, we call elements of V [ P , i.e.,
vertices or edge pieces, n-sets for brevity.

We require G to represent all trajectories of the vector
field in the following sense. For any trajectory, let us record
the consecutive n-sets visited by it, giving priority to
vertices over edge pieces, i.e., at the moment a trajectory
hits a vertex, recording that vertex but not any of the edge
pieces that meet at it. The resulting sequence of n-sets has to
be a path in G.

The above requirement is guaranteed to hold if the arc
a! b belongs to G for any pair of distinct nodes a, b whose
corresponding n-sets (also denoted by a, b) are connected by
a simple trajectory segment defined on nonzero-length time
interval. By a simple trajectory segment, we mean a
trajectory segment � : ½0; t� !M, contained in a single mesh
triangle that has constant velocity _�. In particular, such
segments stay at a stationary point or move along a straight
line. � connects a to b if a is a minimal n-set containing �ð0Þ,
b is a minimal n-set containing �ðtÞ and any point on �
contained in M1 (the union of all edges of M) is also in a or
b (�ð½0; t�Þ \M1 � a [ b). A minimal n-set containing a
point p is an n-set containing p such that no other n-set
contained in it contains p. Thus, if p is at a mesh vertex, the
minimal n-set containing p is the vertex itself. If p is not at a
vertex but belongs to an edge, any edge piece containing p is
a minimal n-set containing it. Finally, there is no minimal n-
set containing a point in the interior of a mesh triangle.

4.2 Construction of Transition Graph

We store the transition graph in a standard directed graph
data structure. Each node contains a pointer to the
corresponding n-set as well as separate lists of arcs out of
and into the node.
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Fig. 8. Examples illustrating how hyperbolic and elliptic sectors can be distinguished. In (a) and (b), one of the sector boundaries points into the
interior of a triangle and the other along an edge of that triangle. Such sectors are always hyperbolic. If the sector contains exactly one triangle (c),
the sector type is determined based on the vector field in that triangle. More precisely, the sector is hyperbolic if the edge containing the unstable
direction attracts the flow (for example, vector field inside the triangle is consistent with the blue arrow). Otherwise, the sector is elliptic (brown
arrow). In any other case, there is at least one edge within the sector and it has to be a crossing edge (otherwise, the stable and unstable directions
would not be consecutive) as shown in (d). In these cases, sector type is determined based on the direction in which the flow crosses that edge.



Our algorithm first builds the coarse graph (Section 4.2.1)
and then refines it using refinement operations (Section 4.2.2).
In this section, we focus on describing the refinement
operation itself. An example of an adaptive refinement
strategy is described in Section 5.3. The coarse transition
graph has the properties outlined in Section 4.1. The
transition graph refinement procedure is designed to pre-
serve them.

4.2.1 Initialization: Coarsest Level

On the coarsest level, G is based on the coarsest possible
subdivision P , whose edge pieces are the mesh edges. Thus,
nodes of G correspond to edges and vertices of M. G is built
as described below.

First, for each imploding or exploding edge e ¼ �uv of the
mesh we add arcs u! e and e! v if fðeÞ points from u to v
and arcs v! e and e! u if it points the other way. In what
follows, we call the arcs created this way type E arcs. With
each such arc, we keep a pointer to the edge that gave rise to
it (i.e., the edge e).

Then we add arcs that link pairs of nodes corresponding
to edges and vertices of a triangle that are connected by
trajectory segments moving through its interior. These arcs
are called type T arcs later on. For any triangle �uvw, either
one or two edges of � attract the flow in �. In the first case,
we add arcs from the nodes corresponding to the two edges
that repel the flow and the vertex between them to the node
corresponding to the edge that attracts the flow (for
example, if �vw is the edge that attracts the flow, u! �vw,
�uv! �vw, and �uw! �vw). In the second case, we add arcs

from the edge that repels the flow to each of the two edges
that attract the flow and the vertex between them. With
each type T arc, we keep a pointer the triangle � which was
used to generate that arc.

It is convenient to include stationary point information in
the transition graph. For each stationary vertex v, we add
the type S arc v! v, connecting v to itself. By doing this, we
ensure that stationary points are contained in strongly
connected components of the transition graph and therefore
require no special treatment in Section 5.

Finally, our implementation removes nodes correspond-
ing to mesh vertices with no stable or unstable directions
(spiral sinks, spiral sources, or centers, Section 3.3.5). These
vertices form isolated connected components ofG. Morse sets
containing them are detected and classified using the general
approach described in Section 5, since spiraling flow causes
edge pieces incident upon them to form loops in G.

4.2.2 Refinement

A local refinement operation corresponds to splitting one of
the edge pieces f in the subdivision associated with G into
two, f 1 and f 2. The node f is removed from G (together with
all arcs into and out of it) and replaced by the nodes f1 and f 2

with a set of new incident arcs computed as described below.
In what follows, G and G0 denote the transition graph before
and after refinement, respectively. It remains to describe the
arcs in G0 into and out of the new nodes, f 1 and f 2.

To construct arcs out of each of the new nodes, we scan
arcs out of f in G. Each such arc ~a ¼ f ! g will induce a
number of arcs in G0, all of them of the same type (E or T)
and with the same associated mesh element as ~a.

If ~a is of type E, the new arcs are generated as follows: if
g and f1 intersect, we include arcs f 2 ! f1 and f1 ! g in G0.
Similarly, if g and f 2 intersect, we add arcs f 1 ! f 2 and
f2 ! g to G0. This case is illustrated in Fig. 9. Note that the
figure also shows an arc into one of the new nodes,
described later in this section.

Now, assume ~a is of type T and � is its associated
triangle. Let P : �! L be a parallel projection transforma-
tion that projects � to a line perpendicular to fð�Þ, with
projection direction fð�Þ. If P ðf iÞ (i 2 f1; 2g) intersects
P ðgÞ, we include the arc f i ! g in G0. An example
illustrating type T arc refinement is shown in Fig. 10.

A similar procedure is applied to generate arcs into the
new nodes. We scan all arcs ~a ¼ h! f into f . If ~a is of type
E, the arc h! f i is included in G0 if h and f i intersect (for
i 2 f1; 2g). If ~a is of type T the arc h! f i (i 2 f1; 2g) is
added to G0 if P ðf iÞ and P ðhÞ intersect.

Type S arcs are not affected by the refinement since they
start and end at a node corresponding to a mesh vertex.
Such nodes are never refined.

5 MORSE DECOMPOSITION

In this section, we describe the algorithm for computing a
Morse decomposition and classifying the Morse sets.

We use the following variant of definition of a Morse
decomposition [7]. We say that a trajectory � : ð�1;1Þ !
M links a set C �M to a set C0 �M if and only if it
converges to C if followed backward and to C0 if followed
forward, i.e.,

lim
t!�1

distð�ðtÞ; CÞ ¼ lim
t!1

distð�ðtÞ; C0Þ ¼ 0:
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Fig. 9. Type E arcs generated as a result of refinement. The edge piece
f on an imploding or exploding edge is split into edge pieces f1 and f2.
The vector field points to the right (blue arrow). The arcs of G into and out
of f (top) and arcs of G0 into and out of the two new nodes (bottom) are
shown in red. Note that there is a trajectory moving along the edge from
left to right, which is reflected by the arcs of the graph both before and
after refinement.

Fig. 10. Refining type T arcs. Left: arcs of G connecting three edge
pieces are shown in red. The vector field inside the triangle points down.
Right: refinement of f . The green lines show the parallel projection
transformation P in the direction of the vector field. Since P ðf1Þ
intersects both P ðg1Þ and P ðg2Þ, arcs f 1 ! g1 and f 1 ! g2 are added to
G0. For a similar reason, so is f2 ! g2. Note that this is consistent with
the definition of the transition graph given in Section 4.1: these arcs have
to be in G0 since their starting and end edge pieces are connected by
simple trajectory segments running through the triangle.



A family C of disjoint closed subsets of M forms a Morse
decomposition if and only if 1) any trajectory passing
through a point outside the union of all sets in C links two
different sets in C, and 2) C’s linkage graph is acyclic. The
nodes of the linkage graph are the sets in C. An arc C1 ! C2

belongs to the linkage graph if and only if there is a
trajectory that links C1 to C2.

Acyclicity of the linkage graph forces the dynamics
outside the union of Morse sets to be free of recurrence.
Each periodic orbit and stationary point is contained in one
of the Morse sets by condition 1.

5.1 Morse and Pseudo-Morse Sets

Strongly connected components of the transition graph can
be computed using the algorithm of [35]. They define Morse
sets for a PC vector field. The precise argument is outlined in
Appendix C, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TVCG.2011.88. To our best knowledge, our setting
has not yet been described in the mathematical literature.

Since the definition of Morse sets in terms of strongly
connected components of the transition graph is complicated
and they would be expensive to compute exactly, we use
simpler supersets of Morse sets (that we call pseudo-Morse sets)
for visualization purposes. In this section, we describe the
construction of pseudo-Morse sets. Note that pseudo-Morse
sets are not guaranteed to be disjoint, but they have disjoint
interiors (Appendix D, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TVCG.2011.88) and their size tends to quickly
decrease as the transition graph is refined (Section 7), so they
generally give a good idea of the spatial distribution of
features described by the Morse decomposition.

For an arc ~a ¼ f ! g of G, where f and g are n-sets, the
subset of M represented by ~a is the union of all simple
trajectory segments (Section 4.1) � : ½0; t� !M, that start in f

and end in g. Examples are shown in Fig. 11. Generally, a
set represented by an arc can be a triangle, a quadrilateral, a
line segment or a mesh vertex (if it is a stationary point).

A set of nodes A of G represents the union of all sets
represented by arcs that both start and end in A and all
edge pieces and vertices corresponding to nodes in A. The
subset represented by A is denoted by RðAÞ.

Pseudo-Morse sets are sets represented by strongly
connected components of the transition graph.

5.2 Classification

In order to classify a Morse set C defined by a strongly
connected component A of the transition graph, we first
compute its fixed point index with respect to the translation
by a small time t along the flow. The index is the sum of
Poincaré indices of the stationary points in C (by additivity
property of the index, [11]). In the PC case, the stationary
points only occur at mesh vertices. The index of a stationary
point is equal to 1þ e�h

2 , where h and e are the numbers of
its hyperbolic and elliptic sectors [8]. The index of C is equal
to the sum of 1) indices of nodes in A that correspond to
stationary vertices of the PC vector field, and 2) indices of
vertices with no stable or unstable directions (centers, spiral
sinks, and saddles) whose incident edge pieces are in A.
Recall that our implementation removes nodes correspond-
ing to such vertices from the graph (Section 4.2.1).

Then, we determine if C is attracting, repelling or neither.
C is attracting if and only if there are no arcs in the transition
graph from a node in C to a node outside C and therefore
flow cannot leave C. Similarly, C is repelling if and only if
there are no arcs from a node outside C to a node in C and
therefore no trajectory can enter C from the outside.

We say that a Morse set C whose index is i is of type
ði;þÞ, ði;�Þ, or ði; 0Þ if it is repelling, attracting or neither,
respectively. This simple classification scheme is surpris-
ingly powerful. In particular, it allows one to distinguish
Morse sets that enclose different kinds of basic flow
features since they are of distinct types. Namely, sinks
are of type ð1;�Þ, sources—of type ð1;þÞ, saddles—of type
ð�1; 0Þ, and periodic orbits—of type ð0;þÞ if repelling and
ð0;�Þ if attracting. In what follows, we call Morse sets of
these types simple.

Conversely, Morse sets of type ð0;þÞ or ð0;�Þ are
guaranteed to contain a periodic orbit if they do not contain
a stationary point by the Poincaré-Bendixon theory [15].
Morse sets of nonzero index (in particular, of types ð1;�Þ,
ð1;þÞ ð�1; 0Þ) must contain a stationary point. Morse sets of
type ð0; 0Þ are trivial: they contain features that cancel each
other or no features at all. We call nontrivial Morse sets that
are not of a simple type complex.

The Morse set type described above carries information
equivalent to its Conley index [7] under certain technical
assumptions (existence of a connected index pair for the
Morse set) by the results of [28].

5.3 Adaptive Transition Graph

To obtain Morse decompositions of increasing precision, we
adaptively refine the transition graph. First, we compute the
coarse transition graph G0 as described in Section 4.2.1.

Given a graph Gi, we compute its strongly connected
components. An optional cleanup step removes all nodes of
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Fig. 11. Examples of sets represented by an arc in G. The arc f1 ! g1

represents the blue quadrilateral, v! g1—the magenta line and
f 2 ! g2—the green triangle. The arc w! g2 (note that the edge
containing g1 and g2 is imploding) represents the union of the segment
g2 and the vertex w, i.e., g2. The arc g2 ! g1 represents g1 [ g2.



Gi that are not connected to a node in a strongly connected
component (by an arc directed in any way), together with
their incident edges. Then, we apply the refinement step to Gi,
i.e., refine every node in a strongly connected component
that corresponds to an edge piece by splitting this edge
piece into two of equal length. The refinement step yields
the transition graph Giþ1.

A simple way to obtain a Morse decomposition is to
compute it from the transition graph GN for a prescribed
number of refinement iterations N . Intermediate results can
be used to produce results for any smaller number of
refinement iterations with little overhead. N can be viewed
as a natural parameter controlling the precision of the output
Morse decomposition. Clearly, other refinement criteria can
easily be used with our approach. For example, if the goal is
to describe the vector field in terms of its basic features, the
Morse sets could be refined until all of them are of simple
types. Experimental results, described in Section 7, indicate
that Morse sets of nonsimple types tend to disappear after a
small number of refinement operations. Refinement could
focus on large and complex Morse sets (as in [4]) in hope of
obtaining smaller and simpler Morse sets. In an interactive
system, one can let the user select Morse sets to be refined.
Potentially, one might hope that edge pieces can be split into
nonequal parts for more optimal results. We leave these
issues for future investigation.

For any refinement strategy, any Morse set obtained
from a finer transition graph is contained in a Morse set
obtained using a coarser graph. Furthermore, Morse sets
defined by strongly connected components whose nodes
are not refined stay the same. Pseudo-Morse sets have the
same properties. A proof is included in Appendix E,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TVCG.2011.88.

By restricting refinement steps to strongly connected
components, we slow the growth of the transition graph’s
size and therefore speed up the algorithm and reduce its
memory requirements. Note that the cleanup stage is
designed to leave enough information in the transition
graph to enable one to classify the Morse sets correctly
(Section 5.2). While the cleanup stage can make the size of
the transition graph much smaller, in some cases it is not
desirable. For example, it discards information about
connecting trajectories between Morse sets, that are repre-
sented by paths in G connecting different strongly con-
nected components.

6 COMPLEXITY ANALYSIS

In this section, we analyze the complexity of our algorithm.
Clearly, the assignment f (Sections 3.3.1 and 3.3.2) can be

computed in linear time. Local analysis of the flow near a
vertex v (Section 3.3.5) can be implemented in linear time in
the degree of v. This is because the total number of stable and
unstable directions at v cannot be higher than twice the
degree of v (there is at most one direction pointing into each
incident triangle and at most one pointing along any incident
edge). The directions can be generated in order around v
using the mesh triangle and edge incidence information, so

that no sorting is necessary. Time needed to build the coarse
transition graph (Section 4.2.1) is also linear.

Now, we argue that the total running time of the ith
refinement step (Section 5.3) is linear in the size of the
transition graph Gi�1, i.e., the transition graph at the
beginning of that refinement step. The strongly connected
components can be computed in linear time [35]. Clearly, the
cleanup stage can be implemented in linear time as well.
Refining a node (Section 4.2.2) requires time linear in the
degree of that node. The sum of all degrees is equal to twice
the number of arcs. Still, there is a technical issue to
overcome: refinement of neighbors of a node may raise its
degree before it is refined. However, one can argue that the
degree cannot increase by a factor more than two in the
refinement scenario of Section 5.3. This is because refinement
replaces a node f with two nodes; therefore, it can replace an
arc connecting another node to f with at most two new arcs.
Therefore, the total degree of all nodes at the time of
refinement is linear in the size of Gi�1, and so is the total
running time of the refinement stage.

The growth of the size of Gi�1 as a function of i depends
on the vector field. In the worst case (if Gi�1 is strongly
connected), all edges are refined and the graph size can
grow by close to a factor of 2 for large i. In practice, Morse
sets get smaller as the graph is refined and the growth of the
graph size is much slower.

7 EXPERIMENTAL RESULTS

In this section, we describe Morse decompositions obtained
using our algorithm for three simulation data sets obtained
by extrapolating velocity data from a 3D fluid flow
simulation to the boundary of the model [16], [20] and
gradient vector fields derived from scalar fields on triangle
meshes. Section 7.1 discusses results for the simulation data
sets. We compare results obtained using our approach to
results obtained using other methods that perform analysis
of vertex-based vector fields in Section 7.2. Finally, in
Section 7.3 we discuss results for gradient vector fields.

All images shown in this section except for Figs. 15(left)
and 16, are obtained using the image-based LIC visualiza-
tion algorithm of [19], applied directly to the PC vector
field. Therefore, in some images, the flow has a polygonal
look. We render the pseudo-Morse (Section 5.1) sets to
visualize the Morse sets. Trivial Morse sets (of type ð0; 0Þ)
are shown in magenta. Repelling Morse sets of types ð1;þÞ
and ð0;þÞ are shown in red (those of type ð1;þÞ are slightly
brighter). Attracting Morse sets of type ð1;�Þ and ð0;�Þ are
shown in green (also in this case, type ð1;�Þ sets are slightly
brighter). Morse sets of type ð�1; 0Þ, that in the generic case
contain saddles, are shown in blue. Complex Morse sets are
shown in black. Note that after a large number of
refinement steps, some Morse sets may become small and
hard to see. Morse sets consisting of a single vertex are
rendered as antialiased points (small discs).

7.1 Simulation Data Sets

Experiments on the simulation data sets demonstrate both
precision and efficiency of our approach.

First, the sizes of the Morse sets rapidly decrease with
the number of refinement iterations (Figs. 12, 13, and 14).
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Morse sets obtained from a fine transition graph provide a
precise bound on stationary points or periodic orbits that
they enclose.

Second, for any of the three data sets, our algorithm is able
to produce Morse decompositions that do not contain a
complex Morse set. In fact, complex Morse sets disappear

after a small number of refinement steps (the “complex”
column in Tables 1, 2, and 3). This behavior is highly
desirable, since complex Morse sets are harder to under-
stand. Moreover, the number of Morse sets of each of the
simple types tends to stabilize as refinement steps are
applied. After a certain number of iterations, few, if any, new
flow features tend to be discovered. Additional iterations
only decrease the size of the Morse sets that contain the
already discovered ones.

Trivial Morse sets generally contain no features or
features that cancel each other. Their number as a function
of the number of refinement iterations varies in a less
predictable way. As refinement iterations are applied, they
often appear near periodic orbits or stationary points that are
weakly attracting or repelling (Fig. 13, right—see the closeup
of the feature in front of the jacket head). They could also
appear near a saddle that is close to having a homoclinic orbit
(Fig. 14). Generally, after a few refinement steps, the trivial
Morse sets seem to indicate almost recurrent dynamics:
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Fig. 12. Results for the gas engine data set for 1, 5, and 9 refinement
steps, showing the mesh edges. The large periodic orbit has been
localized very accurately in the image on the right.

Fig. 14. A closeup view of the Morse decomposition for the cooling jacket data sets (5, 6, and 10 refinement steps). The finest decomposition (right)
shows a number of Morse sets enclosing periodic orbits. The coarsest decomposition (left) contains a number of Morse sets of type ð�1; 0Þ (blue)
that are topological rings. One refinement step causes a saddle to split off from three of them, leading to creation of a number of Morse sets of zero
index. The thin blue loop Morse set in the top right corner (left image) is refined to a single saddle. Note that blue Morse sets that are topological rings
typically arise from loops in the graph that start and end at a saddle and therefore they indicate the existence of homoclinic orbits for a small
perturbation of the vector field.

Fig. 13. Results for the cooling jacket data sets for 1, 3, 5, and 7 refinement steps.

TABLE 1
Statistics for the Gas Engine Data Sets

The mesh has 26,298 triangles and 13,151 vertices and genus 0.



trajectories that tend to form tight spirals. Therefore, they
may potentially be used as flow complexity indicators.

Finally, our algorithm is efficient. The runtime statistics
for the three data sets are shown in Tables 1, 2, and 3.
The tables show total running times (in seconds) of the
adaptive refinement algorithm described in Section 5.3,
both with and without the cleanup stage, on an Intel
Q6600 machine with 4 GB of RAM. Note that initializa-
tion (building the mesh data structure, analysis of sector
structure of vertices—Section 3.3.5 and building the
coarse transition graph—Section 4.2.1) typically takes
considerably longer than any of the first 10 refinement
iterations (Section 5.3). Since the initialization time is
included in all running times reported here, the running
time for 0 refinement iterations is relatively high. As the
tables show, cleanup decreases the size of the transition
graph and therefore also time needed for a refinement
iteration.

The running times reported in [4] for the gas engine,
diesel engine, and cooling jacket data sets are 65, 96, and
435 seconds, respectively (for �max ¼ 0:4). The results do not
look more detailed than ours for about 3� 5 refinement
iterations. The precision of their results can be increased by
using �max ¼ 1. However, this makes the output less
reliable and increases the running times to 213, 1,012, and
4,524 seconds, respectively.

7.2 PC and Vertex-Based Vector Field Features

Fig. 15 shows Morse decompositions of comparable preci-
sion computed using the approach of [6] (based on the
parallel transport interpolation scheme [41]) and the
method presented in this paper. Morse sets obtained using
both methods are similar, even though our algorithm

analyzes the PC variant of the original vector field. A
Morse decomposition obtained using the approach of [4] is
compared to a high precision one obtained using our
algorithm in Fig. 1. Note that in this case, Morse sets of our
decomposition (right) appear to be contained in the Morse
sets of the other one (left), possibly up to a small error. This
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TABLE 3
Statistics for the Cooling Jacket Data Sets (227,868 Triangles, 113,868 Vertices, Genus 34)

Fig. 15. Left: morse sets of the vertex-based vector field extracted using
the �-map approach of [6], classified using the upper bound on the
Conley index [4]. Right: morse sets for the PC variant of the same vector
field extracted using our method (three refinement iterations). Note that
the colors of similar Morse sets often do not match, for two reasons.
First, they are not exactly the same. In particular, they may contain
different flow features and hence be of different types. Second, the
classification method of [4] may not be accurate and therefore errors in
Morse set coloring are possible. However, the Morse sets themselves
are similar.

TABLE 2
Statistics for the Diesel Engine Data Sets (221,574 Triangles, 110,789 Vertices, Genus 0)



means that our Morse decomposition can be viewed as a
refinement of that of [4].

Periodic orbits are known to be sensitive to the numerical
method used to approximate them as well as perturbation
of the vector field [6]. Fig. 16 compares large periodic orbits
obtained using two different integration schemes and the
Morse set containing a similar periodic orbit for the PC
vector field, showing that they are geometrically close.

7.3 Gradient Vector Fields

A natural class of PC vector fields are gradients of piecewise
linear scalar functions. Fig. 17 shows Morse sets and
connecting regions for a height field derived from the
Puget Sound data sets [21]. We smoothed the height field to
obtain a smaller number of Morse sets and cleaner looking
connecting regions. Note that also in this case, our
procedure leads to expected results, generating sinks at
peaks and strings of sources and saddles along valley
bottoms. Connecting regions contain the separatrices (edges
of the Morse complex of the underlying scalar function [2],
[9]). They are represented by arcs on paths in G and on
paths in GT (G with arcs reversed) that start in a Morse set of
type ð�1; 0Þ (saddle), obtained using a simple algorithm
that 1) computes the paths using the depth-first search
algorithm, and 2) refines nodes on the paths that corre-
spond to edge pieces by splitting each of them into two of
equal length. The two steps are repeated a prescribed
number of times to increase the precision of the result.

8 CONCLUSION AND FUTURE WORK

We introduced an efficient and robust algorithm to compute
a Morse decomposition of a vector field on a triangulated
manifold surface and accurately classify its Morse sets. For
all test data sets, our approach has been able to produce
high precision Morse decompositions, whose Morse sets
tend to correspond to stationary points and periodic orbits
and therefore are easy to interpret. Finally, it is easy to use
since it depends on just one parameter that controls the
precision of the results. There are several research directions
that could potentially arise from this work.

It would be interesting to extend the PC vector field
formulation to the three (and, potentially, higher) dimen-
sional cases. We believe that the PC vector field framework
is promising for higher dimensions because of its high
efficiency, robustness, and relative simplicity.

It would also be interesting to extend the transition

graph approach to vector fields defined by standard

interpolation schemes. This will probably require some

form of integration (either numerical or analytical) of the

flow, but the need to follow trajectory segments across

several triangles (required in [6]) could possibly be avoided.
We would like to develop an algorithmic framework

for hierarchical Morse decompositions. A natural theore-

tical basis for such framework is provided by the theory

of differential inclusions: increasing the values of a

multivalued vector field yields a flow with a richer

trajectory structure and therefore produces a coarser

Morse decomposition.
Finally, it would be interesting to study theoretical

properties of the concepts introduced in this paper. The

mathematical literature focuses on different discretizations

of the flow: either similar to the �-map idea of [6] or built

upon triangulations whose triangles stretch in the direction

of the flow and whose edges are transverse to it [1]. In both

cases, the results are developed for single-valued flows. It

appears that theoretical study of the relationship of the

transition graph and the underlying PC flow may require

new technical tools. In particular, it would be interesting to

investigate if the Morse sets (or perhaps even pseudo-Morse

sets) forming an arbitrarily close upper bound of all

recurrent dynamics of the PC flow can be obtained from a

fine enough transition graph.
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Fig. 16. Periodic orbits of two vertex-based vector fields computed using
the algorithm of [5] with the Runge-Kutta method of second (blue) and
fourth (green) order. The Morse set containing a similar periodic orbit
(for the PC vector field) computed using our method (14 refinement
iterations) is shown in red.

Fig. 17. Morse sets and connecting regions for the terrain model.
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