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Abstract—The gradient of a velocity vector field is an asymmetric tensor field which can provide critical insight that is difficult to infer

from traditional trajectory-based vector field visualization techniques. We describe the structures in the eigenvalue and eigenvector

fields of the gradient tensor and how these structures can be used to infer the behaviors of the velocity field that can represent either a

2D compressible flow or the projection of a 3D compressible or incompressible flow onto a 2D manifold. To illustrate the structures in

asymmetric tensor fields, we introduce the notions of eigenvalue manifold and eigenvector manifold. These concepts afford a number

of theoretical results that clarify the connections between symmetric and antisymmetric components in tensor fields. In addition, these

manifolds naturally lead to partitions of tensor fields, which we use to design effective visualization strategies. Moreover, we extend

eigenvectors continuously into the complex domains which we refer to as pseudoeigenvectors. We make use of evenly spaced tensor

lines following pseudoeigenvectors to illustrate the local linearization of tensors everywhere inside complex domains simultaneously.

Both eigenvalue manifold and eigenvector manifold are supported by a tensor reparameterization with physical meaning. This allows

us to relate our tensor analysis to physical quantities such as rotation, angular deformation, and dilation, which provide a physical

interpretation of our tensor-driven vector field analysis in the context of fluid mechanics. To demonstrate the utility of our approach, we

have applied our visualization techniques and interpretation to the study of the Sullivan Vortex as well as computational fluid dynamics

simulation data.

Index Terms—Tensor field visualization, flow analysis, asymmetric tensors, flow segmentation, tensor field topology, surfaces.

Ç

1 INTRODUCTION

VECTOR field analysis and visualization are an integral
part of a number of applications in the field of aero-

and hydrodynamics. Local fluid motions comprise transla-
tion, rotation, volumetric expansion and contraction, and
stretching. Most existing flow visualization techniques
focus on the velocity vector field of the flow and have led
to effective illustrations of the translational component. On
the other hand, other flow motions may be the center of
interest as well. For example, the stretching of fluids can be
a good indicator for the rate of fluid mixing and energy
dissipation, rotation expresses the amount of vorticity, and
volumetric expansion and contraction are related to
changes of fluid compressibility [2], [10], [24], [28]. The
nontranslational components are directly related to the
gradient tensor of the vector field. Consequently, inferring
them using traditional vector field visualization methods
that use arrows, streamlines, and colors encoding the

magnitude of the vector field (Figs. 1a, 1b, and 1c) is
difficult even to trained fluid dynamics researchers.

The gradient tensor has found applications in a wide
range of vector field visualization tasks such as fixed point
classification and separatrix computation [12], attachment
and separation line extraction [17], vortex core identification
[29], [16], [25], [27], and periodic orbit detection [4].
However, the use of the gradient tensor in these applica-
tions is often limited to point-wise computation and
analysis. There has been relatively little work in investigat-
ing the structures in the gradient tensors as a tensor field
and what information about the vector field can be inferred
from these structures. While symmetric tensor fields have
been well explored, it is not clear how structures in
symmetric tensor fields can be used to reveal structures in
asymmetric tensor fields due to the existence of the
antisymmetric components.

Zheng and Pang were the first to study the structures in
2D asymmetric tensor fields [40]. To our knowledge, this is
the only work where the focus of the analysis is on
asymmetric tensor fields. In their research, Zheng and Pang
introduce the concept of dual-eigenvectors inside complex
domains where eigenvalues and eigenvectors are complex.
When the tensor field is the gradient of a vector field,
Zheng and Pang demonstrate that dual-eigenvectors
represent the elongated directions of the local linearization
inside complex domains. Consequently, tensor field struc-
tures can be visualized using a combination of eigenvectors
and dual-eigenvectors.

The work of Zheng and Pang has inspired this study of
asymmetric tensor fields. In particular, we address a
number of questions that have been left unanswered. First,
their algorithm for computing the dual-eigenvectors relies
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on eigenvector computation or singular value decomposi-
tion, neither of which provides much geometric intuition.
Thus, a natural question is whether a more explicit
relationship exists, and if so, what information about the
vector field can be revealed from this relationship. Second,
Zheng and Pang define circular points for asymmetric tensor
fields that are the counterpart of degenerate points in
symmetric tensors. While they provide a circular discrimi-
nant that can be used to detect circular points, it is not clear
how to compute the tensor index of circular points, i.e.,
circular point classification (wedges, trisectors, etc.). Third,
while dual-eigenvectors describe the elongation directions
in the flow in complex domains, they cannot be used to
visualize local linearization in the flow in those regions.
Fourth, eigenvalues are an important aspect of tensor fields,
yet there is little discussion on the structures of eigenvalues.
Finally, their focus is on general asymmetric tensor fields,
and there is limited investigation of the physical interpreta-
tion of their results in the context of flow analysis.

To address these fundamental issues, we make the
following contributions:

1. We introduce the concepts of eigenvalue manifold (a
hemisphere) and eigenvector manifold (a sphere), both
of which facilitate tensor analysis (Section 4).

2. With the help of the eigenvector manifold, we
extend the theoretical results of Zheng and Pang
on eigenvector analysis (Section 4.1) by providing an
explicit and geometric characterization of the dual-
eigenvectors (Section 4.1.1), which enables degen-
erate point classification (Section 4.1.2).

3. We introduce pseudoeigenvectors, which we use to
illustrate the elliptical flow patterns in the complex
domains (Section 4.1.3).

4. We provide eigenvalue analysis based on a Voronoi
partition of the eigenvalue manifold (Section 4.2),
which allows us to maintain the relative strengths
among the three main nontranslational flow compo-
nents: isotropic scaling (dilation), rotation (vorticity),
and anisotropic stretching (angular deformation).

This partition also demonstrates that direct transi-
tions between certain dominant-to-dominant compo-
nents are impossible, such as between clockwise and
counterclockwise rotations. The transition must go
through a dominant flow pattern other than rotation.

5. We present a number of novel vector and tensor
field visualization techniques based on our eigenva-
lue and eigenvector analysis (Sections 4.1 and 4.2).

6. We provide physical interpretation of our analysis in
the context of flow visualization (Section 5).

The remainder of the article is organized as follows: We
will first review related existing techniques in vector and
tensor field visualization and analysis in Section 2 and
provide relevant background on symmetric and asym-
metric tensor fields in Section 3. Then, in Section 4, we
describe our analysis and visualization approaches for
asymmetric tensor fields defined on 2D manifolds. We
provide some physical intuition about our approach and
demonstrate the effectiveness of our analysis and visualiza-
tion by applying them to the Sullivan Vortex as well as
cooling jacket and diesel engine simulation applications in
Section 5. Finally, we summarize our work and discuss
some possible future directions in Section 6.

2 PREVIOUS WORK

There has been extensive work in vector field analysis and
flow visualization [20], [21]. However, relatively little work
has been done in the area of flow analysis by studying the
structures in the gradient tensor, an asymmetric tensor field.
In general, previous work is limited to the study of symmetric
second-order tensor fields. Asymmetric tensor fields are
usually decomposed into a symmetric tensor field and a
rotational vector field and then visualized simultaneously
(but as two separate fields). In this section, we review related
work in symmetric and asymmetric tensor fields.

2.1 Symmetric Tensor Field Analysis and
Visualization

Symmetric tensor field analysis and visualization have been
well researched for both two and three dimensions. To refer
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Fig. 1. The gradient tensor of a vector field (d) can provide additional information about the vector field that is difficult to extract from traditional vector
field visualization techniques, such as (a) arrow plots, (b) trajectories and color coding of vector field magnitude, or (c) vector field topology [4]. The
colors in (d) indicate the dominant flow motion (without translation) such as isotropic scaling, rotation, and anisotropic stretching. The tensor lines in
(d) show the structures in the eigenvectors and dual-eigenvectors of the tensor, which reflect the directions of anisotropic stretching. Notice that it is
a challenging task to use vector field visualization techniques (a)-(c) to provide insight such as locating stretching-dominated regions in the flow and
identifying places where the orientations of the stretching change significantly. On the other hand, visualizations based on the gradient tensor
(d) facilitate the understanding of these important questions. The detailed description for (d) will be discussed in Section 4.2. The flow field shown
here is a planar slice of a 3D vector field that is generated by the linear superposition of two Sullivan Vortices with opposite orientations [30]
(Section 5.1).



to all past work is beyond the scope of this article. Here, we
will only refer to the most relevant work.

Delmarcelle and Hesselink [7] provide a comprehensive
study on the topology of 2D symmetric tensor fields and
define hyperstreamlines (also referred to as tensor lines),
which they use to visualize tensor fields. This research is
later extended to analysis in three dimensions [13], [39],
[41] and topological tracking in time-varying symmetric
tensor fields [31].

Zheng and Pang provide a high-quality texture-based
tensor field visualization technique, which they refer to as
HyperLIC [38]. This work adapts the idea of Line Integral
Convolution (LIC) of Cabral and Leedom [3] to symmetric
tensor fields. Zhang et al. [36] develop a fast and high-
quality texture-based tensor field visualization technique,
which is a nontrivial adaptation of the Image-Based Flow
Visualization (IBFV) of van Wijk [34]. Hotz et al. [15] present
a texture-based method for visualizing 2D symmetric tensor
fields. Different constituents of the tensor field correspond-
ing to stress and strain are mapped to visual properties of a
texture, emphasizing regions of volumetric expansion and
contraction.

To reduce the noise and small-scale features in the data
and, therefore, enhance the effectiveness of visualization, a
symmetric tensor field is often simplified either geometri-
cally through Laplacian smoothing of tensor values [1], [36]
or topologically using degenerate point pair cancellation
[32], [36] and degenerate point clustering [33].

We also note that the results presented in this article
exhibit some resemblance to those using Clifford Algebra [9],
[14], [8], in which vector fields are decomposed into
different local patterns, e.g., sources, sinks, and shear flows,
and then color-coded.

2.2 Asymmetric Tensor Field Analysis and
Visualization

Analysis of asymmetric tensor fields is relatively new in
visualization. Zheng and Pang provide analysis on 2D
asymmetric tensors [40]. Their analysis includes the parti-
tion of the domain into real and complex, defining and use
of dual-eigenvectors for the visualization of tensors inside
complex domains, incorporation of degenerate curves into
tensor field features, and a circular discriminant that
enables the detection of degenerate points (circular points).

In this article, we extend the analysis of Zheng and Pang
by providing an explicit formulation of the dual-eigenvec-
tors, which allows us to perform degenerate point classifi-
cation and extend the Poincaré-Hopf theorem to 2D
asymmetric tensor fields. We also introduce the concepts
of pseudoeigenvectors, which can be used to illustrate the
elliptical patterns inside complex domains. Such an illus-
tration cannot be achieved through the visualization of
dual-eigenvectors. Moreover, we provide the analysis on
the eigenvalues, which we incorporate into visualization.
Finally, we provide an explicit physical interpretation of
our analysis in the context of flow semantics.

Ruetten and Chong [26] describe a visualization frame-
work for 3D flow fields that utilizes the three principle
invariants P , Q, and R. Similar to our approach, they
normalize the three quantities. On the other hand, for 2D
flow fields as in our case, Q ¼ �R. Therefore, their

approach would only have two independent variables
while, in our method, there are still three variables.

3 BACKGROUND ON TENSOR FIELDS

We first review some relevant facts about tensor fields on
2D manifolds. An asymmetric tensor field T for a manifold
surface M is a smooth tensor-valued function that associ-
ates with every point p 2M a second-order tensor

T ðpÞ ¼ T11ðpÞ T12ðpÞ
T21ðpÞ T22ðpÞ

� �

under some local coordinate system in the tangent plane
at p. The entries of T ðpÞ depend on the choice of the
coordinate system. A tensor ½Tij� is symmetric if Tij ¼ Tji.

3.1 Symmetric Tensor Fields

A symmetric tensor T can be uniquely decomposed into the
sum of its isotropic part D and the (deviatoric tensor) A:

DþA ¼
T11þT22

2 0

0 T11þT22
2

� �
þ

T11�T22

2 T12

T12
T22�T11

2

� �
: ð1Þ

T has eigenvalues �d � �s in which �d ¼ T11þT22
2 and

�s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT11 � T22Þ2 þ 4T 2

12

q
2

� 0:

Let E1ðpÞ and E2ðpÞ be unit eigenvectors that correspond to
eigenvalues �d þ �s and �d � �s, respectively. E1 and E2 are
the major and minor eigenvector fields of T . T ðpÞ is
equivalent to two orthogonal eigenvector fields: E1ðpÞ and
E2ðpÞ when AðpÞ 6¼ 0. Delmarcelle and Hesselink [6]
suggest visualizing tensor lines, which are curves that are
tangent to an eigenvector field everywhere along its path.

Different tensor lines can only meet at degenerate points,
where Aðp0Þ ¼ 0 and major and minor eigenvectors are not
well defined. The most basic types of degenerate points are:
wedges and trisectors. Delmarcelle and Hesselink [6] define a
tensor index for an isolated degenerate point p0, which must
be a multiple of 1

2 due to the sign ambiguity in tensors. It is
1
2 for a wedge, � 1

2 for a trisector, and 0 for a regular point.
Delmarcelle shows that the total indices of a tensor field
with only isolated degenerated points is related to the
topology of the underlying surface [5]. Let M be a closed
orientable manifold with an Euler characteristic �ðMÞ, and
let T be a continuous symmetric tensor field with only
isolated degenerate points fpi : 1 � i � Ng. Denote the
tensor index of pi as Iðpi; T Þ. Then,

XN
i¼1

Iðpi; T Þ ¼ �ðMÞ: ð2Þ

In this article, we will adapt the classification of
degenerate points of symmetric tensor fields to asymmetric
tensor fields.

3.2 Asymmetric Tensor Fields

An asymmetric tensor differs from a symmetric one in
many aspects, the most significant of which is perhaps that
an asymmetric tensor can have complex eigenvalues for
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which no real-valued eigenvectors exist. Given an asym-
metric tensor field T , the domain of T can be partitioned
into real domains (real eigenvalues �i where �1 6¼ �2),
degenerate curves (real eigenvalues �i where �1 ¼ �2), and
complex domains (complex eigenvalues). Degenerate curves
form the boundary between the real domains and complex
domains.

In the complex domains where no real eigenvectors exist,
Zheng and Pang [40] introduce the concept of dual-
eigenvectors, which are real-valued vectors and can be used
to describe the elongated directions of the elliptical patterns
when the asymmetric tensor field is the gradient of a vector
field. The dual-eigenvectors in the real domains are the
bisectors between the major and minor eigenvectors. The
following equations characterize the relationship between
the dual-eigenvectors J1 (major) and J2 (minor) and the
eigenvectors E1 (major) and E2 (minor) in the real domains,

E1 ¼
ffiffiffiffiffi
�1
p

J1 þ
ffiffiffiffiffi
�2
p

J2; E2 ¼
ffiffiffiffiffi
�1
p

J1 �
ffiffiffiffiffi
�2
p

J2; ð3Þ

as well as in the complex domains,

E1 ¼
ffiffiffiffiffi
�1
p

J1 þ i
ffiffiffiffiffi
�2
p

J2; E2 ¼
ffiffiffiffiffi
�1
p

J1 � i
ffiffiffiffiffi
�2
p

J2; ð4Þ

where �1 and �2 are the singular values in the singular
value decomposition. Furthermore, the following fields:

ViðpÞ ¼
EiðpÞ T ðpÞ in the real domain;
J1ðpÞ T ðpÞ in the complex domain;

�
ð5Þ

i ¼ 1; 2 are continuous across degenerate curves. Either
field can be used to visualize the asymmetric tensor field.

Dual-eigenvectors are undefined at degenerate points,
where the circular discriminant,

�2 ¼ ðT11 � T22Þ2 þ ðT12 þ T21Þ2; ð6Þ

achieves a value of zero. Degenerate points represent
locations where flow patterns are purely circular, and they
only occur inside complex domains. They are also referred
to as circular points [40], and together with degenerate
curves, they form the asymmetric tensor field features.

In this article, we extend the aforementioned analysis of
Zheng and Pang [40] in several aspects that include a
geometric interpretation of the dual-eigenvectors (Sec-
tion 4.1.1), the classification of degenerate points and the
extension of the Poincaré-Hopf theorem from symmetric
tensor fields (2) to asymmetric tensor fields (Section 4.1.2),
the introduction and use of pseudoeigenvectors for the
visualization of tensor structures inside complex domains
(Section 4.1.3), and the incorporation of eigenvalue analysis
(Section 4.2).

4 ASYMMETRIC TENSOR FIELD ANALYSIS AND

VISUALIZATION

Our asymmetric tensor field analysis starts with a para-
meterization for the set of 2 � 2 tensors.

It is well known that any second-order tensor can be
uniquely decomposed into the sum of its symmetric and
antisymmetric components, which measure the scaling and
rotation caused by the tensor, respectively. Another pop-
ular decomposition removes the trace component from a

symmetric tensor which corresponds to isotropic scaling (1).
The remaining constituent, the deviatoric tensor, has a zero
trace and measures the anisotropy in the original tensor. We
combine both decompositions to obtain the following
unified parameterization of the space of 2 � 2 tensors:

T ¼ �d
1 0
0 1

� �
þ �r

0 �1
1 0

� �
þ �s

cos � sin �
sin � � cos �

� �
; ð7Þ

where �d ¼ T11þT22

2 , �r ¼ T21�T12

2 , and

�s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT11 � T22Þ2 þ ðT12 þ T21Þ2

q
2

are the strengths of isotropic scaling, rotation, and aniso-
tropic stretching, respectively. Note that �s � 0, while �r
and �d can be any real number. � 2 ½0; 2�Þ is the angular
component of the vector

T11 � T22

T12 þ T21

� �
;

which encodes the orientation of the stretching.
In this article, we focus on how the relative strengths of

the three components effect the eigenvalues and eigenvec-
tors in the tensor. Given our goals, it suffices to study unit
tensors, i.e., �2

d þ �2
r þ �2

s ¼ 1.
The space of unit tensors is a 3D manifold for which

direct visualization is formidable. Fortunately, the eigenva-
lues of a tensor only depend on �d, �r, and �s, while the
eigenvectors depend on �r, �s, and �. Therefore, we define
the eigenvalue manifold M� as

fð�d; �r; �sÞ j �2
d þ �2

r þ �2
s ¼ 1 and �s � 0g; ð8Þ

and the eigenvector manifold Mv as

fð�r; �s; �Þ j �2
r þ �2

s ¼ 1 and �s � 0 and 0 � � < 2�g: ð9Þ

Both M� and Mv are 2D, and their structures can be
understood in a rather intuitive fashion. A second-order
tensor field T ðpÞ defined on a 2D manifold M introduces
the following continuous maps:

�T : M!M�; 	T : M!Mv: ð10Þ

In the next two sections, we describe the analysis of M�

and Mv.

4.1 Eigenvector Manifold

The analysis on eigenvectors and dual-eigenvectors by
Zheng and Pang [40] can be largely summarized by (3)-(6).
The eigenvector manifold presented here not only allows us
to provide more geometric (intuitive) reconstruction of their
results but also leads to novel analysis that includes the
classification of degenerate points, extension of the Poin-
caré-Hopf theorem to 2D asymmetric tensor fields, and the
definition of pseudoeigenvectors which we use to visualize
tensor structures in the complex domains. We begin with
the definition of the eigenvector manifold.

The eigenvectors of an asymmetric tensor expressed in
the form of (7) only depend on �r, �s, and �. Given that the
tensor magnitude and the isotropic scaling component
do not affect the behaviors of eigenvectors, we will only
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need to consider unit traceless tensors, i.e., �d ¼ 0 and

�2
r þ �2

s ¼ 1. They have the following form:

T ð�; ’Þ ¼ sin’
0 �1
1 0

� �
þ cos’

cos � sin �
sin � � cos �

� �
; ð11Þ

in which ’ ¼ arctanð�r�sÞ 2 ½�
�
2 ;

�
2�. Consequently, the set of

unit traceless 2 � 2 tensors can be represented by a unit

sphere which we refer to as the eigenvector manifold (Fig. 2a).

The following observation provides some intuition about

the eigenvector manifold:

Theorem 4.1. Given two tensors Ti ¼ T ð�i; ’Þ ði ¼ 1; 2Þ on the

same latitude � �
2 < ’ < �

2 , let

N ¼ cos 
 � sin 

sin 
 cos 


� �

with 
 ¼ �2��1

2 . Then, any eigenvector or dual-eigenvector w2
�!

of T2 can be written as N w1
�!, where w1

�! is an eigenvector or
dual-eigenvector of T1, respectively.

The proofs of this theorem and the theorems thereafter
are provided in the Appendix.

Theorem 4.1 states that, as one travels along a latitude in
the eigenvector manifold, the eigenvectors and dual-
eigenvectors are rotated at the same rate. This suggests
that the fundamental behaviors of eigenvectors and dual-
eigenvectors are dependent on ’ only. In contrast, � only
impacts the directions of the eigenvectors and dual-
eigenvectors, but not their relative positions (Fig. 2b).

Next, we will make use of the eigenvector manifold to

provide a geometric construction of the dual-eigenvectors

(Section 4.1.1), classify degenerate points and extend the
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Fig. 2. (a) The eigenvector manifold is partitioned into real domains in the northern hemisphere ðWr;nÞ and the southern hemisphere ðWr;sÞ as well as

complex domains in these hemispheres (Wc;n and Wc;s). The orientation of the rotational component is counterclockwise in the northern hemisphere

and clockwise in the southern hemisphere. The equator represents pure symmetric tensors, while the poles represent pure rotations. Along any

longitude (e.g., (b) � ¼ 0) and starting from the intersection with the equator and going north (b), the major dual-eigenvectors (blue lines) remain

constant. In the real domains, i.e., 0 � ’ < �
4 , the angle between the major eigenvectors (solid cyan lines) and the minor eigenvectors (solid green

lines) monotonically decreases to 0. The angle is exactly 0 when the magnitude of the stretching constituent equals that of the rotational part. Inside

the complex domains where major and minor eigenvectors are not real, pseudoeigenvectors (cyan and green dashed lines, details in Definition 4.6)

are used for visualization purposes. The major and minor pseudoeigenvectors at ’ ð�4 < ’ < �
2Þ are defined to be the same as the minor and major

eigenvectors for �
2 � ’ along the same longitude. Traveling south of the equator toward the south pole, the behaviors of the eigenvectors and

pseudoeigenvectors are similar except they rotate in the opposite direction. At the equator, there are two bisectors, i.e., major and minor dual-

eigenvectors cannot be distinguished. We consider the equator a bifurcation point and, therefore, part of tensor field features. On a different

longitude, the same pattern repeats except the eigenvectors, dual-eigenvectors, and pseudoeigenvectors are rotated by a constant angle. Different

longitudes correspond to different constant angles. Example vector fields are shown in Fig. 3.

Fig. 3. Example vector fields whose gradient tensors correspond to points along the longitude � ¼ 0 (Fig. 2b).



Poincaré-Hopf theorem to asymmetric tensor fields (Sec-

tion 4.1.2), and introduce the pseudoeigenvectors that we

use to illustrate tensor structures in the complex domains

(Section 4.1.3).

4.1.1 Geometric Construction of Dual-Eigenvectors

Theorem 4.1 allows us to focus on the behaviors of

eigenvectors and dual-eigenvectors along the longitude

where � ¼ 0, for which (11) reduces to

T ¼ cos’ � sin’
sin’ � cos’

� �
: ð12Þ

The tensors have zero, one, or two real eigenvalues when

cos 2’ < 0, ¼ 0, or > 0, respectively. Consequently, the

tensor is referred to as being in the complex domain, on a

degenerate curve, or in the real domain [40]. Notice that the

tensor is on a degenerate curve if and only if ’ ¼ � �
4 .

In the complex domains, it is straightforward to verify

that 1
1

� �
and 1

�1

� �
are the dual-eigenvectors except when

’ ¼ � �
2 , i.e., degenerate points. In the real domains, the

eigenvalues are �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2’
p

. A major eigenvector is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin ’þ �

4

� �q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos ’þ �

4

� �q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin ’þ �

4

� �q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos ’þ �

4

� �q
0
@

1
A ð13Þ

and a minor eigenvector is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin ’þ �

4

� �q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos ’þ �

4

� �q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin ’þ �

4

� �q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos ’þ �

4

� �q
0
@

1
A: ð14Þ

The bisectors between them are lines X ¼ Y and
X ¼ �Y , where X and Y are the axes of the coordinate
systems in the tangent plane at each point. That is, the dual-
eigenvectors in the real domains are also 1

1

� �
and 1

�1

� �
.

Combined with the dual-eigenvector derivation in the
complex domains, it is clear that the dual-eigenvectors
remain the same for any ’ 2 ð� �

2 ;
�
2Þ. This is significant as it

implies that the dual-eigenvectors depend primarily on the
symmetric component of a tensor field.

The antisymmetric (rotational) component impacts the
dual-eigenvectors in the following way: In the northern
hemisphere where �r ¼ sin’ > 0, a major dual-eigenvector
is 1

1

� �
and a minor dual-eigenvector is 1

�1

� �
. In the southern

hemisphere ð�r ¼ sin’ < 0Þ, the values of the dual-eigen-
vectors are swapped. Consequently, the major dual-eigen-
vector field J1 is discontinuous across curves where ’ ¼ 0,
which correspond to pure symmetric tensors (11) that form
the boundaries between regions of counterclockwise rota-
tions and regions of clockwise rotations.

With the help of Theorem 4.1, the above discussion can
be formulated into the following:

Theorem 4.2. The major and minor dual-eigenvectors of a
tensor T ð�; ’Þ are, respectively, the major and minor
eigenvectors of the following symmetric tensor:

PT ¼
�r
j�rj

�s
cos �þ �

2

� �
sin �þ �

2

� �
sin �þ �

2

� �
� cos �þ �

2

� �� �
; ð15Þ

wherever PT is nondegenerate, i.e., �r ¼ cos’ 6¼ 0 and
�s ¼ sin’ 6¼ 0.

This inspires us to incorporate places corresponding to
’ ¼ 0 into tensor field features in addition to ’ ¼ � �

4

(degenerate curves) and ’ ¼ � �
2 (degenerate points).

Symmetric tensors and degenerate curves divide the
eigenvector manifold Mv into four regions:

1. real domains in the northern hemisphere ðWr;nÞ,
2. real domains in the southern hemisphere ðWr;sÞ,
3. complex domains in the northern hemisphere ðWc;nÞ,

and
4. complex domains in the southern hemisphere ðWc;sÞ.

Fig. 2a illustrates this partition.
Notice that ’ measures the signed spherical distance of a

unit traceless tensor to pure symmetric tensors (the
equator). For example, the north pole has a positive distance
and the south pole has a negative distance. In contrast, the
circular discriminant �2 (6) satisfies �2 ¼ 4�s, which
implies that �2 does not make such a distinction between
the two hemispheres. Therefore, we advocate the use of ’ as
a measure for the degree of being symmetric of an
asymmetric tensor.

4.1.2 Degenerate Point Classification

Next, we discuss the degenerate points where dual-
eigenvectors are undefined, i.e., circular points. We provide
the following definition:

Definition 4.3. Given a continuous asymmetric tensor field T

defined on a 2D manifold M, let � be a small circle around

p0 2M such that � contains no additional degenerate points

and it encloses only one degenerate point, p0. Starting from a

point on � and traveling counterclockwise along �, the major

dual-eigenvector field (after normalization) covers the unit

circle S1 a number of times. This number is said to be the tensor

index of p0 with respect to T , and is denoted by Iðp0; T Þ.
We now return to the discussion on degenerate points,

which correspond to the poles ð’ ¼ � �
2Þ, i.e., �s ¼ 0. The

relationship between the dual-eigenvectors of an asym-

metric tensor T ð�; ’Þ and the corresponding symmetric

tensor PT described in (15) leads to the following theorem:

Theorem 4.4. Let T be a continuous asymmetric tensor field
defined on a 2D manifold M satisfying �2

r þ �2
s > 0 everywhere

in M. Let ST be the symmetric component of T which has a
finite number of degenerate points K ¼ fpi : 1 � i � Ng.
Then, we have the following:

1. K is also the set of degenerate points of T .
2. For any degenerate point pi, Iðpi; T Þ ¼ Iðpi; ST Þ. In

particular, a wedge remains a wedge, and a trisector
remains a trisector.

This theorem allows us to not only detect degenerate
points but also classify them based on their tensor indexes
(wedges, trisectors, etc.) and the hemisphere they dwell on,
something not addressed by Zheng and Pang’s analysis
[40]. Furthermore, this theorem leads directly to the
extension of the well-known Poincaré-Hopf theorem for
vector fields to asymmetric tensor fields as follows:
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Theorem 4.5. Let M be a closed orientable 2D manifold with

an Euler characteristic �ðMÞ, and let T be a continuous

asymmetric tensor field with only isolated degenerate points

fpi : 1 � i � Ng. Then,

XN
i¼1

Iðpi; T Þ ¼ �ðMÞ: ð16Þ

The eigenvector manifold also provides hints that

degenerate points occurring at opposite poles have different

rotational orientations. In fact, any tensor line connecting a

degenerate point pair inside different hemispheres neces-

sarily crosses the equator (pure symmetric tensors) an odd

number of times. In contrast, when the degenerate point

pair is in the same hemisphere, any connecting tensor line

will cross the equator an even number of times or remain in

the same hemisphere (zero crossing).

4.1.3 Pseudoeigenvectors

We conclude our eigenvector analysis with the introduction
of pseudoeigenvectors, which like dual-eigenvectors, are
continuous extensions of eigenvectors into the complex
domains. Unlike dual-eigenvectors, however, pseudoeigen-
vectors are not mutually perpendicular. Recall that in the
complex domains, flow patterns without translations and
isotropic scalings are ellipses, whose elongated directions
are represented by the major and minor dual-eigenvectors
[40]. Unfortunately, the elliptical patterns cannot be
demonstrated by drawing tensor lines following the major
and minor dual-eigenvectors since they are always mu-
tually perpendicular. To remedy this, we observe that an
ellipse can be inferred from the smallest enclosing diamond
whose diagonals represent the major and minor axes of the
ellipse (Fig. 4c, bottom). Given two families of evenly
spaced lines of the same density, d, intersecting at an
angle � ¼ fð�Þ, any ellipse can be represented. Our
question then is: Given a tensor T ð�; ’Þ, where �

4 < j’j < �
2 ,

how do we decide the directions of the two families of
lines? This leads to the following definition:

Definition 4.6. Given a tensor T ¼ T ð�; ’Þ, the major
pseudoeigenvector of T is defined to be the minor
eigenvector of the tensor T ð�; �2 � ’Þ when ’ > �

4 and
T ð�;� �

2 � ’Þ when ’ < � �
4 . Similarly, the minor pseu-

doeigenvector of T is defined to be the major eigenvector of
the same tensors under these conditions.

It is straightforward to verify that evenly spaced lines
following the major and minor pseudoeigenvectors produce
diamonds whose smallest enclosing ellipses represent the
flow patterns corresponding to T in the complex domains
(Fig. 3: ’ ¼ � 3�

8 ). Notice that the definitions of the major
and minor pseudoeigenvectors can be swapped as evenly
spaced lines following either definition produce the same
diamonds. Because of this, we assign the same color (blue)
to both pseudoeigenvector fields in our visualization
techniques in which they are used (Figs. 4b and 4d).

Both major and minor pseudoeigenvector fields Pi ði ¼
1; 2Þ in the complex domains are continuous with respect to
the major and minor eigenvector fields Ei ði ¼ 1; 2Þ in the
real domains across degenerate curves. Thus, we define the
major and minor augmented eigenvector fields Ai ði ¼ 1; 2Þ as

AiðpÞ ¼
EiðpÞ T ðpÞ in the real domain;
PiðpÞ T ðpÞ in the complex domain:

�
ð17Þ

The major and minor pseudoeigenvectors are undefined
at degenerate points, i.e., ’ ¼ � �

2 . In fact, the set of
degenerate points of either pseudoeigenvector field
matches that of the major dual-eigenvector field (number,
location, tensor index), thus respecting the adapted
Poincaré-Hopf theorem for asymmetric tensor fields
(Theorem 4.5). The orientations of tensor patterns in the
pseudoeigenvector fields near degenerate points are
obtained by rotating patterns in the major dual-eigenvec-
tor field in the same regions by �

4 either counterclockwise
ð’ > 0Þ or clockwise ð’ < 0Þ.

4.1.4 Visualizations

In Fig. 4, we apply three visualization techniques based on
eigenvector analysis to the vector field shown in Fig. 1. In

112 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 1, JANUARY/FEBRUARY 2009

Fig. 4. Three tensor line-based techniques in visualizing the eigenvectors of the vector field shown in Fig. 1. In (a), the regions with a single family of
tensor lines are the complex domains and the regions with two families of tensor lines are the real domains. Red indicates a counterclockwise
rotational component, while green indicates a clockwise one. The major and minor eigenvectors (real domains) are colored black and white,
respectively. The blue tensor lines inside the complex domains follow the major dual-eigenvectors. In (b), dual-eigenvectors are replaced by
pseudoeigenvectors (blue) inside complex domains. The image in (d) is obtained from (b) by blending it with a texture-based visualization of the
vector field. In (c), the physical meanings of eigenvectors (top) and pseudoeigenvectors (bottom) are annotated.



addition to the option of visualizing eigenvectors in the real
domains and major dual-eigenvectors in complex domains
(Fig. 4a), pseudoeigenvectors provide an alternative
(Fig. 4b). In these images, the background colors are either
red (counterclockwise rotation) or green (clockwise rota-
tion). Tensor lines following the major and minor eigen-
vector fields are colored in black and white, respectively.
Tensor lines according to the dual-eigenvector field (Fig. 4a)
and pseudoeigenvector fields (Fig. 4b) are colored in blue,
which makes it easy to distinguish between real and
complex domains. Degenerate points are highlighted as
either black (wedges) or white (trisectors) disks. Note that it
is easy to see the features of tensor fields (degenerate points,
degenerate curves, purely symmetric tensors) in these
visualization techniques. Fig. 4d overlays the eigenvector
visualization in Fig. 4b onto texture-based visualization of
the vector field. It is evident that flow directions do not
align with the eigenvector or pseudoeigenvector directions.
Furthermore, as expected, the fixed points in the vector field
and degenerate points in the tensor field appear in different
locations.

4.2 Eigenvalue Manifold

We now describe our analysis on the eigenvalues of
2 � 2 tensors, which have the following forms:

�1;2 ¼
�d �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
s � �2

r

p
if �2

s � �2
r ;

�d � ii
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
r � �2

s

p
if �2

s < �2
r :

�
ð18Þ

Recall that �d, �r, and �s represent the (relative) strengths
of the isotropic scaling, rotation, and anisotropic stretching
components in the tensor field.

To understand the nature of a tensor usually requires the
study of �d, �r, �s, or some of their combinations. Since no
upper bounds on these quantities necessarily exist, the

effectiveness of the visualization techniques can be limited
by the ratio between the maximum and minimum values.
However, it is often desirable to answer the following
questions:

. What are the relative strengths of the three compo-
nents (�d, �r, and �s) at a point p0?

. Which of these components is dominant at p0?

Both questions are more concerned with the relative

ratios among �d, �r, and �s rather than their individual

values, which makes it possible to focus on unit tensors, i.e.,

when �2
d þ �2

r þ �2
s ¼ 1 and �s � 0. The set of all possible

eigenvalue configurations satisfying these conditions can be

modeled as a unit hemisphere, which is a compact 2D

manifold (Fig. 5, upper-left).
There are five special points in the eigenvalue manifold

that represent the extremal situations:

1. pure positive scaling ð�d ¼ 1; �r ¼ �s ¼ 0Þ,
2. pure negative scaling ð�d ¼ �1; �r ¼ �s ¼ 0Þ,
3. pure counterclockwise rotation ð�r ¼ 1; �d ¼ �s ¼ 0Þ,
4. pure clockwise rotation ð�r ¼ �1; �d ¼ �s ¼ 0Þ, and
5. pure anisotropic stretching ð�s ¼ 1; �d ¼ �r ¼ 0Þ

(Fig. 5, upper-left).

The Voronoi diagram with respect to these configurations
leads to a partition of the eigenvalue manifold into the
following types of regions:

1. Dþ (positive scaling dominated),
2. D� (negative scaling dominated),
3. Rþ (counterclockwise rotation dominated),
4. R� (clockwise rotation dominated), and
5. S (anisotropic stretching dominated).

Here, the distance function is the spherical geodesic

distance, i.e., dðv1; v2Þ ¼ 1� v1 � v2 for any two points v1
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Fig. 5. The eigenvalue manifold of the set of 2� 2 tensors. There are five special configurations (top-left: colored dots). The top-middle portion shows a

top-down view of the hemisphere along the axis of anisotropic stretching. The hemisphere is decomposed into the Voronoi cells for the five special

cases, where the boundary curves are part of tensor field features. To show the relationship between a vector field and the eigenvalues of the gradient,

seven vector fields with constant gradient are shown in the bottom row: (a) ð�d; �r; �sÞ ¼ ð1; 0; 0Þ, (b) ð
ffiffi
2
p

2 ; 0;
ffiffi
2
p

2 Þ, (c) (0, 0, 1), (d) ð0;
ffiffi
2
p

2 ;
ffiffi
2
p

2 Þ, (e) (0, 1, 0),

(f) ð
ffiffi
2
p

2 ;
ffiffi
2
p

2 ; 0Þ, and (g) ð
ffiffi
3
p

3 ;
ffiffi
3
p

3 ;
ffiffi
3
p

3 Þ. Finally, we assign a unique color to every point in the eigenvalue manifold (upper-right). The boundary circle of the

eigenvalue manifold is mapped to the loop of the hues. Notice the azimuthal distortion in this map, which is needed in order to assign positive and

negative scaling with hues that are perceptually opposite. Similarly, we assign opposite hues to distinguish between counterclockwise and clockwise

rotations.



and v2 on the eigenvalue manifold. The resulting diagram
is illustrated in Fig. 5 (upper-middle).

A point p0 in the domain is said to be a type Dþ point if

T ðp0Þ is in the Voronoi cell of pure positive scaling, i.e.,

�dðp0Þ > maxð�sðp0Þ; j�rðp0ÞjÞ. A Dþ-type region R is a con-

nected region in which every point is of type Dþ. Points and

regions corresponding to the other types can be defined in a

similar fashion. We define the features of a tensor field with

respect to eigenvalues as the set of points in the domain

whose tensor values map to the boundaries between the

Voronoi cells in the eigenvalue manifold. The following

result is a straightforward derivation from the Voronoi

decomposition of the eigenvalue manifold:

Theorem 4.7. Given a continuous asymmetric tensor field T

defined on a 2D manifold M, let U1 and U2 be �- and �-type

regions, respectively, where �, � 2 fDþ; D�; Rþ; R�; Sg are

different. Then, @U1

T
@U2 ¼ ; if �- and �-types represent

regions in the eigenvalue manifold that do not share a common

boundary.

As an application of this theorem, we state that a
continuous path traveling from an Rþ-type region to an
R�-type region must intersect with a Dþ-, D�-, or S-type

region. A similar statement can be made between a Dþ- and
D�-type region pair. Note these statements can be difficult
to verify without the use of eigenvalue manifold.

We propose two visualization techniques. With the first
technique, we assign a unique color to each of the five
special configurations shown in Fig. 5 (upper-middle).
Effective color assignment can allow the user to identify the
type of primary characteristics at a given point as well as
the relative ratios among the three components. We use the
scheme shown in Fig. 5 (upper-right): pure positive
isotropic scaling (yellow), pure negative isotropic scaling
(blue), pure counterclockwise rotation (red), pure clockwise
rotation (green), and pure anisotropic stretching (white).
For any other point ð�dðx; yÞ; �rðx; yÞ; �sðx; yÞÞ, we compute
� as the angular component of the vector ð�dðx; yÞ; �rðx; yÞÞ

with respect to (1, 0) (counterclockwise rotation). The hue of
the color is then

2
3� if 0 � � < �;
4
3� if � � � � < 0:

�
ð19Þ

Notice that angular distortion ensures that the two isotropic
scalings and rotations will be assigned opposite colors,
respectively. Our color legend is adopted from Ware [35].
The saturation of the color reflects �2

dðx; yÞ þ �2
r ðx; yÞ, and

the value of the color is always one. This ensures that as the
amount of anisotropic stretching increases, the color
gradually changes to white, which is consistent with our
choice of color for representing anisotropic stretching.
Fig. 6a illustrates this visualization with the vector field
shown in Fig. 1.

Our second eigenvalue visualization method assigns a
unique color to each of the five Voronoi cells in the
eigenvalue manifold. Fig. 6b shows this visualization
technique for the aforementioned vector field.

Notice that the two techniques differ in how they
address the transitions between regions of different
dominant characteristics. The first method allows for
smooth transitions and preserves relative strengths of �d,
�r, and �s, which we refer to as the all components (AC)
method. The second method explicitly illustrates the
boundaries between regions with different dominant
behaviors, which we refer to as the dominant component
(DC) method. We use both methods in our interpretations
of the data sets (Section 5). To illustrate the absolute
magnitude of the tensor field, we provide a visualization in
which the colors represent the magnitude of the gradient
tensor, i.e., �2

d þ �2
r þ �2

s (Fig. 6c). In this visualization, red
indicates high values and blues indicate low values. Notice
that this visualization can provide more complementary
information than either the AC or DC method.

Combining visualizations based on eigenvalue and
eigenvector analysis leads to several hybrid techniques.
The following provides some insight on the link between
eigenvalue analysis and eigenvector analysis:
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Fig. 6. Three visualization techniques on the vector field shown in Fig. 1 (Section 5.1): (a) eigenvalue visualization based on all components,
(b) eigenvalue visualization based on the dominant component, and (c) magnitude (dyadic product) of the velocity gradient tensor. The color scheme
for (a) is described in Fig. 5 (upper-right). The color scheme for (b) is based on the dominant component in the tensor: positive scaling (yellow),
negative scaling (blue), counterclockwise rotation (red), clockwise rotation (green), and anisotropic stretching (white). In (c), red indicates large
magnitudes and blue indicates small.



Theorem 4.8. Given a continuous asymmetric tensor field T
defined on a 2D manifold such that �2

d þ �2
r þ �2

s > 0 every-
where, the following are true:

1. an Rþ-type region is contained in Wc;n and an
R�-type region is contained in Wc;s,

2. an S-type region is contained in Wr;n

S
Wr;s, and

3. a Dþ-type or D�-type region can have a nonempty
intersection with any of the following: Wr;n, Wr;s,
Wc;n, and Wc;s.

Three hybrid visualizations are shown in Fig. 7. In
Fig. 7a, the colors are obtained by combining the colors
from the eigenvalue visualization (Fig. 6b) with the back-
ground colors (red or green) from eigenvector visualization
(Fig. 4a). This results in eight different colors according to
Theorem 4.8):

. C1 ¼ Rþ
T
Wc;n ðredÞ,

. C2 ¼ R�
T
Wc;s ðgreenÞ,

. C3 ¼ Dþ
T
ðWc;n

S
Wr;nÞ ðyellowþ redÞ,

. C4 ¼ Dþ
T
ðWc;s

S
Wr;sÞ ðyellowþ greenÞ,

. C5 ¼ D�
T
ðWc;n

S
Wr;nÞ ðblueþ redÞ,

. C6 ¼ D�
T
ðWc;s

S
Wr;sÞ ðblueþ greenÞ,

. C7 ¼ S
T
Wr;nðwhiteþ redÞ, and

. C8 ¼ S
T
Wr;s ðwhiteþ greenÞ.

Furthermore, C3-C6 can be in either the real or complex
domain. This can be distinguished based on the colors of
the tensor lines (see Fig. 7b): real domains (tensor lines in
black and white) and complex domains (tensor lines in
blue). Fig. 7c is obtained by combining the visualizations in
Figs. 7a and 7b.

4.3 Computation of Field Parameters

Our system can accept either a tensor field or a vector field.
In the latter case, the vector gradient (a tensor) is used as the
input. The computational domain is a triangular mesh in
either a planar domain or a curved surface. The vector or
tensor field is defined at the vertices only. To obtain values
at a point on the edge or inside a triangle, we use a
piecewise interpolation scheme. On surfaces, we use the
scheme of Zhang et al. [37], [36] that ensures vector and

tensor field continuity in spite of the discontinuity in the

surface normal.
Given a tensor field T , we first perform the following

computation for every vertex:

. Reparameterization, in which we compute �d, �r, �s,
and �.

. Normalization, in which we scale �d, �r, and �s to
ensure �2

d þ �2
r þ �2

s ¼ 1.
. Eigenvector analysis, in which we extract the

eigenvectors, dual-eigenvectors, and pseudoeigen-
vectors at each vertex.

Next, we extract the features of the tensor field with

respect to the eigenvalues. This is done by visiting every

edge in the mesh to locate possible intersection points

with the boundary curves of the Voronoi cells shown in

Fig. 5. We then connect the intersection points whenever

appropriate.
Finally, we extract tensor features based on eigenvectors.

This includes the detection and classification of degenerate

points as well as the extraction of degenerate curves and

symmetric tensors.

5 PHYSICAL INTERPRETATION AND APPLICATIONS

In this section, we describe the physical interpretation of

our asymmetric tensor analysis in the context of fluid

flow fields. Let u be the flow velocity. The velocity

gradient tensor ru consists of all the possible fluid

motions except translation and can be decomposed into

three terms [2], [28]:

ru ¼ trace½ru�
N


ij þ �ij þ Eij; ð20Þ

where 
ij is the Kronecker delta, N is the dimension of the

domain (either 2 or 3), trace½ru�
N 
ij represents the volume

distortion (equivalent to isotropic scaling in mathematical

terms), and the antisymmetric tensor �ij ¼ 1
2 ðru� ðruÞ

T Þ
represents the averaged rotation of fluid. Since �ij has only

three entities when N ¼ 3, it can be considered as a
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Fig. 7. Example hybrid visualization techniques on the vector field shown in Fig. 1: (a) a combination of eigenvalue-based visualization (Fig. 6b) with

the background color (red and green) from eigenvector-based visualization (Fig. 4a), (b) same as (a) except the underlying texture-based vector field

visualization is replaced by eigenvectors and major dual-eigenvectors, and (c) a combination of (a) and (b).



pseudovector; twice the magnitude of the vector is called
vorticity. The symmetric tensor

Eij ¼
1

2
ðruþ ðruÞT Þ � trace½ru�

N

ij ð21Þ

is termed the rate-of-strain tensor (or deformation tensor) that
represents the angular deformation, i.e., the stretching of a
fluid element along a principle axis. Notice that, in 2D
cases, ðN ¼ 2Þ (20) corresponds directly to the tensor
reparameterization (7) in which �d ¼ trace½ru�

N , �r ¼ j�12j,
�s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

11 þ E2
12

p
, and � ¼ tan�1ðE12

E11
Þ. Considering the gra-

dient tensor of a 2D flow field (see Figs. 6 and 7 for an
example), the counterclockwise and clockwise rotations in
the tensor field indicate positive vorticities (red) and
negative vorticities (green), respectively. The positive and
negative isotropic scalings represent volumetric expansion
and contraction of the fluid elements (yellow and blue). The
anisotropic stretching is equivalent to the rate of angular
deformation, i.e., shear strain (white). Furthermore, as
illustrated in Fig. 3, eigenvectors in the real domain
represent deformation patterns of fluid elements, while
dual-eigenvectors in the complex domain represent the
skewed (elliptical) rotation pattern.

For the analysis of 3D incompressible-fluid flows
ð
P3

i¼1 Tii ¼ 0Þ confined to a plane (e.g., Figs. 6 and 7),
twice the trace of ru can be written as T11 þ T22 ¼ �T33,
which represents the net flow to the plane from neighbor-
ing planes: This is a consequence of mass conservation.
Positive scaling in the plane represents the effect of inflow
from the 3D neighborhood of the plane. This can also be
interpreted as negative stretching of fluid material in the
normal direction, i.e., the velocity gradient in the direction
normal to the plane is negative ðT33 < 0Þ. A similar
interpretation can be made for negative scaling ðT33 > 0Þ.
For compressible fluids, the interpretation requires care.
For example, positive scaling can not only represent
volumetric dilation of compressible fluid but also contain
the foregoing effect of inflow of the fluid from the
neighborhood of the subject plane.

5.1 Sullivan Vortex: A Three-Dimensional Flow

The first example we discuss is an analytical 3D incom-
pressible flow that is presented by Sullivan [30]. This is an
exact solution of the Navier-Stokes equations for a 3D
vortex. The flow is characterized by

urðx; y; zÞ
cos �

sin �

0

0
B@

1
CAþ u�ðx; y; zÞ

� sin �

cos �

0

0
B@

1
CA

þ uzðx; y; zÞ
0

0

1

0
B@

1
CA;

ð22Þ

in which

ur ¼ �arþ 6ð=rÞ½1� e�ðar2=2Þ�;
u� ¼ð�=2�rÞ½Hðar2=2Þ=Hð1Þ�;
uz ¼ 2az½1� 3e�ar

2=2 �
ð23Þ

are the radial, azimuthal, and axial velocity components,
respectively. Here, a (flow strength), � (flow circulation),
and  (kinematic viscosity) are constants, r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, and

HðsÞ ¼
Z s

0

exp �tþ 3

Z t

0

1� e��
�

d�

� 	
dt: ð24Þ

Sketches of the flow pattern in the horizontal and
vertical planes are shown in Fig. 8. Away from the vortex
center r!1, the flow is predominantly in the negative
radial direction (toward the center) with the accelerating
upward flow: ur 	 �ar, u� 	 0, uz 	 2az. On the other
hand, as r becomes small ðr! 0Þ, we have ur 	 3ar, u� 	 0,
uz 	 �4az. Fig. 9 visualizes one instance of the Sullivan
Vortex with a ¼ 1:5, � ¼ 25, and  ¼ 0:1 in the plane z ¼ 1.

Fig. 9a shows the velocity vector field together with the
topology [4] identifying the unstable focus (the green dot)
and the periodic orbit (the red loop). The images in Figs. 9b
and 9c are the eigenvalue visualizations based on all
components (AC method) and on the dominant component
(DC method), respectively. The textures in Figs. 9b and 9c
illustrate the major eigenvector field in the real domains
and the major dual-eigenvector field in the complex
domains. Due to the normalization of tensors, our visuali-
zation techniques shown in Figs. 9b and 9c exhibit relative
strengths of tensor components (�d, �r, and �s) at a given
point. To examine the absolute strength of velocity
gradients in an inhomogeneous flow field, spatial variations
of the magnitude (dyadic product) of velocity gradients are
provided in Fig. 9d with the texture representing the
velocity vector field. Red indicates high values and blue
corresponds to low values.

The behaviors of the third dimension (z-direction) can be

inferred from our DC-based eigenvalue visualization in the

x-y plane (Fig. 9c). Namely, in the regions of large r, the

negative isotropic scaling (blue) is dominant, and near the

vortex center, the positive isotropic scaling (yellow) is

dominant. Identifying such isotropic scaling is formidable

with the use of texture-based vector visualization (Fig. 9a).

The eigenvalue visualization (Figs. 9b and 9c) allows us

to see stretching-dominated regions (white), which cannot

be identified from the corresponding vector field visualiza-

tion (Fig. 9a). Figs. 9b and 9d collectively exhibit that strong

counterclockwise rotation of fluid appears in the annular

region near the center, and the rotation diminishes as r

increases (away from the center). Notice that this informa-

tion is difficult to extract from the texture-based vector

visualization (Fig. 9a), although it can be achieved with a

vorticity-based visualization.
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Fig. 8. The Sullivan Vortex viewed in (a) the x-y plane and (b) the

x-z plane.



Comparing the texture plots of Figs. 9a and 9b, we notice

that the major eigenvectors (Fig. 9b: the directions of

stretching) closely align with the streamlines in the real

domain (Fig. 9a) for large enough r, while the major dual-

eigenvectors (Fig. 9b: the direction of elongation) are nearly

perpendicular to the streamlines (Fig. 9a) in the complex

domain near the center of the vortex. This kind of enlighten-

ing observation is not revealed without tensor analysis.

The extremely localized high magnitude of velocity

gradient (red region) shown in Fig. 9d represents the

complex flows that resemble the eye wall of a hurricane or

tornado, although, for large r, the Sullivan Vortex differs

from hurricane or tornado flows.

We have also applied our visualization techniques to the

combination of two Sullivan Vortices whose centers are

slightly displaced with a distance of 0.17 and whose

rotations are opposite but of equal strength. The visualiza-

tion results are shown in Figs. 1, 4, 6, and 7.

5.2 Heat Transfer with a Cooling Jacket

A cooling jacket is used to keep an engine from overheating.
Primary considerations for its design include

1. achieving an even distribution of flow to each
cylinder,

2. minimizing pressure loss between the inlet and
outlet,

3. eliminating flow stagnation, and
4. avoiding high-velocity regions that may cause

bubbles or cavitation.

Fig. 10 shows the geometry of a cooling jacket, which
consists of three components: 1) the lower half of the
jacket or cylinder block, 2) the upper half of the jacket or
cylinder head, and 3) the gaskets to connect the cylinder
block to the head. Evidently, the geometry of the surface is
highly complex.

In order to achieve efficient heat transfer from the
engine block to the fluid flowing in the jacket, the fluid
must be continuously convected while being mixed.
Consequently, desirable flow patterns to enhance cooling
include stretching and scaling that appear on the contact
(inner) surface. As discussed earlier, stretching is a
measure of fluid mixing. It increases the interfacial area

of a lump of fluid material, and the interfacial area is
where heat exchange takes place by conduction. Given that
the flow in the cooling jacket is considered incompressible
[18], scalings that appear on the contact surface, whether
positive or negative, indicate the flow components normal
to the interface, i.e., convection at the interface. Note that
fluid rotations (either counterclockwise or clockwise)
would yield inefficient heat transfer at the contact interface
since rotating motions do not increase the surface of a
lump of fluid material and consequently do not contribute
to the increase of mixing of fluids.

This data set has been examined using various vector
field visualization techniques based on velocity and
vorticity [22], [18], [19]. We have applied our asymmetric
tensor analysis to this data set and discuss the additional
insight that has not been observed from previous studies.

In order to distinguish the regions of rotation-dominant
flows from scalings and anisotropic stretching, we choose to
use the DC-based eigenvalue visualization (Fig. 11). In
Figs. 11a and 11b, we show the outer and inner surface of
the right half of the jacket, respectively. The visualization
suggests that the flows are indicative of heat transfer,
especially at the inner side of the wall (Fig. 11b). This is
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Fig. 9. Four visualization techniques on the Sullivan vortex: (a) vector field topology [4] with textures representing the velocity vector field,

(b) eigenvalue visualization based on all components with textures showing major eigenvectors in the real domain and major dual-eigenvectors in the

complex domain, (c) same as (b) except that colors encode the dominant component, and (d) magnitude (dyadic product) of the velocity gradient

tensor with the underlying textures following the vector field. The visualization domain is r � 2:667.

Fig. 10. The major components of the flow through a cooling jacket

include a longitudinal component, lengthwise along the geometry, and a

transversal component in the upward-and-over direction. The inlet and

outlet of the cooling jacket are also indicated.



because a large portion of the surface area exhibits positive
scaling (yellow), negative scaling (blue), and anisotropic
stretching (white), whereas the area of predominant
rotations (red and green) are relatively small. Comparing
the inner and outer surfaces of the cooling jacket provides
interesting insight into the flow patterns. In the cylinder
blocks between the adjacent cylinders, the flow pattern in
the inner surface (Fig. 11b) is positive scaling (yellow)
preceded by negative scaling flows (blue), which represents
the flows normal toward and away from the contact
surface, respectively. The flow path from one cylinder to
another has significant curvature (Fig. 10), and a portion of
the flow is brought to the upper jacket through the gasket. It
appears that curvature-induced advective deceleration and
acceleration and the outflow to the upper jacket are
responsible for the repetitious flow pattern on the inner
surface. On the other hand, no clear repetitious pattern is
present on the outer surface except negative scaling (blue)
between the cylinders. In general, there is no significant
region where flow rotation is dominant on the inner surface.
While there are more rotation-dominated regions on the
outer surface, it is not as critical as the inner surface. This
indicates a positive aspect of the cooling jacket design.

While these flow patterns could be interpreted with
vector field visualization, it would require a more careful
inspection. On the other hand, our eigenvalue presentation
of the tensor field can reveal such characteristics explicitly,
automatically, and objectively. For example, to our knowl-
edge, the aforementioned repeating patterns of positive and
negative scalings on the inner surface (Fig. 11b), which are
the flow characteristics normal to the surface, have not been
reported from previous visualization work that studies this
data set [22], [18], [19].

5.3 In-Cylinder Flow Inside a Diesel Engine

Swirl motion, an ideal flow pattern strived for in a diesel
engine [23], resembles a helix spiral about an imaginary axis
aligned with the combustion chamber as illustrated in
Fig. 12. Achieving this ideal motion results in an optimal
mixing of air and fuel and, thus, a more efficient

combustion process. A number of vector field visualization
techniques have been applied to a simulated flow inside the
diesel engine [23], [11], [4]. These techniques include arrow
plots, color-coding velocity, textures, streamlines, vector
field topology, and tracing particles. We have applied our
tensor-based techniques to this data set, which, to our
knowledge, is the first time asymmetric tensor analysis has
been applied to this data.

Visualization of both eigenvalues and eigenvectors on
the curved surface is presented in Fig. 13a (AC-based
eigenvalue visualization) and Fig. 13b (a hybrid approach
with eigenvectors and pseudoeigenvectors illustrated). We
also apply our visualization techniques to a planar vector
field obtained from a cross section of the cylinder at
25 percent of the length of the cylinder from the top where
the intake ports meet the chamber. The visualization
techniques are: (Fig. 13c) AC-based eigenvalue visualiza-
tion, and (Fig. 13d) DC-based eigenvalue combined with
eigenvectors and major dual-eigenvectors. Note that the
textures shown in Figs. 13a and 13c illustrate the velocity
vector field.

Figs. 13a and 13b demonstrate our technique for
visualizing both eigenvalues and eigenvectors on a curved
surface. The major eigenvectors in the real domain (stretch-
ing direction of fluid) do not align with the velocity vector
streamlines. In some locations, they are perpendicular to
each other. On the other hand, the elongation of rotating
motion tends to be in a similar direction to the velocity
vector (see Fig. 3 for the stretching and elongation
interpretations in eigenvectors). Note that the trend is
opposite to that of the Sullivan Vortex (Fig. 9). Also observe
that the major eigenvectors appear aligned normal to the
bottom surface that represents the piston head; this
indicates that the diesel engine is in the intake process,
hence, the flow is being stretched along the piston motion.

On the cylinder surface shown in Figs. 13a and 13b, there
are two dominant regions: counterclockwise rotation and
anisotropic stretching. There are two smaller regions
indicating flow divergence (positive scaling shown in
yellow): the one near the top of the cylinder is consistent
with the flow-attachment pattern shown in the velocity
vector streamlines in Fig. 13a and the other is near the
bottom (near the piston head). Also observed is a small
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Fig. 11. DC-based (dominant component) eigenvalue visualization of a

simulated flow field inside the cooling jacket: (a) the outside surface of a

side wall in the cooling jacket and (b) the inside surface of the same

side wall.

Fig. 12. The swirling motion of flow in the combustion chamber of a
diesel engine. Swirl is used to describe circulation about the cylinder
axis. The intake ports at the top provide the tangential component of the
flow necessary for swirl. The data set consists of 776,000 unstructured
adaptive resolution grid cells.



region of negative scaling (shown in blue) along the right
side edge that indicates inward flows from the wall. The
alternating pattern of positive and negative scalings along
the spiral motion is informative. On the other hand, the top
of the cylinder shows the dominance of clockwise rotation,
which is consistent with the spiral pattern. These observa-
tions are difficult to make from visualization of the velocity
vector field, i.e., the texture in Fig. 13a alone.

The locations of pure circular rotation of fluid can be
spotted in Fig. 13b as the degenerating points such as
wedges (black dots) and trisectors (white dots). A degen-
erate point represents the location of zero angular strain.
Hence, for 2D incompressible flows, no mixing or energy
dissipation can take place at the degenerate points. None-
theless, it is not exactly the case for 3D and compressible
flows in this example, because stretching could still take
place in the direction normal to the surface if an isotropic
scaling component was present.

The vector plot of Fig. 13c shows the complex flow
pattern comprising several vortices with both rotations. The
complex pattern results from the decelerating flow, since
this flow field is taken at the end of the intake process, i.e.,
the cylinder head is near the bottom. The overlay of
eigenvalues effectively exhibits the directions of rotation,
positive and negative isotropic scaling (expansion and
contraction), and anisotropic stretching (shear strain).

In Fig. 13d, the direction of stretching is readily under-
stood by the major and minor eigenvectors in the real
domains and the major dual-eigenvectors in the complex

domains. This image also demonstrates the fact, as we

showed in Figs. 2 and 5, that fluid rotation cannot directly

come in contact with the flow of opposite rotational

orientation. There must be a region of stretching in-between

with the only exception being a pure source or sink.

Furthermore, it can be observed that the regions between

rotations in the same direction tend to induce stretching. The

regions between rotations in the opposite directions tend to

generate negative scaling, which represents volumetric

contraction. There are several degenerate points such as

wedges (black dots) and trisectors (white dots) in the figure.
In summary, the following flow characteristics are

visualized for the diesel engine data set: expansion, contrac-

tion, stretching, elongation, and degenerate points. It is

evident that significantly enriched flow interpretations can

be achieved with the tensor visualization presented herein.

6 CONCLUSION AND FUTURE WORK

In this article, we provide the analysis of asymmetric tensor

fields defined on 2D manifolds and develop effective

visualization techniques based on such analysis. At the core

of our technique is a novel parameterization of the space of

2 � 2 tensors, which has well-defined physical meanings

when the tensors are the gradient of a vector field.
Based on the parameterization, we introduce the con-

cepts of eigenvalue manifold (Fig. 5) and eigenvector manifold

(Fig. 2) and describe the features of these objects. Analysis

based on them leads to physically motivated partitions of
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Fig. 13. Visualization of a diesel engine simulation data set: (a) AC-based (all components) eigenvalue visualization of the data on the surface of the
engine, (b) hybrid eigenvalue and eigenvector visualization (Fig. 7b) of the gradient tensor on the surface with eigenvectors in the real domains and
pseudoeigenvectors in the complex domains, (c) AC-based visualization of a planar slice (cut at 25 percent of the length of the cylinder from the top
where the intake ports meet the chamber), and (d) the hybrid visualization used for (b) is applied to the planar slice. The degenerate points are
highlighted using colored dots: black for wedges and white for trisectors.



the flow field, which we exploit in order to construct
visualization techniques. In addition, we provide a geo-
metric characterization of the dual-eigenvectors (Theo-
rem 4.2), an algorithm to classify degenerate points
(Theorem 4.4), and the definition of pseudoeigenvectors
(Definition 4.6) which we use to visualize tensor structures
inside complex domains.

We provide a physical interpretation of our approach in
the context of flow understanding, which is enabled by the
relationship between our tensor parameterization and its
physical interpretation. Our visualization techniques can
provide a compact and concise presentation of flow
kinematics. Principal motions of fluid material consist of
angular deformation (i.e., stretching), dilation (i.e., scaling),
rotation, and translation. In our tensor field visualization,
the first three components (stretching, scaling, and rotation)
are expressed explicitly, while the translational component
is not illustrated. One of the advantages in our tensor
visualization is that the kinematics expressed in eigenvalues
and eigenvectors can be interpreted physically, for example,
to identify the regions of efficient and inefficient mixing.
Furthermore, the components of scaling (divergence and
convergence) in a 2D surface for incompressible flows can
provide information for the 3D flow; negative scaling
represents stretching of fluid in the direction normal to
the surface, and vice versa.

We demonstrate the efficiency of these visualization
methods by applying them to the Sullivan Vortex, an
exact solution to the Navier-Stokes equations, as well as
two CFD simulation applications for a cooling jacket and
a diesel engine.

To summarize, the eigenvalue visualization enables us to
examine the relative strengths of fluid expansion (contrac-
tion), rotations, and the rate of shear strain in one single plot.
Hence, such a plot is convenient for inspection of global flow
characteristics and behaviors, as well as to detect salient
features. In fact, the visualization technique should be ideal
for the exploratory investigation of complex flow fields.
Furthermore, the developed eigenvector visualization al-
lows us to uniquely identify the detailed deformation
patterns of the fluid, which provides additional insights in
the understanding of fluid motions. Consequently, the
tensor-based visualization techniques will provide an
additional tool for flow-field investigations.

There are a number of possible future research directions
that are promising. First, in this work, we have focused on a
2D subset of the full 3D eigenvalue manifold (unit tensors).
While this allows an efficient segmentation of the flow
based on the dominant component, the tensor magnitude
can be used to distinguish between regions of the same
dominant component but with significantly different total
strengths (Fig. 6c). We plan to incorporate the absolute
magnitude of the tensor field into our analysis and study
the full 3D eigenvalue manifold. Second, tensor field
simplification is an important task, and we will explore
proper simplification operations and metrics that apply to
asymmetric tensor fields. Third, we plan to expand our
research into 3D domains as well as time-varying fields. For
3D fields, we will seek to explore the relationships between
pure symmetric tensors and pure antisymmetric tensors

much like what we have done for the 2D case in this article.

We also plan to extend ideas of eigenvalue and eigenvector

manifolds to 3D flow fields.

APPENDIX

PROOFS

In this appendix, we provide the proofs for the theorems

from Section 4.

Theorem 4.1. Given two tensors Ti ¼ T ð�i; ’Þ ði ¼ 1; 2Þ on the

same latitude � �
2 < ’ < �

2 , let

N ¼ cos 
 � sin 

sin 
 cos 


� �

with 
 ¼ �2��1

2 . Then, any eigenvector or dual-eigenvector w2
�!

of T2 can be written as N w1
�!, where w1

�! is an eigenvector or

dual-eigenvector of T1, respectively.

Proof. It is straightforward to verify that T2 ¼ NT1N
T , i.e.,

T1 and T2 are congruent. Results from classical linear

algebra state that T1 and T2 have the same set of

eigenvalues. Furthermore, a vector w1
�! is an eigenvector

of T1 if and only if w2
�! ¼ N w1

�! is an eigenvector of T2.
To verify the relationship between the dual-eigenvec-

tors of T1 and T2, let

U1
�1 0
0 �2

� �
V1

be the singular value decomposition of T1. Then,

U2
�1 0
0 �2

� �
V2

in which U2 ¼ NU1 and V2 ¼ V1N
T is the singular

decomposition of T2. This implies that T1 and T2 have

the same singular values �1 and �2.

The relationship between the dual-eigenvectors of T1

and T2 can be verified by plugging into (3) and (4) the

aforementioned statements on eigenvectors and singular

values between congruent matrices. tu
Theorem 4.4. Let T be a continuous asymmetric tensor field

defined on a 2D manifold M satisfying �2
r þ �2

s > 0 everywhere

in M. Let ST be the symmetric component of T which has

a finite number of degenerate points K ¼ fpi : 1 � i � Ng.
Then, we have the following:

1. K is also the set of degenerate points of T .
2. For any degenerate point pi, Iðpi; T Þ ¼ Iðpi; ST Þ. In

particular, a wedge remains a wedge and a trisector
remains a trisector.

Proof. Given that �2
s ðT Þ þ �2

r ðT Þ > 0 everywhere in the

domain, the degenerate points of T only occur inside

complex domains. Recall that the structures of T inside

complex domains are defined using the dual-eigenvec-

tors, which are the eigenvectors of symmetric tensor

field PT (15). Moreover, the set of degenerate points of T

is the same as the set of degenerate points of PT inside

complex domains, i.e., ’ ¼ � �
2 .

120 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 1, JANUARY/FEBRUARY 2009



Notice that the major and minor eigenvectors of PT
are obtained from corresponding eigenvectors of ST by
rotating them either counterclockwise or clockwise by �

4 .
Within each connected component in the complex
domains, the orientation of the rotation is constant.
Zhang et al. [36] show that rotating the eigenvectors of a
symmetric tensor field (in this case, ST ) uniformly in the
domain (in this case, a connected component of the
complex domains) by an angle of � (in this case, � �

4 )
results in another symmetric tensor field that has the
same set of degenerate points as the original field.
Moreover, the tensor indices of the degenerate points are
maintained by such rotation. Therefore, ST and PT (and
consequently, T ) have the same set of degenerate points.
Furthermore, the tensor indices are the same between
corresponding degenerate points. tu

Theorem 4.5. Let M be a closed orientable 2D manifold with an
Euler characteristic �ðMÞ, and let T be a continuous
asymmetric tensor field with only isolated degenerate points
fpi : 1 � i � Ng. Then,

XN
i¼1

Iðpi; T Þ ¼ �ðMÞ: ð25Þ

Proof.
PN

i¼1 Iðpi; T Þ ¼
PN

i¼1 Iðpi; ST Þ ¼ �ðMÞ. The first
equation is a direct consequence of Theorem 4.4, while
the second equation makes use of the fact that ST is a
symmetric tensor field, for which the Poincaré-Hopf
theorem has been proven true [5]. tu

Theorem 4.7. Given a continuous asymmetric tensor field T
defined on a 2D manifold M, let U1 and U2 be an �- and �-type
region, respectively, where �, � 2 fDþ; D�; Rþ; R�; Sg are
different. Then, @U1

T
@U2 ¼ ; if �- and �-types represent

regions in the eigenvalue manifold that do not share a common
boundary.

Proof. Since �T (10) is a continuous map from M to the
eigenvalue manifold M�, we have ��1

T ð;Þ ¼ ;. tu
Theorem 4.8. Given a continuous asymmetric tensor field T

defined on a 2D manifold such that �2
d þ �2

r þ �2
s > 0 every-

where, the following are true:

1. an Rþ-type region is contained in Wc;n and an
R�-type region is contained in Wc;s,

2. an S-type region is contained in Wr;n

S
Wr;s, and

3. a Dþ-type or D�-type region can have a nonempty
intersection with any of the following: Wr;n, Wr;s,
Wc;n, and Wc;s.

Proof. Given a point p0 in an Rþ-type region, we have
�rðp0Þ > �sðp0Þ � 0, i.e., p0 is in a complex domain in the
northern hemisphere ðWc;nÞ. Similarly, if p0 is in an
R�-type region, then p0 2Wc;s.

If p0 is in an S-type region, then �sðp0Þ > j�rðp0Þj, i.e.,
p0 is in the real domains that can be in either the
northern or the southern hemisphere.

Finally, if p0 is in a Dþ-type region, then �dðp0Þ >
maxðj�rðp0Þj; �sðp0ÞÞ. However, there is no constraint on

the discriminant’ ¼ arctanð�r�sÞ. Therefore, p0 can be inside

any ofWr;n,Wr;s,Wc;n, andWc;s. A similar statement can be

made when p0 is in a D�-type region. tu
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