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(a) Very low diversity (b) Medium diversity (c) Very high diversity

Fig. 1. Synthetic data sets of (a) very low-, (b) medium-, and (c) very high-diversity visualized using the Diversity Map representation.
Each visualized data set contains 1000 objects and 6 attributes (columns from left to right: SAT verbal, SAT math, SAT writing,
ethnicity, gender, and income level). The very high-diversity data set is 6 times more diverse than the very low-diversity one.

Abstract—Understanding the diversity of a set of multivariate objects is an important problem in many domains, including ecology,
college admissions, investing, machine learning, and others. However, to date, very little work has been done to help users achieve
this kind of understanding. Visual representation is especially appealing for this task because it offers the potential to allow users
to efficiently observe the objects of interest in a direct and holistic way. Thus, in this paper, we attempt to formalize the problem of
visualizing the diversity of a large (more than 1000 objects), multivariate (more than 5 attributes) data set as one worth deeper investi-
gation by the information visualization community. In doing so, we contribute a precise definition of diversity, a set of requirements for
diversity visualizations based on this definition, and a formal user study design intended to evaluate the capacity of a visual represen-
tation for communicating diversity information. Our primary contribution, however, is a visual representation, called the Diversity Map,
for visualizing diversity. An evaluation of the Diversity Map using our study design shows that users can judge elements of diversity
consistently and as or more accurately than when using the only other representation specifically designed to visualize diversity.

Index Terms—Information visualization, diversity, categorical data, multivariate data, evaluation.

1 INTRODUCTION

The concept of diversity presents itself in many domains. For example,
in selecting an incoming freshman class, college admissions officials
may wish to consider how diverse a particular population of applicants
is with respect to attributes such as GPA, gender, home state, and eth-
nicity. Similarly, in analyzing species diversity data, ecologists may
wish to understand the interplay between the physical characteristics
of an environment (e.g. water levels, temperature, elevation, rainfall,
etc.) and the diversity of species present there [23]. In both of these
cases, many variables may be considered, and a general starting point
is to examine the overall distribution of samples (i.e. applicants or
species) over the attributes of interest. Many other domains share sim-
ilar characteristics as well. For example, supervised machine learning
researchers are often interested in knowing how well their training ex-
amples span the space of features (i.e. they wish to understand the
diversity of their training examples), and chemists are interested in as-
sessing the similarity/diversity of a collection of molecular models in
exploring the multitude of designs generated by simulations [1].

In most cases, determining the overall diversity of a set of objects
can be decomposed into an examination of diversity in each of a num-
ber of separate attributes. Unfortunately, as the number of attributes
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and objects to be examined both increase (for example, beyond 5 and
1000 respectively), the number of values that must be considered in
gauging diversity increases. This can make a text- or table-based as-
sessment of the diversity of a large data set with many attributes ex-
tremely difficult and tedious. While metrics, such as the Shannon In-
dex [30, 37, 18], are intended to provide a measure of diversity, these
generally reduce diversity to a single number, throwing away a large
amount of information in the process. Moreover, these metrics can
typically be applied to measure the diversity of only a single attribute.

Experts have argued that metrics like the Shannon Index are not al-
ways useful and that scientists should rely on a more direct observation
of the data to gauge its diversity [10]. A visual encoding of the data
offers the potential to allow this kind of direct observation, but this ap-
proach will only be useful if a representation is available in which the
diversity of the data is readily apparent. While visually understanding
the diversity of objects over a single attribute is fairly straightforward
and is supported by representations such as histograms or Tukey box
plots, very little work has been done to develop representations that
specifically emphasize the diversity of a multi-dimensional data set.

In this paper, we attempt to formalize the problem of visualizing the
diversity of a large, multivariate data set as one that warrants deeper
attention by the information visualization community. Our primary
contribution is a visual representation called the Diversity Map (Fig.
1), which is specifically intended to help users understand the diversity
of a large set of multivariate objects. The Diversity Map is designed to
be efficiently perceived to give an accurate initial impression of a data
set’s overall diversity, while also allowing the user to explore relation-
ships and interrogate the raw data using an overview as the interface.

We also contribute a precise definition of diversity based on the
one used by ecologists in discussing biological diversity, a set of re-
quirements for diversity visualizations based on this definition, and a
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design for a formal user study intended to understand the effectiveness
of a visual representation in communicating diversity information. We
evaluate the Diversity Map by using this study design to compare it
to Pearlman et al.’s visualization [25], the only other representation
specifically designed to visualize diversity. In comparing user per-
formance between Pearlman et al.’s representation and the Diversity
Map, we show that users can consistently and as or more accurately
judge elements of diversity using the Diversity Map.

The rest of this paper is organized as follows. We begin in Sec-
tion 2 with a precise definition of diversity derived from the definition
of species diversity used by ecologists, and we lay out a set of re-
quirements for diversity visualizations based on this definition. We
then discuss related work in Section 3 in the context of the presented
definition and requirements. In Section 4, we present and discuss the
Diversity Map representation in the context of what is known about hu-
man perception. In Section 5, we describe a formal study designed to
understand the effectiveness of a visual representation in communicat-
ing diversity information, and in Section 6, we evaluate the Diversity
Map representation using this study design. Finally, we discuss the
merits and shortcomings of the Diversity Map representation, suggest
directions for future work, and draw our conclusions.

2 DEFINING DIVERSITY

Before discussing its visualization further, we must first establish a
more thorough definition of diversity. With this in place, the require-
ments for a successful diversity visualization will become more clear.

The data sets in which we are interested represent samples of popu-
lations of objects (e.g. students, moths, stocks, etc.) that are described
by multiple variables, or attributes (e.g. GPA, ethnicity, gender, etc.).
To define the diversity of such a set, we borrow from the established
field of Ecology, where biological diversity is defined as “the variety
and abundance of species in a defined unit of study” [23].

Two measures of diversity are used in Ecology: richness, which is
simply the number of species in the unit of study represented out of
all possible species; and evenness, which describes the variability in
species abundances [23]. Generalizing from Ecology, we say that a
population sample is diverse with respect to a specific attribute if it
exhibits a rich variety of values of that attribute and if each of those
values is evenly abundant. In other words, high diversity corresponds
to a uniform distribution of objects across all possible values of an at-
tribute. We extend the definition of diversity to sets of arbitrary objects
described by many different attributes by simply defining overall di-
versity as the aggregated diversity over all attributes being considered.

As an example of how this definition is applied, consider analyzing
the diversity of a university’s potential incoming freshman class. In
particular, if we are considering the diversity of different populations
of applicants with respect to their income levels, then a very diverse
population will contain a similar number of applicants (i.e. even abun-
dances) in each of many possible income brackets (i.e. a rich variety).
In contrast, a very non-diverse population might contain applicants in
only a single income bracket (i.e. no variety) or mostly applicants in
a single income bracket with very few applicants in each of the others
(i.e. very uneven abundances). The diversity of other attributes, such
as GPA, ethnicity, gender, etc., would also contribute to the overall
diversity of a particular population of applicants.

Beyond our definition of diversity, we also borrow several conven-
tions from the study of biodiversity. Specifically, we adopt individual
objects as our unit of measure, and, as in the study of biodiversity, we
treat all possible values of an attribute and all individuals in a pop-
ulation sample as equal. Additionally, since we have extended the
definition to account for diversity over many attributes, we adopt the
added convention that all attributes are treated as equal.

In order to adequately convey diversity as defined above, a visual-
ization should possess the following properties:

• Communicates the attributes of interest, the richness in variety
of the values of each attribute, and the evenness of abundance of
the population sample of interest over the values of each attribute
while considering all attributes and objects equally.

• Scales well to large multivariate data sets, i.e. ones containing
many objects (> 1000) and many attributes (> 5).

• Enables users to make judgments about diversity with little effort
through an efficient perceptual encoding (while ideally, the visu-
alization should be designed so that the user perceives diversity
preattentively, i.e. without focused attention [35], we understand
that this is difficult for large attribute spaces).

3 RELATED WORK

In this section, we review a subset of existing multivariate visualiza-
tion techniques, emphasizing those that apply to the problem of ex-
ploring the diversity of a set of objects, as defined earlier. We focus
only on representation methods and organize our review based on the
taxonomy proposed by Keim et al. [16].

3.1 Standard 2D/3D Displays

Techniques such as scatter plots, box plots, bar charts, and histograms
effectively support tasks such as finding outliers, gaps, clusters, and
correlations over a small number of attributes [29]. However, while
the box plot is well suited to displaying evenness of abundance, it fails
in communicating richness of variety and is not applicable to cate-
gorical data. Likewise, without additional encoding, the scatter plot
may lead to ambiguous communication of evenness of abundance due
to occlusions caused by data overlap. A rectangular heatmap can be
viewed as a special case of the scatter plot where a value is plotted for
every combination of the two mapped attribute values and a point is
replaced by a colored square. Like the scatter plot, heatmaps are lim-
ited to displaying diversity over only the two attributes being mapped.
However, occlusion is no longer a problem. The histogram, in partic-
ular, is well suited to showing richness in variety and the evenness of
distribution of objects over a single attribute. As noted, all of these
approaches typically display only one or two attributes of interest.

The use of small multiples may solve some of these problems. For
example, scatter plot matrices may provide useful representations of
diversity, especially for high and low diversity cases, but intermediate
values may be difficult to disambiguate due to data overlap. While jit-
tering techniques may help alleviate this problem, they may give the
misleading appearance of evenness when it is not actually present. A
matrix of heatmaps would avoid the data overlap issue and could be
an interesting approach to viewing diversity (both richness and even-
ness). Small multiples in matrix form, however, require screen space
that grows with the square of the number of attributes. Small multiples
of histograms could be a powerful method for diversity visualization,
since these appear capable of conveying both richness of variety and
evenness of abundance. However, it is not clear how well overall di-
versity is communicated by multiple spatially separated histograms.
The Diversity Map representation, described in Section 4, is in fact a
small multiple histogram representation with an alternative encoding
that facilitates communication of overall diversity.

Alternatively, rank/abundance—or Whittaker—plots [37] are com-
monly used by ecologists to visualize species abundance distribution.
The representation is a variation of the scatter plot in which species are
ranked from most to least abundant and then plotted along the x axis,
while the y axis shows the relative abundance of species. The shape
of the resulting curve provides insight into species evenness (or domi-
nance). Although this approach is specific to species abundance, it and
the other standard approaches serve as a starting point for exploring
techniques for visualizing distributions of data over many dimensions.

3.2 Geometrically Transformed Displays

Geometrically transformed displays map one object to a set of points
and lines in 2D or 3D space [16]. This category includes graph vi-
sualizations and coordinate-based visualizations. While graph-based
visualizations are important in many domains, we do not discuss them
because we assume that limited (or no) explicit relationship informa-
tion is present in the data sets we consider.

Coordinate-based visualizations extend standard 2D/3D displays by
performing geometric transformations and projections of data onto
coordinate axes. Data attributes are typically preserved and treated
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equally during this process. These techniques are generally applicable
to multivariate data sets and offer potential solutions to the diversity
visualization problem. Examples include parallel coordinates [12, 11]
and related variants [9, 17], and star coordinates [14].

Parallel coordinates [12, 11] are well-suited to visualizing various
types of multivariate data (quantitative, ordinal, or nominal) and re-
vealing data correlation between attributes. However, visual clutter
becomes a limitation as the number of objects increases. Refinements
to parallel coordinates have attempted to address visual clutter with
brushing [9], clustering [3, 7], and dimension reordering [26].

Despite these improvements, accurately judging richness of variety
and evenness of abundance may still be difficult using parallel coor-
dinates, especially for larger data sets. However, several variants of
parallel coordinates overcome this limitation by providing information
on the distribution of values for each attribute [9, 17].

In one variant, a histogram is overlaid lengthwise on each paral-
lel axis [9], and bin intervals are created for quantitative attributes by
partitioning them into ranges. Each histogram communicates both the
richness of variety and the evenness of abundance of the values of the
corresponding attribute. However, the (necessary) spatial separation
of the histograms in this approach may likely affect the user’s ability
to interpret overall diversity without significant effort.

The Parallel Sets [17] technique is another variant of parallel coor-
dinates that targets categorical data in particular. This representation
adopts the layout of parallel coordinates and uses a box to represent
each possible value of a categorical attribute. Box size is scaled length-
wise along the axis in proportion to the frequency of the value in the
data set. Connections between values of two different attributes are
also scaled according to their frequency values. Parallel Sets convey
the distribution of objects over the values of an attribute (i.e. the even-
ness of abundance for an attribute), as well as relationships between
the distributions of values across multiple attributes. However, while
this approach scales to large data sets, the number of possible attribute
values it can display is limited due to space restrictions. In addition,
the boxes corresponding to outliers, i.e. attribute values exhibited by
very few objects, can become imperceptibly small. Moreover, this
method does not display attribute values not represented in a particu-
lar data set. When combined, these limitations make it very difficult
to accurately perceive richness of variety using Parallel Sets.

Star coordinates [14] is well-suited to visualizing the overall dis-
tribution of a set of objects. Unfortunately, the mapping between a
data point and its location in star coordinates is many-to-one. That is,
several different data points with equal vector sums will end up in the
same location. This ambiguity makes it difficult to discern richness of
variety and evenness of abundance over the attribute space.

3.3 Icons, Dense Pixels and Stacked Displays

Several other classes of multivariate visualization techniques have
been developed that are not well suited to diversity visualization. Icon-
based displays, such as Chernoff faces [4], typically treat attributes dif-
ferently and as a result, some visual features of the icons (e.g. color)
may draw more attention than others, thus violating our requirement
of equal consideration for all attributes. Star glyphs, on the other hand,
give equal treatment to attributes, however this approach will not scale
well with a large number of objects due to occlusion. While dense
pixel displays scale well with the number of objects[15], they do not
necessarily display all possible values (only the ones represented in
the data set), making it difficult to gauge richness of variety. Stacked
display techniques represent data in a hierarchical fashion and are of-
ten space-filling approaches where a hierarchy is nested (or stacked)
[20, 31, 13]. Since we are not specifically concerned with hierarchical
data, these techniques are not considered further.

Finally, there is a large group of approaches that fall into the cat-
egory of data preprocessing techniques that generally manipulate the
data to reduce the number of dimensions and/or the number of ob-
jects [2, 34, 38]. While these approaches are popular in many domains
as a starting point for exploring data, they typically result in a loss
of information and sometimes yield results that are reduced to a non-
intuitive space and are thus difficult for users to interpret, especially

with respect to the richness of variety. Thus, we do not consider these
techniques further.

3.4 Hybrid Techniques

Hybrid techniques integrate multiple visual representations in one or
more windows. The most relevant technique in this class is Pearlman
et al.’s glyph-based approach [25], the only proposed technique to ex-
plicitly address the problem of visualizing the diversity of a set of ob-
jects. Pearlman et al. focus on communicating both diversity, loosely
defined as the distribution of attribute values across a set, as well as
depth, defined as the attribute values of individual members of the
set. This technique represents objects as glyphs in a coordinate frame,
where three attributes (of possibly many) are used to map objects to
the 2D space of the frame in much the same way as multi-dimensional
objects are mapped to 2D space using star coordinates (See Figure 3).
Other glyph properties, such as shape, size, opacity and color are used
to represent additional attributes and are typically described in an ac-
companying legend. Unfortunately, the number of attributes that can
be successfully encoded using this technique is limited by the percep-
tual and cognitive loads placed on the user by icon-based approaches.
Moreover, the number of objects that can be successfully visualized
using this technique is limited by occlusion. Nonetheless, this rep-
resentation is important, since it is the first to explicitly address the
problem of visualizing diversity, and we revisit it in Section 6 where
we formally compare its ability to communicate diversity information
to that of our Diversity Map representation.

4 THE DIVERSITY MAP REPRESENTATION

To address the shortcomings of previous approaches, we developed a
novel representation called the Diversity Map for visualizing the di-
versity of a set of objects. In this representation, depicted in Fig. 1,
each attribute is represented as one of a set of parallel axes, similar to
the parallel coordinate layout. Unlike traditional parallel coordinates,
however, each object is represented in the Diversity Map by placing a
semi-transparent rectangle on each attribute axis at the locations cor-
responding to the object’s attribute values. In other words, for a data
set containing N attributes, each object is represented by placing one
semi-transparent rectangle on each of N parallel axes. Note that in our
approach, we discretize continuous numerical attributes. We refer to
the distinct locations along the attribute axes corresponding to discrete
attribute values as buckets.

To satisfy the requirement from Section 2 that all objects are treated
equally, each semi-transparent rectangle contributes an equal, frac-
tional amount of opacity to the bucket in which it is placed. To satisfy
the requirement that all attributes are treated equally, we normalize the
opacity values on a per-attribute basis so that buckets corresponding
to attribute values not represented in the visualized data set are fully
transparent (i.e. α = 0 in RGBA color space), and the bucket(s) cor-
responding to the most abundant attribute value(s) in the data set are
fully opaque (i.e. α = 1). The opacity of every remaining bucket is
calculated based on the ratio of the number of objects in that bucket to
the number of objects in the bucket corresponding to the most abun-
dant attribute value. We have empirically found that using the square-
root of the number of objects per bucket in this calculation helps to
make buckets corresponding to attribute values with low abundance
more recognizable. Specifically, the opacity of each bucket x is calcu-

lated as α(x) =
√
|x|/|xMAX |, where |x| denotes the number of objects

in bucket x, and xMAX is the bucket with the most objects for the at-
tribute in question. Figure 2 illustrates the process of visualizing a
single attribute using the Diversity Map.

An alternative way to view our design is to imagine each attribute
axis as a histogram over the values of that attribute constructed in 3D
space by stacking semi-transparent tiles on top of each other. When
viewed from above, the taller stacks of tiles appear darker, while the
shorter stacks appear lighter, according to the total combined contri-
bution of the tiles in each stack to that stack’s opacity.
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Start: 1 “C”
Add 1 “E” Add 4 “C” Add 2 “B”

Add 5 “A”, 11 “C”, 25 “D”, 6 “E”

Fig. 2. The process of visualizing a single attribute using the Diversity
Map. The depicted attribute has five possible values (A, B, C, D, and E).
The visualization begins with a single object with attribute value “C,” and
objects with other attribute values are added in subsequent steps. At
each step, the number of objects in each bucket is shown in parentheses
next to the bucket’s label and the opacity (α-value) of each bucket is
calculated as described in the text. Note that, while it is instructive to
illustrate the process step-wise, as above, our implementation simply
aggregates object counts and computes opacity values in a single step.
Also, note that for a multivariate data set, every object would contribute
to each of the parallel attribute axes in the same way as depicted above,
resulting in a visualization as depicted in Fig. 1(b).

4.1 Design Considerations

As indicated earlier, our primary goal in designing the Diversity Map
was to make easily apparent the richness of variety and the evenness
of abundance of the attribute values exhibited in the data set being
visualized. While we do not explicitly calculate or assign values for
richness and evenness, we consider them to be quantitative features of
the data, in that we can think of one data set as being more or less rich
or even than another. For this reason, we have chosen visual encodings
that are known to be effective for conveying quantitative information.

Specifically, we encode variety using spatial position by assigning a
distinct 2D location, or bucket, to each of the possible discrete attribute
values that can be taken by objects in the visualized data set, and we
encode abundance using opacity, with each semi-transparent rectangle
representation of an object’s attribute value contributing a constant,
fractional amount of opacity to the bucket in which it is placed. Under
this encoding, more abundant regions of attribute space are indicated
by visual regions of higher opacity.

Because spatial position ranks in the literature as the most effective
encoding for quantitative information [22, 5], it is easy to justify its
use in our design. However, several other quantitative encodings, such
as length, angle, slope, and area, rank higher than opacity in [22] and
[5]. Unfortunately, these encodings appear to conflict with our cho-
sen spatial encoding. In contrast, we found that opacity serves as a
natural complement to the spatial encoding and allows us to elegantly
convey both the richness of variety and the evenness of abundance of
the visualized data. In particular, under this combination of encod-
ings, “occlusions” in the 2D visual plane that result from one or more
objects sharing a certain attribute value serve simply to increase the
opacity of that visual region, thereby indicating increased abundance.

In the Diversity Map representation, richness of variety is expressed
by the number of buckets with non-zero opacity, and evenness of abun-
dance is expressed by the uniformity of the color distribution across
the buckets of a single attribute, as well as over the entire visualiza-
tion. In other words, the more rich is the variety of a given data set,
the more non-transparent buckets it will yield, and the more even is
the abundance across the data set, the more uniform will be the colors
of the buckets.

The overall diversity of a given data set—that is, the combined di-
versity of all its attributes—is communicated by the Diversity Map as
the overall color density of the entire visual region: as the visualized
data set becomes more richly various and more evenly abundant, more
buckets will exhibit a similar non-transparent color. In the limit of
“perfect” diversity, where all possible values of each attribute are rep-
resented equally, the entire visual region will be a solid, completely
opaque color. Conversely, a set with little diversity will produce a vi-

sualization with regions of very high contrast. As examples of these
phenomena, consider the synthetic data sets with zero and near-perfect
diversity visualized using a Diversity Map in Figs. 1 (a) and (c).

Finally, we note that the Diversity Map is specifically designed to
provide a holistic overview of the population sample of interest. As
Shneiderman notes, [32], providing an overview of the data is an im-
portant part of a visualization system, as overviews help the user build
a mental model of how the data covers the attribute space. This model
in turn helps the user formulate actions such as queries [28]. Indeed,
a good overview representation should serve as a gateway by allow-
ing the user to interact with the visualization in order to investigate
the data based on the mental model he or she has formed. While we
reserve deeper investigation of this matter for future work, we simply
note that the Diversity Map is designed to serve as just such a gateway.

5 USER STUDY DESIGN

In this section, we describe a formal user study designed to measure a
given visualization’s ability to communicate diversity information. In
particular, the study is a controlled user study intended to be conducted
in a laboratory setting, and it is designed to compare the visualization
of interest against a given baseline visualization. There are two impor-
tant components to this design: 1) a method for generating synthetic
data sets with controllable, varying levels of diversity and 2) a set of
questions, each of which is meant to assess a study participant’s abil-
ity to comprehend a particular aspect of diversity using each of the
visualizations under comparison. We describe these components next.

5.1 Synthetic Data Generation

While, ideally, we would use a real data set to evaluate a visualization,
we require data with specific distributions of values over attributes.
Since it is difficult to find data sets that can accommodate this re-
quirement, we developed a technique for creating synthetic data sets
of controllable, varying diversity over a set of independent attributes.
In particular, our procedure generates synthetic sets of objects over
a manually defined set of attributes and attribute values, where the
richness of variety and evenness of abundance over each attribute is
controlled and measured.

Our data generation procedure is based on the Shannon index, or
Shannon entropy, a measure of diversity that is widely used in ecol-
ogy [30, 37, 18]. Shannon entropy is also used in other fields, such as
information theory, where it is used to measure the amount of informa-
tion contained in a coded message. In its general form, the entropy of
a single random variable, X (in biodiversity, X corresponds to species;
in the more general case, it could correspond to any single attribute) is

H(X) = −
S

∑
i=1

p(xi) log p(xi), (1)

where {x1, . . . ,xS} is the set of possible values of X and p(xi) is
the probability that X takes value xi. In biodiversity, for example,
x1, . . . ,xS represent the possible species and p(xi) represents the prob-
ability of observing one particular species xi. In practice, we compute
p(xi) as the ratio of the number ni of instances of value xi to the total
number N of individuals in the set, i.e. p(xi) = ni

N . In other words,
p(xi) represents the relative abundance of value xi in the total set.

H(X) is directly proportional to the level of diversity within a single
attribute, in that higher values of H(X) correspond to richer variety and
more even abundances. Unfortunately, it is difficult to compare values
of H(X) across attributes, since it is scaled to the number of possible
values of the attribute being measured. This implies that an attribute
with many possible attribute values (e.g. the home state of a student)
may be considered more diverse under entropy than an attribute with
few possible values (e.g. the gender of a student), even if it is not.

In order to meet our requirement from Section 2 that all attributes
are considered as equal, we have adapted a variant of the Shannon
index known as the evenness measure [27], which normalizes the value
of H(X) by its maximum possible value:

Hmax(X) = −
S

∑
i=1

1

S
log

1

S
= logS. (2)
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Thus, the evenness of attribute X is

HE(X) =
H(X)

Hmax(X)
= −

1

logS

S

∑
i=1

p(xi) log p(xi). (3)

Note that, despite its name, this measure captures both the richness
and evenness of attribute X . In particular, richness, which measures
the number of values of represented out of all possible values of X , is
indicated by the number of values xi with non-zero probability. The
more of these that are present for attribute X , the higher the value
of HE(X). Likewise, evenness is indicated by the uniformity of the
probabilities p(xi), and HE(X) is maximized when each attribute value
xi occurs with the same probability. An important property of this
measure is that it always takes a value between 0 (zero diversity) and
1 (full diversity).

In our setting, we have one variable Xk corresponding to each at-

tribute, and we hand-specify the possible values {xk
i }

Sk

i=1 for each at-

tribute Xk. We model the distribution p(xk
i ) over the possible values

of each attribute as multinomial. In other words, associated with each
possible attribute value xk

i is a weight wk
i , where wk

i ≥ 0 for i = 1, . . . ,Sk

and ∑i wk
i = 1, and the attribute values in a given set are distributed in

proportion to those weights.

To rigorously test visualization methods, we wish to be able to gen-

erate data that achieves a pre-specified target value H∗
E(Xk) of the

evenness measure for each attribute Xk. We model this as a set of
separate non-linear optimization problems, one for each attribute. The

objective for each problem is to find the set of weights {wk
i }

Sk

i=1 that

minimizes the squared error between the resulting evenness HE(Xk)

and the target evenness H∗
E(Xk). We solve for these weights using a

gradient-based quasi-Newton method.

Once the distribution p(xk
i ) is instantiated with weights {wk

i }
Sk

i=1

for each attribute Xk, we generate synthetic data by simply drawing
samples from each of these distributions and using the jth sample for
each attribute as the corresponding attribute value of the jth object in

the data set. Then we use H = ∑k HE(Xk) as a measure of the overall
diversity of a particular data set.

5.2 User Study Questions

Our user study contains four types of questions. Each type is designed
to assess a different aspect of the user’s ability to perceive diversity
using a particular visualization. We outline each question type here.

Q1: Between two visualizations generated with the same method,
which picture represents a more diverse set of objects? (possible an-
swers: picture A or picture B) The primary goal of this question type
is to determine if a visualization technique is discriminative enough to
allow a user to distinguish and compare the levels of overall diversity
depicted in two visualizations generated with the same technique. The
difficulty of each question of this type can be determined by the dif-
ference in the overall diversity values H between two visualized data
sets. The bigger this difference, the easier the question is.

Q2: How diverse is the data set represented in this picture? (possi-
ble answers: very low diversity, low diversity, medium diversity, high
diversity, very high diversity) This question type is intended to identify
how well a user can interpret and assign a diversity value to a visual-
ization given baseline examples of zero and full diversity (which we
provide to users in tutorials; see Section 6). The level of diversity of a
data set is determined based on its overall diversity value H.

Q3: What is the most/least diverse attribute in the data set rep-
resented in this picture? (possible answers: the possible attributes)
This question type is designed to understand the participant’s ability
to identify relative differences in diversity among attributes that may
have different levels of richness of variety or evenness of abundance.
The difficulty of each question of this type can be determined by the

difference between the values of the evenness measurements HE(Xk)
of the most/least and second-most/least diverse attributes. The bigger
this difference, the easier the question is.

(a) (b) (c)

Fig. 3. Synthetic data sets of (a) very low-, (b) medium-, and (c) very
high-diversity visualized using the Glyph Hybrid (GH) representation
(the accompanying legend is not shown). Each visualized data set con-
tains 1000 objects and 6 attributes (SAT verbal, SAT math, SAT writ-
ing, ethnicity, gender, income level). The SAT attributes are mapped to
the 3 coordinate axes. Ethnicity, gender, and income are mapped to
color, shape, and size of the glyphs respectively. Additionally, opacity
encodes composite SAT scores (as in Pearlman’s implementation) to
remedy ambiguity caused by the many-to-one mapping. The very high
diversity data set is 6 times more diverse than the very low data set.
The data sets are identical to the ones in Fig. 1.

Q4: Which value of attribute X contains the most/least objects?
(possible answers: possible values of attribute X) The last question
type is designed to determine the participant’s ability to isolate at-
tribute values with high and low relative abundance of objects, given
a particular attribute to inspect (e.g. ethnicity). The difficulty of each
question of this type can be determined by the difference between the
number of objects exhibiting the most/least abundant attribute value
and the number exhibiting the second-most/least abundant attribute
value. The bigger this difference, the easier the question is.

In a study, questions of each question type are the same in terms of
wording. However, they can be asked multiple times on different data
sets to vary the difficulty (Q1, Q3, Q4) or the level of diversity (Q2).
For each of these question types, ground-truth answers are based on
the distribution of objects and the evenness measure values obtained
using our synthetic data generation method.

6 EVALUATION OF THE DIVERSITY MAP REPRESENTATION

In this section, we use the formal user study described in the previous
section to evaluate the effectiveness of the Diversity Map representa-
tion (DM; Fig. 1) at conveying diversity information by comparing it
to the Glyph Hybrid representation [25] (GH; Fig. 3) discussed in Sec-
tion 3. We chose GH as the baseline for this comparison because it is
the only previous method developed specifically to visualize diversity.
Nevertheless, in the future work, it will be informative to compare DM
with other traditional small multiples, such as multiple histograms.

Here we describe the specific implementation of the user study out-
lined in Section 5 that we used to compare the DM and GH represen-
tations, and we analyze and discuss the results of this study.

6.1 User Study Implementation

Data. The synthetic data sets we used in our user study simulated
college applicant pools where the objects are applicants characterized
by the following six attributes:

• SAT Verbal Score: 200-800, discretized by steps of 30

• SAT Math Score: 200-800, discretized by steps of 30

• SAT Writing Score: 200-800, discretized by steps of 30

• Ethnicity: B, H, I, O, W, or X

• Gender: F or M

• Income: Bracket 0, Bracket 1, Bracket 2, Bracket 3, or Bracket 4

We chose the college applicant domain because it is one of the three
domains examined as a case study by Pearlman et al. in [25] and be-
cause we believed it would be a domain with which our participants,
who were all university students, would be familiar.

Participants and Protocol. The participants in our study were 40
students at our university, all with normal color vision. All of the par-
ticipants volunteered to participate in our study in response to fliers
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Fig. 4. Participants of the user study visualized using Diversity Map.
The visualized attributes, from left to right, are major, degree, year in
school, gender, and age-range. The participants represented a diverse
range of majors, degrees, and ages.

Table 1. Allocation of 40 participants across 4 treatments. E.g., 10 (DM,
A)–(GH, B) indicates 10 participants answered questions on collection
A with DM in phase 1 then on collection B with GH in phase 2.

10 (DM, A)–(GH, B) 10 (DM, B)–(GH, A)

10 (GH, B)–(DM, A) 10 (GH, A)–(DM, B)

posted around the campus. They represented a diverse range of ma-
jors, degrees, and ages (Fig. 4), and, although their participation in our
study might indicate interest in diversity visualization, most of the par-
ticipants were unfamiliar with the field of information visualization.

After the signing of an informed consent document required by
our university’s Institutional Review Board, each participant was ran-
domly assigned to different experimental conditions as described be-
low. Participants were encouraged to ask any questions they might
have at any time during the course of the study.

Experiment Design. We followed a two-phase crossover experi-
ment design and used two collections of synthetic data sets, collection
A and collection B, for the two phases to avoid learning effect when
participants moved from one visualization method to the other. Note
that both data set collections are considered equivalent in all respects.
They were simply generated with separate runs of the data generation
algorithm described in Section 5.1.

Each participant’s session was divided into two phases. In the first
phase, the participant answered questions about visualizations of one
collection of data sets created with one visualization method. In the
second phase, the participant answered the same questions about visu-
alizations of the other collection of data sets using the other visualiza-
tion method. The order of visualization methods and data set collec-
tions was counter-balanced across participants (see Table 1).

In each phase, the participant first completed a short tutorial that
explained the visualization method involved in the phase and included
several example images generated using that method. After complet-
ing the tutorial, the participant answered several questions of each of
the types described in Section 5. Note that participants were supplied
with a hard copy of each tutorial to consult while answering these
questions. Note also that the questions of one type are the same, but
each one is asked about visualizations of different data sets. The or-
dering of question types was randomized across two phases and across
participants, but all questions of the same type were asked as a block.

Each participant answered six questions of type Q1. A secondary
goal for this question type was to determine whether data set size af-
fected participants’ ability to judge and compare overall diversity lev-
els. Thus, each participant was asked Q1 questions of three levels of
difficulty (easy, medium, hard) for each of two different data set sizes
(100 and 1000 objects). Half of the participants answered questions
using the smaller data sets first and the larger ones second, and the
other half answered questions using the larger data sets first and the
smaller ones second. The order of the three difficulty levels was ran-
domized within each data set size for each participant. This ordering
convention was chosen to avoid ordering effects among participants.

Each participant answered three questions of type Q2, and six ques-
tions each of types Q3 and Q4. To avoid ordering effects for these
questions, we used a counterbalancing/randomization approach simi-
lar to the one used with Q1 questions. For all of these questions, we

used data sets with only 100 objects. Though our goal is to develop
visualizations that can handle data sets with more that 1000 objects,
we believed that GH would suffer with larger data sets because of oc-
clusion/clutter. To compare the capabilities of the respective methods
to effectively communicate information about diversity, we used data
sets with only 100 objects so as not to disadvantage GH.

We collected answers to these questions not only to measure abso-
lute correctness but also to identify how far each participant’s response
was from the correct answer. We accomplished this by assigning an
error distance to each response. For questions of type Q1, correct re-
sponses were assigned an error distance of 0, while incorrect responses
were assigned an error distance of 1. For questions of type Q2, Q3,
and Q4, the error distance of each response was computed as the rank
order of the participant’s selected response in relation to the correct
answer. In particular, the best (correct) answer was assigned an error
distance of 0, the second-best answer was assigned an error distance of
1, the third-best answer was assigned an error distance of 2, and so on.
As an example, consider a question of type Q2 whose correct answer
was “low diversity.” For this question, a response of “very low diver-
sity” would be assigned an error distance of 1, as would a response
of “medium diversity,” while a response of “high diversity” would be
assigned an error distance of 2, and a response of “very high diversity”
would be assigned an error distance of 3. We used a similar system to
assign error distances for questions of type Q3 and Q4 based on the
diversity ordering of the attributes and the cardinality ordering of the
attribute values, respectively.

We also collected response times in addition to error distances. Par-
ticipants were given a time limit of two minutes to answer each ques-
tion. If the participant did not answer the question in the allotted time,
the system timed out and sent the participant to the next question. The
participant was assigned the maximum possible error distance for the
question type for any question on which he or she timed out.

In addition to the questions of type Q1-Q4, at the end of each phase,
the participants answered a short questionnaire about their experience
with each method. This questionnaire contained both Likert-style
questions as well as open-ended questions. We discuss these questions
in more detail in our analysis of the study results below.

The entire study was administered through a web-based interface
that collected demographic information, presented tutorials and ques-
tions, collected user answers, computed error distances and response
times, and stored these in a database for analysis. The resolution of
the monitor used for all studies was the standard 1920× 1200 pixels.
The resolution of each image produced by the DM visualization was
900×537 pixels, and the resolution of each image produced by the GH
visualization was 640×640 pixels. Each question for the GH method
required a legend image of 200×524 pixels. When the legend is taken
into account, visualizations of both methods are roughly the same size.

6.2 Results and Analysis

Here, we analyze the results obtained from the user study. Our initial
hypothesis about these results was that, for each question type, DM
would outperform GH, both in terms of accuracy and response time.
In particular, we believed that GH would suffer for some questions
due to the fact that it does not treat all attributes as equal. Specifically,
we expected users to have difficulty accurately judging diversity for
the attributes mapped to GH’s three spatial axes, due to the ambiguous
many-to-one mapping these axes produce. We also expected GH to
suffer in terms of time and/or accuracy due to the need for users to
consult the legend to remember the mappings.

For each question type, we did not analyze individual answers but
computed the sum of error distances and the sum of response times
across the questions of that type for each participant and compared
the distributions of these aggregated values using statistical hypothe-
sis testing. While we initially planned to use ANOVA and repeated-
measures ANOVA directly for this comparison, we found that the re-
sponse data did not meet these methods’ normality requirements. We
therefore first applied a rank transformation [6] to the response data
before using these techniques.

Our primary focus in analyzing the results of the study is on error
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Table 2. Mean sum of error distances for each question type as a function of visualization method (DM or GH), collection of data sets (A or B), and
phase (P1 or P2). Standard deviations are shown in parentheses. The table structure is split by collections of data sets because our preliminary
analysis showed that the collection of data sets had a statistically significant effect on the error distance for method GH.

Question Method
Collection A Collection B

P1 P2 P1&2 P1 P2 P1&2

Q1
GH 0.50 (0.71) 0.40 (0.52) 0.45 (0.60) 0.90 (0.74) 1.40 (0.70) 1.15 (0.75)

DM 0.60 (1.07) 0.30 (0.48) 0.45 (0.83) 0.50 (0.53) 0.60 (0.70) 0.55 (0.60)

Q2
GH 2.70 (1.25) 3.70 (1.06) 3.20 (1.24) 2.00 (0.94) 2.40 (0.97) 2.20 (0.95)

DM 2.10 (1.66) 1.70 (0.67) 1.90 (1.25) 1.70 (0.67) 2.10 (0.74) 1.90 (0.72)

Q3
GH 16.10 (2.02) 15.70 (3.09) 15.90 (2.55) 9.10 (3.31) 9.30 (2.98) 9.20 (3.07)

DM 3.60 (4.53) 3.50 (4.88) 3.55 (4.58) 5.50 (3.27) 4.70 (4.03) 5.10 (3.60)

Q4
GH 2.20 (1.40) 1.20 (1.40) 1.70 (1.45) 2.90 (1.60) 3.10 (2.02) 3.00 (1.78)

DM 0.50 (1.27) 1.90 (3.38) 1.20 (2.59) 0.70 (1.89) 3.30 (8.27) 2.00 (5.99)

Table 3. Mean sum of response times (in seconds) for each question type as a function of visualization method (DM or GH), phase (Phase 1 or
Phase 2), and collection of data sets (A or B). Standard deviations are shown in parentheses. The table structure is split by phases because our
preliminary analysis showed statistically significant evidence of an effect of phase of method on response time for DM.

Question Method
Phase 1 Phase 2

A B A&B A B A&B

Q1
GH 114.40 (53.74) 120.50 (66.44) 117.50 (58.90) 105.70 (53.22) 93.40 (37.66) 99.55 (45.31)

DM 151.60 (88.32) 121.90 (44.42) 136.80 (69.73) 79.40 (37.89) 91.20 (24.05) 85.30 (31.48)

Q2
GH 53.90 (37.73) 56.00 (21.29) 54.95 (29.84) 41.20 (23.19) 50.00 (23.75) 45.60 (23.29)

DM 66.90 (26.54) 53.60 (15.21) 60.25 (22.13) 38.70 (31.73) 43.20 (17.85) 40.95 (25.16)

Q3
GH 179.70 (61.18) 208.40 (85.49) 194.10 (73.84) 216.50 (61.67) 180.80 (46.88) 198.70 (56.37)

DM 143.60 (43.96) 153.30 (43.21) 148.40 (42.72) 98.50 (34.95) 105.30 (29.61) 101.90 (31.72)

Q4
GH 130.50 (44.94) 118.00 (34.91) 124.20 (39.69) 97.10 (18.88) 108.10 (55.89) 102.60 (40.99)

DM 93.40 (42.86) 120.90 (76.02) 107.20 (61.70) 86.10 (43.18) 53.40 (23.33) 69.75 (37.71)

distance, since we believe this is the most important performance mea-
sure for a given representation. However, we still pay close attention to
response time, as well. In all cases, our null hypothesis is that no dif-
ference exists between the distributions of corresponding performance
measures across the methods DM and GH.

We chose a two-phase crossover experiment design in order to re-
duce the number of participants and to keep individual subject variabil-
ity low. However, the design also required us to account for additional
within-subjects factors, namely, phase of method (first or second) and
collection of data sets (A or B). While we did not expect either of
these factors to have a statistically significant effect on our results, this
was not the case. Our preliminary analysis showed that the collection
of data sets had a statistically significant effect on the error distance
for method GH. This effect was not statistically significant for DM.
As a result of this effect we analyze error distance separately for each
collection. In addition, our preliminary analysis showed statistically
significant evidence of an effect of phase of method on response time
for DM. Specifically, participants performed slightly faster with DM
in the second phase of the study than in the first phase. Interestingly,
there was no significant evidence for this effect for GH. Regardless,
due to this effect, we analyze response time using only data collected
during the first phase of participants’ sessions. Tables 2 and 3 respec-
tively summarize the error distance and response time results.

Analysis of Results for Q1. Between two visualizations generated
with the same method, which picture represents a more diverse set
of objects? As Table 2 indicates, participants answered Q1 questions
more accurately with DM than with GH, particularly for collection B.
In fact, there is convincing statistical evidence for an effect of visual-
ization method on error distance with collection B, F(1,38) = 7.53,
p = 0.009. However, with collection A, there is no evidence of such
an effect, F(1,38) = 0.21, p = 0.65. These results hold consistent
when analyzing data separately over 100 and 1000 object data sets,
suggesting no effect of data set size on accuracy for questions of this
type. With regard to response time, though Table 2 suggests that par-
ticipants performed slightly faster using GH in phase 1, the evidence
for this effect is not statistically significant, F(1,38) = 1.20, p = 0.28.

While these results do not support our initial hypothesis that users
would perform more quickly when using DM than when using GH,
they do substantiate our hypothesis that users would be able to more
accurately compare the diversity of two data sets when using DM than

when using GH. Examining these results more closely, we found that
much of the difference in performance between collections A and B
for participants using GH was accounted for by the fact that many par-
ticipants (13 out of 20) incorrectly answered one particular question
of medium difficulty from collection B using GH. In this question, the
data set with lower overall diversity contained a very diverse Ethnic-
ity attribute, while the data set with higher overall diversity contained
a very diverse Gender attribute but a much less diverse Ethnicity at-
tribute. In GH, the Ethnicity attribute is mapped to glyph color and
the Gender attribute is mapped to glyph shape. We believe that in
answering this question, participants placed more weight on the distri-
bution of color in the visualization than on the distribution of shape,
misleading them into an incorrect judgment of overall diversity. If this
explanation is correct, it points to an interesting consequence of GH’s
unequal treatment of attributes. DM, on the other hand, does not seem
to suffer from this consequence because it treats all attributes as equal.

Analysis of Results for Q2. How diverse is the data set repre-
sented in this picture? The results for Q2 were similar to Q1’s, with
participants tending to judge absolute levels of overall diversity more
accurately with DM. Again, with GH, users’ performance depended
heavily on data set collection: participants using GH performed worse
on collection A than on collection B. In fact, for collection A, there
was convincing evidence for an effect of visualization method on error
distance, F(1,38) = 15.02, p = 0.0004. For collection B, there was
not statistically significant evidence for this effect, F(1,38) = 1.56,
p = 0.22. Again for Q2, there was no evidence for an effect of method
on response time in phase 1, F(1,38) = 1.91, p = 0.18.

These results, too, do not support our initial hypothesis that users
would perform more quickly when using DM than when using GH,
but they do sustain our hypothesis that users would be able to more
accurately assign an absolute diversity value to a given data set when
using DM than when using GH. Again, more closely examining these
results, we found that the three data sets used for Q2 questions from
collection A (low, medium, and very high diversity) tended to be more
diverse than the corresponding data sets from collection B (very low,
medium, and high diversity). With this in mind, we suspect that par-
ticipants may have been more hesitant to choose a higher diversity re-
sponse when using GH than when using DM, perhaps because, while it
is clear what very low overall diversity looks like under GH (very few
spatial locations, colors, shapes, etc.; see Fig. 3(a)), what very high
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overall diversity looks like under GH is much more ambiguous (evenly
“spread out” glyphs with evenly distributed colors, shapes, etc.; see
Fig. 3(c)). On the other hand, using DM, it was likely much easier for
participants to understand exactly how very low and very high diver-
sity appear visually (very low and very high total color density of the
entire visual region, respectively; see Figs. 1 (a) and (c)), and we be-
lieve this led them to be more confident in choosing responses at both
ends of the diversity spectrum when using DM for Q2 questions.

Analysis of Results for Q3. What is the most/least diverse attribute
in the data set represented in this picture? The results for Q3 very
much favored DM. There was convincing evidence for an effect of vi-
sualization method on error distance for both collections of data sets,
A and B, F(1,38) = 75.54, p = 1.45×10−10 and F(1,38) = 13.565,
p = 0.0007, respectively. In addition, there was suggestive but incon-
clusive evidence for an effect of visualization method on response time
in phase 1, F(1,38) = 3.50, p = 0.07. These results appear to confirm
our initial hypothesis that users would perform better—both in terms
of error distance and response time—when making judgments about
the diversity of a single attribute when using DM than when using GH.

Interestingly, participants using GH appeared to perform worse on
Q3 questions where the correct answer was an attribute assigned to a
spatial axis, likely due to GH’s ambiguous many-to-one spatial map-
ping. In contrast, participants using DM did not appear to favor any
single attribute for questions of this type. Again, this suggests that
DM’s treatment of all attributes as equal is one of its strengths.

Analysis of Results for Q4. Which value of attribute X contains the
most/least objects? As with Q3, the results for Q4 very much favored
DM. For questions of this type, there was convincing evidence for an
effect of visualization method on error distance for both collections of
data sets A and B, F(1,38) = 7.58, p = 0.009 and F(1,38) = 25.18,

p = 1.26×10−5, respectively, and there was suggestive but inconclu-
sive evidence for an effect of visualization method on response time in
phase 1, F(1,38) = 2.61, p = 0.11. Again, these results support our
initial hypothesis that users would be able to more quickly and more
accurately make judgments about relative abundances within a single
attribute when using DM than when using GH.

Summary. The results across Q1–Q4 consistently supported our
hypothesis that users would be able to make more accurate judgments
about various aspects of the diversity of data when using DM than
when using GH. While we found some evidence suggesting that users
performed more quickly with DM than with GH, these results were
not conclusive. Similarly, we found no conclusive evidence that size
of data set had an effect on user performance for questions of type Q1.

6.3 Subjective Evaluation

After each participant answered all of the questions of types Q1–Q4
for a particular method, he or she also completed a short question-
naire on that method. The questionnaire, whose form we adopted from
[33], consisted of nine Likert-style statements, where participants were
asked to indicate their level of agreement on a scale of 1 (strongly dis-
agree) to 5 (strongly agree), and three open-ended questions.

Table 4 lists each of the Likert-style questions along with the par-
ticipants’ mean responses for both GH and DM. Participants slightly
favored DM over GH in making judgments of diversity components
and this is consistent with their performance in the objective portion
of the study. Participants also slightly favored DM over GH in terms
of applicability, ease of understanding, and affinity.

In addition to the Likert-style statements, the questionnaires in-
cluded the following three open-ended questions:

O1) What aspect(s) of this method did you like most?

O2) What aspect(s) of this method did you dislike most?

O3) If possible, how would you change this method to improve it?

Many participants indicated an affinity for GH because it was in-
tuitive, in that, as the diversity of the underlying data increased, so
too did the diversity of the visual properties (color, shape, size, etc.)
of the generated visualization. On the other hand, many participants
expressed concern about GH’s ambiguous spatial layout, which they
found confusing.

Table 4. Mean responses to each of nine Likert-style statements
presented to participants immediately after using each visualization
method. These responses are based on a scale of 1 (strongly disagree)
to 5 (strongly agree). Standard deviations are shown in parentheses.

Statement GH DM

L1) I was able to compare the diversity of two data

sets using this method.

3.75 (0.81) 3.93 (0.92)

L2) I was able to judge the diversity of a single

data set using this method.

3.63 (0.90) 4.25 (0.84)

L3) I was able to determine the most/least diverse

attributes in a data set using this method.

3.58 (0.96) 4.15 (0.86)

L4) I was able to determine the ethnicity with the

most/least objects using this method.

4.05 (0.88) 4.28 (0.82)

L5) After the initial training session, I knew how

to use this method well.

3.33 (0.83) 3.55 (0.99)

L6) After answering all of the questions, I knew

how to use this method well.

3.74 (0.88) 3.88 (0.91)

L7) There are definitely times that I would like to

use this method.

3.20 (1.04) 3.75 (0.93)

L8) I found this method to be confusing. 3.38 (1.21) 2.77 (1.13)

L9) I liked using this method. 2.95 (0.96) 3.50 (1.01)

Participants indicated that they liked the “clean layout” of DM; the
simplicity of comparing color opacity under DM; and its ability to
easily handle different data set sizes. On the other hand, some par-
ticipants disliked comparing the diversity of an attribute with several
buckets (e.g. ethnicity) to that of an attribute with only a few buckets
(e.g. gender). Interestingly, though this appears to be an issue with GH
as well, participants did not seem to notice it when using GH.

Finally, most participants (29 out of 40) preferred DM to GH. In
general, participants tended to feel GH would be best suited for judg-
ing the overall diversity of a data set, especially to determine if the set
is not diverse. Interestingly, this is in direct contradiction to their per-
formance in questions Q1 and Q2 which favored DM. In contrast, par-
ticipants generally believed DM would be useful for investigating the
data more deeply and examining the diversity of individual attributes.

7 DISCUSSION AND FUTURE WORK

We have presented 1) an infrastructure for studying the problem of di-
versity visualization and 2) a novel representation for visualizing the
diversity of a large set of multivariate objects. The infrastructure in-
cludes a precise definition of diversity that takes both richness and
evenness into account, a method for generating synthetic data of con-
trollable levels of diversity, and a formal study design for evaluating
diversity visualization representations. Based on this definition and
study design, we developed and evaluated our approach to diversity
visualization, the Diversity Map, which is based loosely on ideas from
both parallel coordinates and small multiple histograms. We show that
the Diversity Map allows users to consistently and as or more accu-
rately judge elements of diversity than the only other existing method
designed to visualize diversity. While we believe we have taken a
positive step in understanding diversity visualization, there are several
issues left to address.

Study Design Issues. First, while our study design focuses on static
visualizations only, both DM and GH are interactive visualizations.
We avoided interactive features to limit the scope of our study to first
understand the merits and shortcomings of DM and GH as representa-
tions. Future work will address the interactive capabilities of DM.

Additionally, implementing GH required us to choose a mapping
of attributes to the various visual properties of the representation (the
three spatial axes, color, size, shape, etc.). While we based our map-
ping on the one used by Pearlman et al. [25], our choices here nonethe-
less represent a possible threat to construct validity.

Finally, our study does not include a specific question to determine
the richness of variety of an attribute. At first glance, it would ap-
pear that richness of variety was obvious in both methods. However,
while richness is clearly communicated in DM and in the non-spatial
attributes of GH (e.g. color, shape, size), it is not clear how well rich-
ness is communicated in the spatial axes of GH (e.g. the richness of
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SAT scores in Figure 3 is ambiguous). The evaluation study would
benefit from explicit attention to the ability to communicate richness.

Limitations of DM. The Diversity Map representation (DM) itself
is also not without limitations. First, DM is currently designed to vi-
sualize only categorical data, requiring a discretization of quantitative
attributes. Second, the static visualization provides limited insight into
the relationships between attributes. However, variations on the inter-
active version of DM can address these problems. For example, tradi-
tional parallel coordinates poly-lines can be selectively displayed over
DM to allow the user to view the actual quantitative attribute values.
These poly-lines also allow the user to see and select individual ob-
jects, which are currently not visible in the static DM visualization as
presented. Filtering techniques are also implemented in the interactive
version of DM to allow users to perform queries. For example, the
user can constrain a single attribute to one or more particular values
(buckets) using the mouse. The remaining attributes then display the
diversity of only those objects that fall within the specified range of the
filtered attribute. With filtering, users can answer questions regarding
the relationship between two attributes such as “In what bucket in at-
tribute X are objects most/least diverse in attribute Y?”.

In future work, we will explore other interaction features includ-
ing user-defined orderings for nominal-valued attributes, user-defined
ordering of the attribute axes themselves, and user specification of at-
tribute value ranges (over multiple buckets) of interest for interactive
filtering. In addition, we plan to investigate mechanisms for construct-
ing sets of objects of a desired diversity. Finally, we also plan to ex-
plore the advantages of small multiples of DMs for trend analysis.

While the Diversity Map representation scales well with the number
of objects to be visualized, like many multivariate visualization meth-
ods, scaling with an increase in attributes is limited by screen space.
Likewise, the number of buckets for any one attribute is also similarly
limited, and it is not clear how “small” a bucket can be made before
the representation becomes ineffective. Studies to understand these
limitations are left for future work.

The Diversity Map representation, like many others, requires initial
training for users to be effective in reading the visualization. Indeed,
many pilot users of the visualization found the representation counter-
intuitive. They assumed that if a representation is to convey diversity,
high diversity should be shown with an image in which all of the ob-
jects look different, however, in our implementation, high diversity re-
sults in a uniform image (see Fig. 1(c)). This confusion stems from the
users associating each box with an individual object to be visualized.
Once users understood that DM did not display individual objects, but
rather their distribution over the attribute space, they were much more
receptive and able to interpret the visualizations consistently as shown
in the study. We believe that this representation, where the space fill-
ing effect denotes diversity, helps the user establish a baseline for high
diversity. In fact, this is supported by the results of our formal study.
While participants tended to underestimate diversity when using the
GH method, where more diversity implies more dissimilar symbols,
they were able to more accurately assign absolute diversity values as
well as compare diversity between two data sets using DM.

Note that we empirically chose white as the background color and
red as the foreground color in DM. However, we have since found
studies indicating that blue may be a more appropriate foreground
color, since our eyes are known to be more sensitive to changes in
blue than in red [21]. Additionally, we empirically used the square
root-based normalization in determining the color opacity (α-value)
of buckets to help make buckets corresponding to attribute values with
low abundance more recognizable. Nevertheless, this ad-hoc scaling
factor is not necessarily a preferred choice by all users. In fact, ecolo-
gists may prefer a log transformation to accommodate species whose
abundances span multiple orders of magnitude [23]. Moreover, we
could employ an alternative to the RGBA color space, such as CIElab
or CIEluv, which are perceptually uniform color spaces and may be
more appropriate for representing quantitative abundances [36].

Limitations of our definition of diversity. Our definition of di-
versity generalizes the one used in the field of Ecology to the case of
arbitrary multivariate data. As a consequence our definition looks at

Fig. 5. A real data set of 2550 college applicants with 10 attributes
visualized using the Diversity Map. Left: the subset of students rec-
ommended for acceptance based on a holistic admissions process im-
plemented by a proprietary software package and designed to produce
a diverse incoming class. Right: the subset of rejected students. The
recommended students yield a visualization with a more even distribu-
tion of opacity, especially in attributes like GPA, ethnicity, residency, and
major (columns 1, 4, 6, and 8 respectively). This suggests that the rec-
ommended applicants are more diverse than the rejected ones.

the diversity of each attribute independently and does not take into ac-
count the interaction between attributes. In future work, we will inves-
tigate a definition to account for this interaction. The area of business
management may provide useful insights as researchers in that field
discuss diversity across multiple attributes [19, 8].

Application to Real Data. We also intend to explore the applica-
tion of Diversity Maps to real-world data. As an example, we applied
Diversity Maps to a real data set containing 2550 applicants (one year
worth) to a particular university. Each applicant is characterized by
ten attributes. Interestingly, this real data set was preprocessed using
an existing proprietary software package designed to recommend a set
of applicants using a holistic evaluation process intended to produce
a diverse incoming class. The DM visualizations of this data set are
shown in Fig. 5. These results are promising in that they agree with
the output of the holistic evaluation software.

We are also in the process of deploying an interactive version of
the Diversity Map for use by ecologists at our university. Ecologists
commonly collect species inventory data and analyze it to better un-
derstand the interactions between the environment and the species un-
der study. For example, species distribution modeling is used to relate
environmental covariates to each species. Data sets of this type are
often challenging in many ways. In the Oregon State University H.J.
Andrews Experimental Forest, researchers have collected data on 606
moth species by sampling ∼200 sites across a ∼100 km2 region of
study every summer week over a period of 23 years [24]. This data is
interesting because moths are indicators of broader biological diversity
in plant types and physical environments. Diversity measures such as
the Shannon Index provide little insight into relationships that may be
present in this data between the species and the environment because,
in reducing diversity to a single number, they conceal a tremendous
amount of information.

8 CONCLUSIONS

The Diversity Map represents a first attempt to design a representa-
tion with the specific goal of visualizing diversity as we have defined
it in this paper. While, to date, little attention has been paid to this
problem, we hope that this work will serve to provide a foundation for
future studies into the design and evaluation of visualization methods
for exploring the increasingly important area of diversity.
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