
Geometry Synthesis on Surfaces Using
Field-Guided Shape Grammars

Yuanyuan Li, Fan Bao, Eugene Zhang, Member, IEEE,

Yoshihiro Kobayashi, and Peter Wonka, Member, IEEE

Abstract—We show how to model geometric patterns on surfaces. We build on the concept of shape grammars to allow the grammars

to be guided by a vector or tensor field. Our approach affords greater artistic freedom in design and enables the use of grammars to

create patterns on manifold surfaces. We show several application examples in visualization, anisotropic tiling of mosaics, and

geometry synthesis on surfaces. In contrast to previous work, we can create patterns that adapt to the underlying surface rather than

distorting the geometry with a texture parameterization. Additionally, we are the first to model patterns with a global structure thanks to

the ability to derive field-guided shape grammars on surfaces.

Index Terms—Shape grammars, tensor fields, vector fields, surfaces, geometry synthesis.

Ç

1 INTRODUCTION

IN this paper, we introduce the concept of field-guided
shape grammars. In previous work, shape grammars

have been used to model geometric or organic patterns in
the plane and 3D objects like architecture and trees.
Extending shape grammars with fields will result in a
modeling approach that can create 3D geometry or texture
on surfaces. This approach can also provide more freedom
in artistic design.

One of the main results of our framework is that we can
not only generate local and stationary patterns (geometric
textures) on surfaces such as previous work [1] but also
patterns with a global structure. We show two example
patterns with a global structure. In the tree example (Fig. 2),
the branching structure is global and cannot be produced
by a texture synthesis or geometric tiling algorithm. In the
radial pattern (Fig. 5), the structure is global because shapes
are aligned according to concentric circles increasing in
size. As comparison, we show an example for a local
pattern in Fig. 3b.

Our approach is to use field-guided shape grammars. We
consider a variety of fields, such as vector fields, second-
order tensor fields, and higher order tensor fields. A field
can be used to guide a grammar in multiple ways. First, the
spatial relationship of shapes is defined through curves that
are streamlines [2] or hyperstreamlines in a field. Second,
the grammar can use a field to influence parameters such as
parameters for rotation, scaling, and color. Third, the
grammar can use the field in the rule selection process itself.

The major contributions of this paper are the following:

. We introduce field-guided shape grammars. We
show that field-guided shape grammars are able to
create a large class of designs that are difficult to
create by other methods.

. In contrast with the existing geometric texture
synthesis approaches, we are the first to show the
design of patterns with a global structure on surfaces.

In Section 2, we review previous work related to our
approach including a discussion on strength and limitations
in designing global geometry patterns on surfaces. In
Section 3, shape grammars that can procedurally generate
patterns in the Euclidean plane are illustrated. Section 4
describes our main framework for Field-Guided Shape
Grammars, including how to generate a guiding vector or
tensor field as well as how the guiding field is used for
pattern synthesis on surfaces. We also describe a simple
pattern optimization technique in this section. In Section 5,
we demonstrate the capability of our approach with a
number of applications such as image-based mosaic tiling,
tensor field visualization, and modeling of geometry on
surfaces. We discuss the strength and limitations of our
approach in Section 6 and conclude in Section 7.

2 RELATED WORK

In the following section, we review related work in the area
of procedural modeling, vector and tensor field design and
processing, graph and tiling design, and texture and
geometry syntheses on surfaces.

2.1 Procedural Modeling

Procedural modeling with grammars has several successful
applications in computer graphics. L-systems have been
very effectively applied to plant modeling [3] and street
modeling [4]. Comparable to our work, L-systems use
transformations on a local coordinate system, similar to a
LOGO-style turtle. While L-systems have been extended to
interact with their environments, such as general surfaces

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 2, FEBRUARY 2011 231

. Y. Li, F. Bao, Y. Kobayashi, and P. Wonka are with the PRISM Lab,
Arizona State University, Tempe, AZ 85281.
E-mail: liyuan84@gmail.com, fbao2@asu.edu,
dr.yoshihiro.kobayashi@gmail.com, pwonka@gmail.com.

. E. Zhang is with the School of Electrical Engineering and Computer
Science, Oregon State University, Corvallis, OR 97331.
E-mail: zhange@eecs.oregonstate.edu.

Manuscript received 3 Sept. 2009; revised 3 Nov. 2009; accepted 7 Jan. 2010;
published online 10 Feb. 2010.
Recommended for acceptance by H. Pottman.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-2009-09-0199.
Digital Object Identifier no. 10.1109/TVCG.2010.36.

1077-2626/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

[5], [6], height fields [4], and curves [7], they usually do not
consider several challenges of the geometry itself that are
important for generating patterns on surfaces. Existing
methods can grow patterns in the plane or 3D space but not
on surfaces. Our work is also related to shape grammars in
architecture [8], [9], [10] in that we use the notation and
scope concept (coordinate system plus scale) presented by
Mueller et al. [8]. At a lower level, generative mesh
modeling can produce complex surfaces from simpler ones
[11] similar to subdivision surfaces.

2.2 Vector and Tensor Field Design

Vector field design refers to generating a vector field that
satisfies user constraints. Vector field design has many
applications such as texture synthesis [12], nonphotorealis-
tic rendering [13], [14], and hair modeling [15]. Vector field
design has been recently extended to tensor field design [16]
and higher order tensor field design [17], with applications
in nonphotorealistic rendering [16], [17], street modeling
[18], geometry remeshing [19], [20], [16], and surface
parameterization [20]. There has been an abundance of
recent research in developing techniques and systems for
the design and processing of vector and tensor fields [21],
[16], [22], [17], [23], [24].

2.3 Pattern Design

Similar to L-systems, leaf venation patterns [25] can be
created by growing a graph. Tile patterns can be classified
according to the regularity of the patterns and according to
the complexity of the shapes. The simplest designs are circle
layouts or point samples [26], [27], [28], [29]. In the planar
case, rectangles can be used to create mosaic patterns
guided by a vector field [30]. Jigsaw image mosaics can
place more general shapes, but do not offer much control
over the orientation [31]. Shapes can also be placed by
example [32]. In architecture, optimization can be used to
place tiles on a surface [33], [34], [35]. An interesting
application of tiles on surfaces is brick design [36].

2.4 Texture Synthesis

Example-based texture synthesis [37], [38], [39], [40] can be
used to improve the visual detail on meshes. Patterns of
geometric elements have also been generated using a
biologically motivated cellular development simulation
[41] together with a constraint to keep the cells on a surface.
The patch-based approach [42], [43], [44] is a popular
technique among example-based texture synthesis that
minimizes the seams between patches through searching
for the “min-cut.” Bhat et al. proposed an algorithm [45] to
extend the idea of texture synthesis to 3D volumetric
textures. Mesh quilting [1] is a geometric texture synthesis
algorithm to spread a 3D texture sample given in the form of
a triangle mesh. Although this approach can generate nice
geometry patterns, it also has several limitations. First, due
to the inherent characteristics of texture synthesis, it can only
generate local and stationary patterns which look similar
everywhere. Patterns with global structures (see Fig. 2)
cannot be generated with texture synthesis. Second, as an
example-based approach, a manually designed mesh is
required as input. In addition, how to spread the pattern is
usually hard-coded. In contrast, in our approach, the user
can flexibly control this procedure using grammar rules.

Finally, mesh quilting on surfaces depends on local para-
meterizations of surface patches, so that patterns in regions
with very high curvature can be significantly distorted.

3 SHAPE GRAMMARS IN THE EUCLIDEAN PLANE

In this section, we explain how to use shape grammars to
model patterns in the plane. This lays the foundation for
designing patterns on surfaces (see Section 4).

In this paper, we build upon existing work in grammar-
based modeling, mainly CGA Shape, as introduced by
Müller [46]. For the examples illustrated in this paper, we
will mainly use the scope commands add, scale, translate,
and rotate (originally used in L-systems [3]). Our contribu-
tion is the incorporation of vector and tensor fields into the
grammars and an extension to modify the behavior of rules
by local optimization using collision detection and shape
merging. These parts are described in Section 4. We will
refer to the grammar as Field-Guided Shape Grammar (FGSG).
The grammar is classified as a sequential grammar of which
Chomsky grammars [47] and CGA Shape are typical
examples. In the following, we briefly review the most
relevant concepts of the grammar and give examples of
how the grammar can model patterns in the plane. Then,
we will explain how the grammar can be embedded into
fields and moved onto surfaces.

3.1 Shape

The grammar works with a configuration of shapes. A
shape consists of a symbol (string), geometry (geometric
attributes), and numeric attributes. Shapes are identified by
their symbols which is either terminal (2 �) or nonterminal
(2 V). The corresponding shapes are called terminal shapes
and nonterminal shapes. The most important geometric
attributes are the position P , three orthogonal vectors X, Y ,
and Z describing a coordinate system, and a size vector S.
These attributes define an oriented bounding box in space
called scope (see Fig. 3).

3.2 Production Process

A configuration in grammar is a finite set of basic shapes.
The production process can start with an arbitrary config-
uration of shapes A, called the axiom, and proceeds as
follows: 1) select an active shape with a symbol B in the set,
2) choose a production rule with B on the left-hand side to
compute a successor for B, a new set of shapes BNEW
3) mark the shape B as inactive and add the shapes BNEW
to the configuration and continue with step 1. When the
configuration contains no more nonterminals, the produc-
tion process terminates. To control the derivation, we assign
a priority to all rules to obtain a (modified) breadth-first
derivation: we simply select the shape with the rule of
highest priority in step 1. If priorities are not used, we can
select to follow a depth-first or breadth-first derivation.

3.3 Notation

Production rules are defined in the following form:

id: predecessor : conde> successor : prob

where id is a unique identifier for the rule, predecessor 2 V
is a symbol identifying a shape that is to be replaced with

232 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 2, FEBRUARY 2011

successor, and cond is a guard (logical expression) that has
to evaluate to true in order for the rule to be applied. Later,
we will see that cond is helpful to adapt the production with
respect to the properties of surface geometry and tensor
field (see Section 4.3). The rule is selected based on a
probability prob. For example, the rule

1: Ae> MC : 0:5

replaces the shapeAwith shapesM andC with a probability
of 0:5:prob is very helpful in generating stochastic patterns
(see Fig. 1). To specify the successor shapes, we use different
forms of rules explained in the remainder of this section.

3.4 Scope Transformation Rules

We use scope commands add, scale, translate, and rotate to
modify shapes:T ðtx; ty; tzÞ is a translation vector that is added
to the scope position P , RxðangleÞ, RyðangleÞ, and RzðangleÞ
rotate the respective axis of the coordinate system, and

Sðsx; sy; szÞ sets the size of the scope. We use ½ and � to push
and pop the current scope on a stack. Any nonterminal
symbol2 V in the rule will be created with the current scope.
Similarly, the command IðobjIdÞ adds an instance of a
geometric primitive with identifier objId. Any 3D model can
be used.

Example. The example grammar below illustrates the
design of a planar pattern by growing outward from a
seed shape. The result is depicted in Fig. 4. An example
of a pattern with a global structure is shown in Fig. 5.

1: Axiome> P;

2: Pe>½ RZ(30) T(0.6, 0, 0) A �
[RZ(150) T(0.6,0, 0) A]

[RZ(-90) T(0.6,0, 0) A];

3: Ae> B ½ T(0.6, 0, 0) RZ(60) T(0.6, 0, 0) A �
½ T(0.6, 0, 0) RZ(-60) T(0.6, 0, 0) A �;

4: Be> S(1.0, 1.0, 0.6) I(“torus”);

4 FIELD-GUIDED SHAPE GRAMMARS

In this section, we describe how to design patterns on
surfaces using field-guided shape grammars. We first give a
motivation for our design choices (Section 4.1). Then, we
describe the tools we use to design a vector or tensor field
on surfaces (Section 4.2). In Section 4.3, we explain a new
algorithm for deriving shape grammars on surfaces while

LI ET AL.: GEOMETRY SYNTHESIS ON SURFACES USING FIELD-GUIDED SHAPE GRAMMARS 233

Fig. 1. Description of how to model geometry patterns on surfaces. We use a (a) shape grammar that is guided with a (b) user-designed tensor field
to produce (c) the final result.

Fig. 2. A tree pattern with a global structure on a plane. This pattern
cannot be generated by taking small example patches of a tree and
quilting them.

Fig. 3. (a) The scope of a shape. The point P , together with the three
axes X, Y , and Z and a size vector S define a box in space that contains
the shape. (b) A pattern in the plane.

querying the field. During the grammar derivation, the
pattern is optimized locally by integrating collision detec-
tion and shape merging (see Section 4.4).

4.1 Why Field-Guided Shape Grammars?

At the core of our approach is the use of fields in various
aspects of the original shape grammars. These aspects
include:

1. using a field to guide the translation command
translate.

2. using another field or its properties as parameters in
the shape grammar commands. We give two common
examples: 1) controlling the rotation of the scope
relative to a vector or tensor field and 2) using the
length of vectors in a vector field or eigenvectors in a
tensor field to control the scaling or amount of
translation of a shape.

3. allowing attributes of the field to select production
rules.

Here, a tensor refers to a matrix, i.e, the tensor is of
second-order. However, our system can also make use of a
scalar field, a vector field, or a high-order tensor field, in
which the order is higher than 2.

There are a number of justifications for a field-guided
shape grammar. First, it can be directly applied to surfaces.
In contrast, the original shape grammar would need a
(global) parameterization. We believe that it is significantly
simpler to design a field than to design a parameterization.
The field as well as the surface normal provide a good local
frame for propagation of shapes on a surface. Second, by
mapping properties of a field to the shapes generated by the
grammar, we provide control for local pattern properties,
such as the size and the orientation of shapes. Third, by
incorporating tensor fields into the grammar, we can
achieve different layouts by providing different input
tensor fields which are used to guide the growth of the
shape tree (Fig. 12 shows different fields and their
corresponding artistic design or image mosaicing).

In the remainder of this section, we will describe what
modifications are needed for field-guided shape grammars.

We start out by describing the field design process
(Section 4.2). Then, we describe field-guided shape
grammars (Section 4.3) and two strategies for optimizing
shape placement (Section 4.4).

4.2 How to Design a Field?

While FGSG works with a variety of fields, such as vector
fields, second-order tensor fields, and higher order tensor
fields, we limit our description to the second-order tensor
field case. A tensor field T for a manifold surface M is a
smooth tensor-valued function:

T ðpÞ ¼ T11ðpÞ T12ðpÞ
T21ðpÞ T22ðpÞ

� �
; p 2M: ð1Þ

A point p is degenerate (singular) when T11ðpÞ ¼ T22ðpÞ and
T12ðpÞ ¼ T21ðpÞ ¼ 0. At a degenerate point, the tensor is
isotropic and the eigenvectors are undefined. There are a
variety of restrictions that can be placed on the field. For
example, eigenvectors of nonsingular tensors can be limited
to vectors of unit length, or the angle between both unit
eigenvectors can be limited to �

2 . Using both of these
restrictions yields tensors of the form:

T ðpÞ ¼ cosð2�Þ sinð2�Þ
sinð2�Þ �cosð2�Þ

� �
ð2Þ

with major and minor eigenvectors directions � and �þ �=2,
respectively. To design a tensor field on surfaces, we adapt
the interactive tensor field design algorithms [16], which
has two stages, initialization and editing. We describe our
implementation next.

During the initialization stage, the tensor field is designed
with user-specified design elements placed on surface. The
user can choose either a regular element, which can guide
the nearby tensor’s direction, or a singular element, which
can be a wedge, a trisector, a node, a center, or a saddle (see
Fig. 6 [16]). The tensor elements are propagated over the
surface using Gaussian radial basis functions (RBF) to define a
basis field. This propagation requires the computation of a
geodesic polar map [48]. For each vertex p on the surface, we
assign polar coordinates ð�; �Þwith respect to the center c of a
design element d. The shortest path between p and c on the

234 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 2, FEBRUARY 2011

Fig. 4. A design in the plane. The colors denote the order of placement
and are not part of the design. The pattern grows outward starting from a
single scope (symbol) placed in the middle of the pattern. Fig. 5. A radial pattern with a global structure.

surface is called a geodesic [48]. The magnitude component �
is the geodesic distance, i.e., the length of the geodesic. The
angular component � is the angle of the geodesic with
respect to some local frame at c. We calculate the geodesic
distance using fast marching with a spherical wavefront
propagation algorithm [49] to get the distance component �.
Based on geodesic distances, the angular component can be
computed by accelerated particle tracing. The user can place
multiple elements on the surface and the final result is
obtained by adding up the tensor components contributed
by each individual basis field

T ðpiÞ ¼
X
j

e�dj�ijTjð�ij; �ijÞ: ð3Þ

The variable pi denotes a vertex on the surface, Tjð�; �Þ
denotes the jth basis function (using polar coordinates), and
dj denotes the decay constant for Tjð�; �Þ. �ij and �ij are the
polar coordinates of vertex i with respect to basis element j.
The generated field is a continuous tensor field on the surface,
but there are usually some unnecessary singular points.

In the editing stage, the user can smooth regions by
componentwise discrete Laplacian local smoothing [16] and
modify tensors at vertices directly. The main purpose of this
stage is to reduce the number of unwanted singularity
points. Fig. 7 provides an example that shows how tensor
field smoothing can reduce the number of singularities in
the field and increase the smoothness of the field.

Field-Guided Shape Grammars are independent of the
field design. While we reimplemented many components of
a field design system, we additionally allow the loading of
an arbitrary field from a file. The fields that we consider
store vectors or tensors at vertices. Note that the field
elements are defined in the tangent plane of the vertex. The
tangent plane of a vertex is typically not coplanar with any
of its adjacent faces. Therefore, the interpolation of fields
within polygons (triangles) on the surface is a nontrivial
problem. We use a piecewise interpolation scheme [16] to
obtain a continuous tensor field on the mesh surface based
on the values at vertices. This scheme was adapted from
vector fields on surfaces [21].

4.3 Field-Guided Shape Grammars

As with the original shape grammar, we model most
patterns by growing them from one (or multiple) seed
shape outward. With our interactive user interface, it is
possible to model the axiom (Section 3) of the grammar by
placing one or multiple scopes in the field and to assign a
symbol to each of these scopes. We consider three ways
how a tensor field can guide a shape grammar during the
derivation: 1) the field can change the translation com-
mand, 2) the field can be queried to determine parameters,
and 3) the field can be queried to select rules. We describe
the three concepts in the following.

The grammar can use an arbitrary number of input fields.
A typical setup is to use one tensor field to guide the
translation command F1 and a second tensor field to guide
the rotation of shapes on a surface F2. This is important for
pattern design, because the direction of growth of a pattern is
not necessarily identical with the direction of shape align-
ment (even though these fields are also often the same).

4.3.1 Guiding the Translation Command

Unlike the original shape grammar, the translation com-
mand T ðtx; ty; tzÞ cannot be simply computed by vector
addition in the Euclidean space. Instead, we want to
transport the scope on the surface while maintaining the
angle between the orientation of the scope and the
eigenvectors of the tensor field. Each scope defines a local
coordinate system with axis Xscope, Yscope, and Zscope and has
an origin Pscope. The origin is associated with a point on a
surface Psurface. The point Psurface is itself associated with a
vector or tensor in the field on the surface. A translation
along ðtx; tyÞ is treated differently than a translation along tz.
A translation in the tz direction simply changes the offset of
the position P from the surface, i.e., a translation along tz
moves the scope along the surface normal at Psurface. A
translation in the plane spanned by ðtx; tyÞ is handled by
mapping the translation direction into the tangent plane.
This mapping defines a (hyper)streamline l in the field that
goes out in that direction. We then can move the scope in
the field such that the angles between the scope and the
(hyper)streamline as well as the offset to the surface remain
constant. See Fig. 8 for an illustration of a scope being
transported along a streamline (a vector field) or a
hyperstreamline (a tensor field). A (hyper)streamline is a
curve that is tangent to an (eigen)vector field everywhere
along its path. Please note that, in general, we trace at an
angle within the field, i.e., along a rotated version of the
original vector field or eigenvector field. Everywhere along
the streamline l, the streamline has the same angle to the

LI ET AL.: GEOMETRY SYNTHESIS ON SURFACES USING FIELD-GUIDED SHAPE GRAMMARS 235

Fig. 7. Tensor fields before and after smoothing on a foot model. The
colored dots are singularities (yellow = wedge, blue = trisector). (a) Field
before smoothing, while (b) is the field after 300 iterations of local
Laplacian smoothing. Notice smoothing reduces both the geometric
complexity as well as the topological complexity (number of degenerate
points) in the field.

Fig. 6. Five types of singular elements used for tensor field design.

vectors in the vector field or the major eigenvectors in the
tensor field. This angle is � ¼ atan2ðtx; tyÞ, and the length of
streamline is ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2x þ t2y
q

:

This is slightly more complicated for tensor fields that have
arbitrary angles between eigenvectors, i.e., asymmetric
tensor fields. When using the translation command, we
implicitly assume that the translation uses the first specified
field. We adopt the approach in [13] to trace the
hyperstreamline. Tracing a hyperstreamline near a degen-
erate point, such as a wedge or trisector, can lead to
undesirable artifacts in geometry placement. For example, if
an integration point is exactly on the degenerate point,
tracing will stop as no outgoing direction is available. While
stopping tracing is one option, it is not optimal as the
growth of patterns might be accidently terminated in
certain directions. To overcome this problem, we propose
the following heuristic.

Suppose that a triangle T contains a degenerate point d in
its interior. Consider a hyperstreamline l that has just entered
T from one of the edges e. The intersection point between l
and e is pin. Our heuristic involves a three-step process: 1) We
continue regular tracing starting at pin until a jump condition
is met at a point pn. A robust jump condition for a point pi on
the hyperstreamline is to test if pi is close to the singularity d,
i.e., if kpi � dk < ". 2) We reflect pn with respect to the
singularity d to obtain the jump destination p0, p0 ¼ 2d� pn. If
p0 is outside of T , we clamp it to the edge of T . 3) We compute
a new tracing direction at p0 and continue regular tracing
until the hyperstreamline leaves the triangle at point pout. For
the trisector case, we require that the outgoing direction at p0

has the same oriented angle with respect to pnp
0 as the

incoming direction at pn. For the wedge case, we use the
negative-oriented angle. As a result, the angle of the tracing
direction at p0 with respect to the tensor field is usually
different from the angle at pn with respect to the field. While
the heuristic is relatively straightforward, it works reason-
ably well in practice, i.e., for the test models we have
employed for this paper. See Fig. 9 for an illustration.

4.3.2 Querying Parameters of the Field

We can access field values associated with the current
surface point Psurface in the grammar. Similar to previous
shape grammars, we use the notation of the form Fi:xxx,
e.g., F1:vector1 to denote the major eigenvector of the first
(tensor) field. In the following, we describe three different
categories of values that can be queried:

Given a vector field V and a point Psurface, we can query
the following information: 1) the field value V ðPsurfaceÞ,
2) the JacobianrV ðPsurfaceÞ, and 3) the divergence, curl, and
curvature ([50], p. 6).

Given a second-order tensor field T , we can query these
parameters:

1. the field value,
2. the tensor gradient rT ðPsurfaceÞ,
3. the major and minor eigenvalues and eigenvectors,
4. the mean, principal, and Gaussian curvatures when

the tensor field is a curvature tensor field, and
5. the divergence and curl of each eigenvector field.

In addition, we can query the relationship between
multiple coexisting fields at point Psurface and relationships
between the scope and the field. For example, we found it
often helpful to query the angle between an axis of the
scope, e.g., the X axis, and a direction vector of the field,
e.g., the first major eigenvector of a tensor field. In this
example, we would use the notation F1:Xangle1. This is
useful to align the scope with a field just before using the
instancing command to place the shape. We also have
commands to query derived information, such as the length
of vectors (e.g., F1:length1).

4.3.3 Selecting Rules Based on the Field

The rules in a shape grammar can have a condition block
that can also make use of field values. We simply allow the
condition block of a rule to access the same values as the
command parameters. The example below shows how
glyph shapes can be selected based on curvature values for
the visualization in Fig. 11.

1: S : (F1.mincurv>¼ 0) && (F1.maxcurv>¼ 0)

e> I(“Ellipse1.obj”)

2: S : (F1.mincurv>¼ 0) && (F1.maxcurv< 0)

e> I(“Ellipse2.obj”)

3: . . .

236 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 2, FEBRUARY 2011

Fig. 9. Illustration of tracing through a singular point. In the wedge case
(a), if the streamline is too close to the singular point, it would turn back
to the incoming direction without special treatment. See the text in the
paper for an explanation of the tracing algorithm in this special instance.

Fig. 8. Translating local frames along a curve which may be a streamline
in a vector field or a hyperstreamline in a tensor field.

4.4 Optimized Shape Placement

During the process of shape distribution, a shape may be

assigned to a position that partially overlaps with other

shapes. In order to test and remove unwanted spatial

overlap, optional collision detection and shape merging are

introduced in our solution. The mechanisms are explained

as follows:

4.4.1 Collision

A collision detection mechanism tests for intersections

between shapes and between patterns. The low-level

collision detection tests whether a newly generated shape

overlaps with any other previously generated shape.

Several different mechanisms can be used to check whether

two shapes intersect each other:

1. calculating the Euclidean distance of representative
points of two shapes (e.g., the shape centers or
points on the boundary),

2. calculating the geodesic distance of representative
points of two shapes,

3. calculating the minimal distance between two
shapes using a distance field,

4. detecting a collision based on the precise mesh
representation.

The first two approaches are less accurate, but much

faster. The latter two are more precise, but need more time

to compute. After experimenting with all four methods, we

have finally decided that the collision detection algorithm

method 4 is fast enough and has the least drawbacks for our

application. We use the Bullet Physics Library [51] to detect

the collision between shapes. We use a specific instancing

command IC to insert a shape with collision testing

enabled, or alternatively, turn on collision testing for all

shapes via a global flag. We also allow the user to use

collision detection on a set of shapes. The goal is to consider

a collision of one shape in the set as collision of the whole

set. A new Command Lock is introduced to generate a set of

shapes as a whole and test collision on the complete set. An

example is given below:

1: Patterne> Lock{ Component1jComponent2j . . .

jComponentk }
2: Component1e> . . .

3: . . .

Another issue is how to stop the derivation when a
collision is detected. One strategy is to omit the shape in
collision and to continue to derive new production rules.
This can cause problems in some situations, because the
placement of new shapes only makes sense if the previous
shapes have been successfully placed. Therefore, we also
use a second option, where we cull the rest of a command
string in a production if a collision is detected. In the
example below, we assume that Ið’’X:obj’’Þ results in a
collision. We would further derive shape B, but cull shapes
D and E.

1: Ae> B I(“X.obj”) D E

Unfortunately, the instancing command often only
appears after other intermediate rules. In the example
below, instancing only happens in rule 3. In our experience,
it is important to detect this case and consider the shape C
to be in collision and still cull shapes D and E. We therefore
derive simple rules that only place one shape in a depth-
first manner to detect collisions.

1: Ae> B C D E

2: Ce> F

3: Fe> I(“X.obj”)

4.4.2 Shape Merging

Sometimes a shape of the same kind overlaps with another
shape. In this case, we might not want to remove the second
shape, but merge the position and orientation of both
shapes. To do this, we introduce a new instancing
command IM that can give a threshold for the maximally
allowed distance and maximally allowed rotation for two
identical shapes to be merged.

Shape merging can be divided into two categories, one is
merging of points (i.e., origin of two coordinate frames), the
other is merging of line segments. Merging of point shapes
is simple, when the distance (either Euclidean or geodesic)

LI ET AL.: GEOMETRY SYNTHESIS ON SURFACES USING FIELD-GUIDED SHAPE GRAMMARS 237

Fig. 10. Shape merging of line shapes. (a) Distribution without merging of lines. (b) How the gaps are filled after lines are merged at intersections.
(c) Graph structure of the pattern.

between two shapes is smaller than a certain threshold. We
only keep one of the shapes which we move toward the
other shape as if it was attracted by some force.

Shape merging of line segments is particularly important
because it can remove the discontinuity at the intersection
of different lines. A linear structure is composed of a series
of short segments, each one of which is connected with its
direct predecessor and successor. These short segments are
used to regenerate a smooth mesh of a linear shape using
special shape replacement commands. A linear structure is
constructed by Line and LineSeg commands in the
grammar. In a shape grammar, two lines have a high
probability to intersect when they are growing toward each

other. Since a linear structure consists of a series of short
line segments (usually a cylinder or cuboid shape) in our
approach, simply removing segments according to collision
detection would leave a noticeable gap between two lines.
We connect one line to the other at their intersection point
to remove this discontinuity. Every time when we generate
a new line segment a, we first find Set S of potentially
intersecting line segments. S is constructed so that for every
line segment b in it, the distance of central points of a and b
must be less than a threshold r. Next, for each such a and b,
we test whether they intersect each other. In case of one or
multiple intersections, we clip the new line to end at the
first intersection. Whether a line is merged or not can be

238 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 2, FEBRUARY 2011

Fig. 11. Two glyph-based tensor field visualization methods applied to the curvature tensor of the feline model: (top) using ellipses only to represent
the absolute values of the principle curvatures, and (bottom) negative curvatures are represented by additional shapes shown in the middle.

specified as a parameter in the Line command. Once a line
is merged, it will not be deleted as in collision detection, but
the derivation of this line command will be stopped here.
An example of shape merging is illustrated in Fig. 10.

5 APPLICATIONS

We demonstrate our Field-Guided Shape Grammars with
three applications: tensor field visualization, curvilinear
mosaic tiling, and geometry synthesis on surfaces. The
fields used in these examples were created with three to 10
tensor design elements and several tensor-valued smooth-
ing operations [52].

5.1 Tensor Field Visualization

Visualizing second-order tensor fields remains a major
challenge for the visualization community. One of the main
reasons has been the multivariate nature of second-order
tensor fields. Even in the symmetric case, a tensor contains
two scalar values (major and minor eigenvalues) and two
directions (major and minor eigenvectors). A typical ap-
proach is to use hyperstreamlines following the major and
minor eigenvector fields to illustrate them. Then, color is used
to show one of two eigenvalues or the total tensor magnitude.
Glyphs such as ellipsoids have been used as an alternative
which can show both the eigenvalues and eigenvectors.
However, such glyphs cannot be used to show tensors with
negative eigenvalues such as the curvature tensor.

We address this by using different types of shapes to
represent different scenarios. When both eigenvalues are
nonnegative, we use ellipses as in existing methods. If one

of the eigenvalues is negative, we will add a separating line
segment that passes through the center of the ellipse and is
parallel to the corresponding eigenvector. If both eigenva-
lues are negative, then two separating line segments are
added which form a cross that divides the ellipse evenly
along both eigenvector directions. See Fig. 11 for an
example (top: ellipses only; bottom: ellipses or divided
ellipses). Notice that our system can easily place different
types of shapes using the same grammar.

5.2 Curvilinear Mosaic Tiling

Using mosaics tiles as an image representation is a
fascinating form of art that has received attention from the
graphics community. Various techniques exist that can
generate the appearance of decorative tile mosaics [53],
[30]. Most of these methods are based on centriodal Voronoi
diagrams when placing the tiles which are squares or
rectangles whose aspect ratio is close to that of a square. In
this work, we use our Field-Guided Shape Grammar to
generate the curvilinear mosaics with greater aspect ratios.
Such curvilinear mosaics can allow stronger emphasis on the
anisotropy in the underlying image as well as allow more
artistic freedom. See Fig. 12 for two examples: a cat (Fig. 12a)
and the Mona Lisa (Fig. 12b). In order to generate such
mosaics, a base field whose streamlines have the desired
shape is designed on a plane; then, mosaic tiles are
distributed on this plane by the field and grammar
commands.

LI ET AL.: GEOMETRY SYNTHESIS ON SURFACES USING FIELD-GUIDED SHAPE GRAMMARS 239

TABLE 1
Statistics of Geometry Synthesis Examples

Fig. 13. A stem and leaf pattern growing on three different surfaces.

Fig. 12. (a) A tile mosaic of a cat and (b) the Mona Lisa.

5.3 Geometry Synthesis on Surfaces

We show several examples of patterns generated on surfaces.

Instead of designing local geometric patterns by example, we

can design local and global patterns by specifying rules of the

shape grammar. Our system is implemented using C++, and

we use a computer with an Intel 2.66 GHz CPU to produce the

results. We include our examples as additional material with

this submission. Table 1 shows the time and mesh size of each

example result. We can see that in most cases our algorithm is

able to generate complex patterns on a surface in a few

seconds. In the following, we give a short description of the

different examples:

1. Fig. 13 shows a global pattern of branches and leaves
on a surface. We show this pattern on a torus, a
bunny, and an organic model.

2. Fig. 14 shows a pattern that consists of a set of
small star shapes organized in two concentric
circular patterns.

3. Figs. 1 and 15a show a crack pattern that consists of
linear tubes with gaps between them and smaller
circular shapes next to the linear structure.

4. Fig. 15b shows the direct application of the planar
pattern from Fig. 5 to a horse. The grammar was not
modified to apply the pattern on the surface.

5. Fig. 15c is a global pattern of a tree on a surface.
6. To study the application of a local pattern, we used

the example from Fig. 4 and applied it to a dragon

240 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 2, FEBRUARY 2011

Fig. 14. A grammar applied to (a) an organic architectural model and
(b) a pear.

Fig. 15. (a) The pattern shown in Fig. 1 applied to an organic shape. (b) This pattern is the direct application from the grammar that generated Fig. 5.
(c) The pattern from Fig. 2 is applied to the surface of a vase.

Fig. 16. The pattern from Fig. 4 adapted to grow on surfaces. (a) A pattern with big shapes. (b) A pattern with smaller shapes. (c) A rendering of the
shapes without the surface. While the shape placement algorithm can place shapes under the surface resulting in occluded shapes, this rendering
shows that the surface is still fully covered.

model (Fig. 16) as well as a union of three rotated
tori (Fig. 17), a genus 7 surface.

7. Fig. 18 shows the planar pattern from Fig. 5 applied
to the Happy Buddha model.

8. Fig. 19 shows a global pattern that grows different
layouts depending on the location on the surface.
The blue tiles, red ellipsoids, and green tiles are
placed with different rules.

The images in the paper are rendered with V-Ray.

6 DISCUSSION

6.1 Comparison to Previous Work

Through the applications above, we can see the difference

between FGSG and previous parameterization-based meth-

ods [1], [54]. Parameterization is well suited for cases where

the distribution of shapes in the pattern is simple repetition,

and the distortion of individual shapes is not very important.
Our approach has advantages where the distribution has a
more complex, i.e., global, structure, and does not allow
distortion of individual shapes, which is difficult to handle
with parameterization. Also, our approach can generate
complex patterns from very simple shapes hierarchically
while parameterization needs an example input pattern to
repeat. In addition, using parameterization in shape synth-
esis is much slower due to the computational cost of the
involved optimization algorithms. While it is also possible to
use grammars in the parameter domain of a parameterized
surface, distortions in the parameterization and discontinu-
ities introduced by the seams make the grammar generation
process a more challenging endeavor. In texture synthesis on
surfaces, direct synthesis [39], [55] is also preferable to texture
synthesis using a parameterization [54].

6.2 Limitations

A limitation of our method is that we do not currently use
global optimization as a postprocess. Therefore, our ap-
proach is not competitive with highly specialized pattern
generation algorithms, such as surface remeshing [56]. We
believe that it should be possible to integrate low-level
continuous optimization with a grammar-driven design
process. In future work, we wish to develop a mixed discrete
and continuous optimization where the grammar suggests
discrete shape graphs that are further optimized by a global
optimization algorithm, such as sequential quadratic pro-
gramming (SQP) or Quasi-Newton. A second limitation is
that several grammars produce artifacts when the placement
of shapes is too dense, such as the Dragon example in Fig. 16.
To make this example work we had to implement two
additional rules that allow the grammar querying the angles
to nearby shapes. It still took up to 10 tries to get reasonable
results. We therefore believe that our algorithm is mainly
suitable for patterns that are not too dense, such as plants
growing on surfaces. A third limitation is that a grammar has

LI ET AL.: GEOMETRY SYNTHESIS ON SURFACES USING FIELD-GUIDED SHAPE GRAMMARS 241

Fig. 17. Porting a pattern to a surface requires careful rewriting of design
rules. (a) A simple application of the pattern in Fig. 4 to a surface using
only collision detection. (b) Uses a better grammar that grows linear
shapes using snapping of the end points, and subsequently, replaces
the linear shapes with more complex shapes.

Fig. 18. The application of the pattern from Fig. 5 to the Happy Buddha
model. The inset shows a view from the top down.

Fig. 19. A pattern that uses three different growing strategies based on
the location on the surface. (top) Blue tiles and red ellipses and (bottom)
green tiles.

to be designed manually using a specification in a text file. As
shown in Fig. 17, not all strategies are successful and several
design iterations are required to achieve good results. This is
similar to modeling using scripting in major modeling
programs like Maya and requires a skill set that not all
designers or modelers possess. Therefore, we also want to
explore interactive interfaces to model global patterns on
surfaces as part of our future work.

7 CONCLUSION

In this paper, we introduced Field-Guided Shape Gram-
mars. These grammars allow us to encode a large class of
pattern designs and apply them to fields in the plane and
fields on surfaces. Instead of distorting a pattern design by
surface parameterization, we place designs directly on the
surface and adapt the pattern to the surface directly through
the rules of the grammar.

As future work, we plan to explore more applications
such as nonphotorealistic rendering and vector and tensor
field visualization. In addition, subtracting geometry from a
3D surface based on a field is an interesting problem that
we wish to explore.

ACKNOWLEDGMENTS

The authors would like to thank Christopher Grasso for
rendering images in this paper and thank the reviewers for
their help and suggestions. We thank Marc Levoy and the
Stanford’s Graphics Lab, Bruce Teeter, and the AIM@SHAPE
Shape Repository for the models used in this work. The cat
image is a courtesy of Greg Turk. This work was supported
by the US National Science Foundation (NSF), contracts IIS
0757623, IIS 0915990, IIS 0917308, and CCF 0546881.

REFERENCES

[1] K. Zhou, X. Huang, X. Wang, Y. Tong, M. Desbrun, B. Guo, and H.
Shum, “Mesh Quilting for Geometric Texture Synthesis,” Proc.
ACM SIGGRAPH ’06, vol. 25, no. 3, pp. 690-697, 2006.

[2] G. Turk and D. Banks, “Image-Guided Streamline Placement,”
Proc. 23rd Ann. Conf. Computer Graphics and Interactive Techniques,
pp. 453-460, 1996.

[3] P. Prusinkiewicz and A. Lindenmayer, The Algorithmic Beauty of
Plants. Springer-Verlag, 1991.

[4] Y.I.H. Parish and P. Müller, “Procedural Modeling of Cities,” Proc.
ACM SIGGRAPH ’01, E. Fiume, ed., pp. 301-308, 2001.

[5] P. Prusinkiewicz, M. James, and R. M�ech, “Synthetic Topiary,”
Proc. ACM SIGGRAPH ’94, A. Glassner, ed., pp. 351-358, July 1994.

[6] R. M�ech and P. Prusinkiewicz, “Visual Models of Plants
Interacting with Their Environment,” Proc. ACM SIGGRAPH ’96,
H. Rushmeier, ed., pp. 397-410, Aug. 1996.

[7] P. Prusinkiewicz, P. Mündermann, R. Karwowski, and B. Lane,
“The Use of Positional Information in the Modeling of Plants,”
Proc. ACM SIGGRAPH ’01, E. Fiume, ed., pp. 289-300, 2001.

[8] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and L. Van Gool,
“Procedural Modeling of Buildings,” Proc. ACM SIGGRAPH ’06,
2006.

[9] P. Wonka, M. Wimmer, F. Sillion, and W. Ribarsky, “Instant
Architecture,” ACM Trans. Graphics, vol. 22, no. 3, pp. 669-677, 2003.

[10] M. Lipp, P. Wonka, and M. Wimmer, “Interactive Visual Editing
of Grammars for Procedural Architecture,” ACM Trans. Graphics,
vol. 27, no. 3, pp. 1-10, http://www.cg.tuwien.ac.at/research/
publications/2008/LIPP-2008 IEV/, Aug. 2008.

[11] S. Havemann, “Generative Mesh Modeling,” PhD thesis, TU
Braunschweig, 2005.

[12] G. Turk, “Texture Synthesis on Surfaces,” Proc. ACM SIGGRAPH
’01, pp. 347-354, 2001.

[13] A. Hertzmann, “Painterly Rendering with Curved Brush Strokes
of Multiple Sizes,” Proc. ACM SIGGRAPH ’98, pp. 453-460, 1998.

[14] A. Hertzmann and D. Zorin, “Illustrating Smooth Surfaces,” Proc.
ACM SIGGRAPH ’00, pp. 517-526, 2000.

[15] S. Paris, W. Chang, O.I. Kozhushnyan, W. Jarosz, W. Matusik, M.
Zwicker, and F. Durand, “Hair Photobooth: Geometric and
Photometric Acquisition of Real Hairstyles,” Proc. ACM SIG-
GRAPH ’08, pp. 1-9, 2008.

[16] E. Zhang, J. Hays, and G. Turk, “Interactive Tensor Field Design
and Visualization on Surfaces,” IEEE Trans. Visualization and
Computer Graphics, vol. 13, no. 1, pp. 94-107, Jan./Feb. 2007.

[17] J. Palacios and E. Zhang, “Rotational Symmetry Field Design on
Surfaces,” ACM Trans. Graphics, vol. 26, no. 3, p. 55, 2007.

[18] G. Chen, G. Esch, P. Wonka, P. Müller, and E. Zhang, “Interactive
Procedural Street Modeling,” ACM Trans. Graphics, vol. 27, no. 3,
p. 103, 2008.

[19] M. Marinov and L. Kobbelt, “Direct Anisotropic Quad-Dominant
Remeshing,” Proc. 12th Pacific Conf. Computer Graphics and
Applications (PG ’04), pp. 207-216, 2004.

[20] N. Ray, W.C. Li, B. Lévy, A. Sheffer, and P. Alliez, “Periodic
Global Parameterization,” ACM Trans. Graphics, vol. 25, no. 4,
pp. 1460-1485, 2006.

[21] E. Zhang, K. Mischaikow, and G. Turk, “Vector Field Design on
Surfaces,” ACM Trans. Graphics, vol. 25, no. 4, pp. 1294-1326, 2006.

[22] G. Chen, K. Mischaikow, R.S. Laramee, P. Pilarczyk, and E. Zhang,
“Vector Field Editing and Periodic Orbit Extraction Using Morse
Decomposition,” IEEE Trans. Visualization and Computer Graphics,
vol. 13, no. 4, pp. 769-785, July/Aug. 2007.

[23] M. Fisher, P. Schröder, M. Desbrun, and H. Hoppe, “Design of
Tangent Vector Fields,” Proc. ACM SIGGRAPH ’07, p. 56, 2007.

[24] N. Ray, B. Vallet, W.C. Li, and B. Lévy, “N-Symmetry Direction
Field Design,” ACM Trans. Graphics, vol. 27, no. 2, p. 10, 2008.

[25] A. Runions, M. Fuhrer, B. Lane, P. Federl, A.-G. Rolland-Lagan,
and P. Prusinkiewicz, “Modeling and Visualization of Leaf
Venation Patterns,” ACM Trans. Graphics, vol. 24, no. 3, pp. 702-
711, 2005.

[26] D. Dunbar and G. Humphreys, “A Spatial Data Structure for Fast
Poisson-Disk Sample Generation,” ACM Trans. Graphics, vol. 25,
no. 3, pp. 503-508, 2006.

[27] G. Turk, “Generating Textures on Arbitrary Surfaces Using
Reaction-Diffusion,” Proc. ACM SIGGRAPH ’91, pp. 289-298, 1991.

[28] J. Kopf, D. Cohen-Or, O. Deussen, and D. Lischinski, “Recursive
Wang Tiles for Real-Time Blue Noise,” ACM Trans. Graphics,
vol. 25, no. 3, pp. 509-518, 2006.

[29] V. Ostromoukhov, “Sampling with Polyominoes,” ACM Trans.
Graphics, vol. 26, no. 3, p. 78, 2007.

[30] A. Hausner, “Simulating Decorative Mosaics,” Proc. ACM
SIGGRAPH ’01, pp. 573-580, 2001.

[31] J. Kim and F. Pellacini, “Jigsaw Image Mosaics,” Proc. ACM
SIGGRAPH ’02, J. Hughes, ed., pp. 657-664, 2002.

[32] T. Ijiri, R. Mech, T. Igarashi, and G. Miller, “An Example-Based
Procedural System for Element Arrangement,” Computer Graphics
Forum, vol. 27, no. 2, pp. 429-436, 2008.

[33] H. Pottmann, A. Schiftner, P. Bo, H. Schmiedhofer, W. Wang, N.
Baldassini, and J. Wallner, “Freeform Surfaces from Single Curved
Panels,” ACM Trans. Graphics, vol. 27, no. 3, pp. 76:1-76:10, Aug.
2008.

[34] H. Pottmann, Y. Liu, J. Wallner, A. Bobenko, and W. Wang,
“Geometry of Multi-Layer Freeform Structures for Architecture,”
ACM Trans. Graphics, vol. 26, no. 3, pp. 65:1-65:11, July 2007.

[35] Y. Liu, H. Pottmann, J. Wallner, Y.-L. Yang, and W. Wang,
“Geometric Modeling with Conical Meshes and Developable
Surfaces,” ACM Trans. Graphics, vol. 25, no. 3, pp. 681-689, July
2006.

[36] J. Legakis, J. Dorsey, and S.J. Gortler, “Feature-Based Cellular
Texturing for Architectural Models,” Proc. ACM SIGGRAPH ’01,
E. Fiume, ed., pp. 309-316, 2001.

[37] A.A. Efros and T.K. Leung, “Texture Synthesis by Non-Parametric
Sampling,” Proc. IEEE Int’l Conf. Computer Vision, pp. 1033-1038,
Sept. 1999.

[38] L. Wei and M. Levoy, “Fast Texture Synthesis Using Tree-
Structured Vector Quantization,” Proc. 27th Ann. Conf. Computer
Graphics and Interactive Techniques, pp. 479-488, 2000.

[39] G. Turk, “Texture Synthesis on Surfaces,” Proc. ACM SIGGRAPH
’01, pp. 347-354, 2001.

242 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 2, FEBRUARY 2011

[40] X. Tong, J. Zhang, L. Liu, X. Wang, B. Guo, and H. Shum,
“Synthesis of Bidirectional Texture Functions on Arbitrary
Surfaces,” ACM Trans. Graphics, vol. 21, no. 3, pp. 665-672, 2002.

[41] K. Fleischer, D. Laidlaw, B. Currin, and A. Barr, “Cellular Texture
Generation,” Proc. 22nd Ann. Conf. Computer Graphics and Inter-
active Techniques, pp. 239-248, 1995.

[42] A. Efros and W. Freeman, “Image Quilting for Texture Synthesis
and Transfer,” Proc. ACM SIGGRAPH ’01, pp. 341-346, 2001.

[43] L. Liang, C. Liu, Y. Xu, B. Guo, and H. Shum, “Real-Time Texture
Synthesis by Patch-Based Sampling,” ACM Trans. Graphics, vol. 20,
no. 3, pp. 127-150, 2001.

[44] V. Kwatra, A. Schodl, I. Essa, G. Turk, and A. Bobick, “Graphcut
Textures: Image and Video Synthesis Using Graph Cuts,” ACM
Trans. Graphics, vol. 22, no. 3, pp. 277-286, 2003.

[45] P. Bhat, S. Ingram, and G. Turk, “Geometric Texture Synthesis
by Example,” Proc. Eurographics/ACM SIGGRAPH Symp. Geo-
metry Processing, pp. 41-44, 2004.

[46] P. Müller, “Procedural Modeling of Cities,” Proc. ACM
SIGGRAPH ’06, pp. 139-184, 2006.

[47] N. Chomsky, “Three Models for the Description of Language,”
IRE Trans. Information Theory, vol. 2, no. 3, pp. 113-124, 1956.

[48] B. O’Neill, Elementary Differential Geometry. Academic Press, 1997.
[49] R. Kimmel and J. Sethian, “Computing Geodesic Paths on

Manifolds,” Proc. Nat’l Academy of Sciences, USA, vol. 95, no. 15,
pp. 8431-8435, citeseer.ist.psu.edu/article/kimmel98computing.
html, 1998.

[50] H. Theisel, “Vector Field Curvature and Applications,” Doktor-
arbeit, FB Informatik, Univ. Rostock, 1995.

[51] “Bullet Physics Library,” http://bullet.sourceforge.net, accessed
May 11, 2009.

[52] P. Alliez, D. Cohen-Steiner, O. Devillers, B. Lévy, and M. Desbrun,
“Anisotropic Polygonal Remeshing,” ACM Trans. Graphics, vol. 22,
no. 3, pp. 485-493, 2003.

[53] P. Haeberli, “Paint by Numbers: Abstract Image Representations,”
Proc. ACM SIGGRAPH ’90, pp. 207-214, 1990.

[54] E. Praun, A. Finkelstein, and H. Hoppe, “Lapped Textures,” Proc.
ACM SIGGRAPH ’00, pp. 465-470, Aug. 2000.

[55] L.Y. Wei and M. Levoy, “Texture Synthesis over Arbitrary
Manifold Surfaces,” Proc. ACM SIGGRAPH ’01, pp. 355-360, 2001.

[56] L. Wang, S. You, and U. Neumann, “Large-Scale Urban Modeling
by Combining Ground Level Panoramic and Aerial Imagery,”
Proc. Third Int’l Symp. 3D Data Processing, Visualization, and
Transmission, pp. 806-813, 2006.

Yuanyuan Li received the BS degree in
computer science from Zhejiang University,
China, in 2002, and is currently working toward
the MS degree at Arizona State University,
Tempe. He is currently with the Partnership for
Research in Spatial Modeling (PRISM) Lab. His
research interests include procedural modeling,
computational geometry, and image-based real-
time rendering.

Fan Bao received the BS and MS degrees in
computer science from Tsinghua University,
Beijing, China, in 2005 and 2008, respectively.
He is currently working toward the PhD degree
at Arizona State University, Tempe. His re-
search interests include computer graphics,
procedural modeling, and visualization.

Eugene Zhang received the PhD degree in
computer science from Georgia Institute of
Technology in 2004. He is currently an assis-
tant professor at Oregon State University,
where he is a member of the School of
Electrical Engineering and Computer Science.
He received an NSF CAREER Award in 2006.
His research interests include computer gra-
phics, scientific visualization, and geometric
modeling. He is a member of the IEEE, the

IEEE Computer Society, and the ACM.

Yoshihiro Kobayashi received the PhD degree
from the University of California, Los Angeles, in
2001. He is a faculty research associate at the
Partnership for Research in Spatial Modeling
(Prism) Lab, at Arizona State University. His
research interests include design computation in
architecture, procedural architectural/urban
modeling, visualization and simulation in virtual
reality urban environments, and design informa-
tion management.

Peter Wonka received the MS degree in urban
planning and the doctorate degree in computer
science from the Technical University of Vienna.
He is currently with Arizona State University
(ASU). Prior to joining the ASU, he was a
postdoctorate researcher at the Georgia Institute
of Technology for two years. His research
interests include various topics in computer
graphics, visualization, and image processing.
He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LI ET AL.: GEOMETRY SYNTHESIS ON SURFACES USING FIELD-GUIDED SHAPE GRAMMARS 243

