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Abstract—Morse decomposition provides a numerically stable topological representation of vector fields that is crucial for their

rigorous interpretation. However, Morse decomposition is not unique, and its granularity directly impacts its computational cost. In this

paper, we propose an automatic refinement scheme to construct the Morse Connection Graph (MCG) of a given vector field in a

hierarchical fashion. Our framework allows a Morse set to be refined through a local update of the flow combinatorialization graph, as

well as the connection regions between Morse sets. The computation is fast because the most expensive computation is concentrated

on a small portion of the domain. Furthermore, the present work allows the generation of a topologically consistent hierarchy of MCGs,

which cannot be obtained using a global method. The classification of the extracted Morse sets is a crucial step for the construction of

the MCG, for which the Poincaré index is inadequate. We make use of an upper bound for the Conley index, provided by the Betti

numbers of an index pair for a translation along the flow, to classify the Morse sets. This upper bound is sufficiently accurate for Morse

set classification and provides supportive information for the automatic refinement process. An improved visualization technique for

MCG is developed to incorporate the Conley indices. Finally, we apply the proposed techniques to a number of synthetic and real-

world simulation data to demonstrate their utility.

Index Terms—Morse decomposition, vector field topology, upper bound of Conley index, topology refinement, hierarchical refinement.
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1 INTRODUCTION

NUMERICALLY stable topology of vector fields is required
for the rigorous interpretation of the dynamics of the

flow data stemming from a wide variety of engineering
applications such as Computational Fluid Dynamics (CFD),
aerodynamics, tsunami modeling, and automobile and
aircraft design. Conventional (or differential) topology of
vector fields consists of special trajectories which are either
points (i.e., fixed points), loops (i.e., periodic orbits), or curves
(i.e., separatrices). Chen et al. [2] have shown that trajectory-
based topology is sensitive to noise and error introduced
during data acquisition and processing. To overcome this,
they advocate Morse decomposition as a more reliable
representation of vector field topology. The result of the
Morse decomposition of a vector field is an acyclic directed
graph called a Morse Connection Graph (MCG). The nodes of
this graph are Morse sets and the edges show the
connectivity (direct flow paths) between the nodes. The

Morse sets in an MCG enclose all regions of flow
recurrence, in particular all periodic orbits and fixed points
of the flow. The connection regions between Morse sets
envelop separatrices. An MCG may provide a seemingly
coarser topological structure of a vector field than the
trajectory-based topology, such as a vector field skeleton [14]
and Entity Connection Graph (ECG) which consists of fixed
points, periodic orbits, and their connectivity [1]. However,
the detailed topological structure obtained in the trajectory-
based topology [1], [14] could be the artifact of the
numerical error or noise in the original data. Showing such
detailed but unreliable topology may provide misleading
information (Fig. 3, left). On the other hand, the MCG tends
to be more numerically stable than the trajectory-based
topology. This is because both the Morse sets and
connection regions of the MCG are less sensitive to noise
and error than their respective counterparts in trajectory-
based topology. Fig. 3 shows the comparison of the stability
of MCGs versus ECGs under different integration schemes
in the analysis of a slice from the diesel engine simulation.
We refer the readers to [1] for a more thorough discussion.

To compute an MCG, we first encode the flow dynamics
into a directed graph. We refer to the graph as Flow
combinatorialization Graph (FG). The nodes of an FG are
the polygonal primitives of the space discretization (e.g.,
triangles), and the edges indicate the mapping between
polygons with respect to the flow (Fig. 5). The Morse sets
are the strongly connected components of theFG. To capture
the accurate dynamics of the flow inFG, Chen et al. introduce
the idea of a �-map by tracking the image of each polygonal
primitive under the translation by � along the flow to
compute the mapping between polygons (reviewed in
Section 3.1). This construction is computationally expensive.

The MCG of a vector field is not unique, and the
granularity of the MCG directly relates to its computational
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cost, most of which is spent on computing the image of
every polygon in the domain under the induced flow for a
certain time � using the �-map approach. The larger the � ,
the finer the MCG is, but also the more computationally
expensive it becomes. Since an optimal � value is typically
unknown for a given flow, obtaining a high quality MCG
requires several experiments using increasingly larger �
values which can make such a procedure computationally
intractable in practice. Also, the results obtained by using
different � values are often hard to relate to each other
because of inconsistent labeling and an unclear relationship
between the respective Morse sets. Figs. 1b and 1c illustrate
these challenges.

To address this issue, we propose an efficient Morse
decomposition framework based on a hierarchical refine-
ment process. In this framework, we first compute an

MCG using the geometry-based method [1] which is fast but
coarse. Next, we enter an iterative process in which a
Morse set in the current MCG is identified and refined
through a local update with increasing � values. The Morse
sets in the refined region are then incorporated into the
original MCG, and the connection regions between these
Morse sets and neighboring Morse sets are also refined
using larger � values. See Fig. 2 for an example. This not
only yields substantial acceleration of performance but also
preserves topological consistency between two successive
MCGs (Fig. 2). Note that our refinement process does not
increase the resolution of the mesh.

Another limitation of the existing Morse decomposition
procedure [2] is that it does not provide adequate
classification of the extracted Morse sets. This classification
method uses the flow directions at the boundary of each
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Fig. 1. The MCGs of an analytic vector field using the geometry-based method (a), the global computation ((b): � ¼ 0:1 and (c) � ¼ 0:2), and our
hierarchical refinement framework ((d): �max ¼ 0:1 and (e) �max ¼ 0:2). Our refinement method takes 10.11 seconds for �max ¼ 0:2, while the global
method uses 22.88 seconds with the same � value. Note that our refinement method obtains comparable results to the global method but with a
more coherent representation of the topology. This is because the global method relabels all the Morse sets after each computation, while our
hierarchical refinement modifies only one Morse set (one node of the graph) after each iteration starting from the MCG shown in (a). In particular, in
(d) R3 is obtained from the refinement of A1 in (a), S2 and R2 are from A2 in (a). In (e), R4 and A3 are the results of refining S2 in (d). In addition, we
point out that the MCG in the left visualization (a-c) lacks the ability to distinguish between a source-like Morse set and a periodic orbit-like source
Morse set (e.g., R1 and R4). The new Morse set classification and visualization based on the Conley index provides such information.

Fig. 2. An example of hierarchical Morse decomposition of a vector field: (a) MCG obtained from the geometry-based method [1], (b) local refinement
of R1 in (a) with � ¼ 0:05, (c) local refinement of S1 in (b) with � ¼ 0:1, and (d) local refinement of S3 in (c) with � ¼ 0:1. The meaning of the color
coding is provided in Figs. 1 and 3. Note that the connection regions (dotted regions) are also refined during the process. The corresponding MCGs
are provided in the bottom row. The information of the Conley index of each Morse set is also visualized (a-d). This provides the user with the
detailed classification of the extracted Morse sets (see the important Conley indices in Section 3.2). Morse set S1 in (a) has trivial Conley index
ð0; 0; 0Þ, but further decomposition reveals more features of interest (a saddle, a source, and a periodic orbit). Therefore, we include it in the
constructed MCG (Section 7) for further refinement.



Morse set to characterize them into source-like, sink-like,
and saddle-like regions. Compared to the ECG [1] (Fig. 3,
left), this classification cannot distinguish a Morse set
containing a repelling periodic orbit from that containing
a source (e.g., R1 (a source) and R4 (a repelling periodic
orbit) in Fig. 1c).

We use the Conley index, a measure of flow complexity
inside a Morse set, to obtain a more complete classification
of Morse sets (Section 3.2). To reduce expensive computa-
tion associated with the Conley index [15], we propose a
simple and efficient technique to compute an upper bound
of the Conley index given a Morse set. Our experiments
show that this upper bound coincides with the Conley index
for most Morse sets in the example data sets shown in
Section 6. The MCGs augmented with the Conley index
information for each Morse set are shown in Figs. 1d, 1e, and
3 (right). This visualization allows the user to distinguish
between Morse sets containing different flow features (e.g.,
R1 and R4 in Fig. 1e). Beside Morse set classification, the
Conley index can also be used to guide the aforementioned
refinement process (Section 7) by giving higher priority to
Morse sets that contain complicated dynamics.

Note that during the initial stage of our framework, some
Morse sets from the geometry-based method may contain
multiple flow features but with a trivial Conley index since
the flow features cancel each other and cause the whole
Morse set to behave like a regular flow (i.e., featureless). To
overcome the possible loss of features, we retain all the
Morse sets consisting of more than one triangle even though
they may have a trivial index. This guarantees no loss of
features at the beginning of the refinement because a single
triangle with the trivial Conley index does not contain any
flow recurrent feature (due to the linear constraints of our
problem), and thus, can be ignored.

In what follows, we first review the related work on
vector field topology in Section 2. Section 3 provides the
background on Morse decomposition and the Conley index.
In Section 4, we introduce our pipeline of hierarchical Morse
decomposition. Section 5 provides the detail of local updates

needed by the Morse set and connection region refinements.
In Section 6, we describe an efficient algorithm to compute
an upper bound on the Conley index of a Morse set. In
Section 7, this upper bound is used (together with the areas
of Morse sets) to control the Morse decomposition refine-
ment process. The proposed framework has been applied to
a number of synthetic and engine simulation data sets from
industry. The results are shown and discussed in Section 8,
followed by a summary of the presented work in Section 9.

2 RELATED WORK

This section reviews the related work from vector field
visualization and mathematical topology.

2.1 Vector Field Topology

Topological analysis of 2D vector fields has received much
attention since its introduction to the visualization commu-
nity by Helman and Hesselink [14]. In terms of fixed point
extraction, Tricoche et al. [35] and Polthier and Preuß [23]
present efficient algorithms to locate fixed points in a vector
field. Scheuermann et al. extend the work on first-order fixed
points to higher order fixed point analysis using Clifford
algebra and present solutions to higher order fixed point
visualization [26], [27]. Later, it is shown that more
complicated recurrent flow patterns can be detected, such
as periodic orbits. Wischgoll and Scheuermann are the first to
present an algorithm for detecting periodic orbits in planar
flows [37]. This technique has also been extended to 3D vector
fields [38] and time-dependent flows [39]. Theisel et al. [32]
present a mesh independent approach to compute periodic
orbits. Recently, Chen et al. [1] present efficient algorithms to
construct a more complete topological skeleton of vector
fields, the Entity Connection Graph by incorporating periodic
orbits. Later, Chen et al. [2] study the instability of trajectory-
based vector field topology and, for the first time, propose
Morse decomposition for vector field topology computation
which leads to a more reliable interpretation of vector field
topology. Reininghaus et al. [25] apply the combinatorial
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Fig. 3. This figure provides the ECGs [1] (left) and MCGs [2] (right) of a cross section of a diesel engine simulation. This cross section is cut at
the 25 percent of the length of the cylinder from the top where the intake ports meet the chamber. The images to the left show two ECGs
computed using the Runge-Kutta integration scheme [24] of the second order (RK2) and of the fourth order (RK4), respectively. The two inlets
show the detected periodic orbits under different integration schemes. As can be observed, ECGs are numerically unstable and can provide
misleading information. As a comparison, the MCGs of the same field are computed using RK2 (middle-right) and RK4 (right-most), respectively.
Despite the different sizes of the Morse sets in the two MCGs, their topological graphs are identical, indicating the stable extraction of these
features. We refer the readers to [2] for a more detailed discussion.



theory of Forman [10] to study the topology of 2D flows. The
combinatorial topology is defined as the extrema nodes and
the paths that connect them in a simplicial graph (i.e., a
combinatorial vector field) converted from the original flow.
In contrast, Morse decomposition studies a directed graph
encoding the flow mapping between polygonal elements,
which is the outer approximation of the original flow. This
guarantees that the MCG not only contains the more accurate
topology but also tolerates a certain amount of error and
uncertainty of the data. While the present work is closely
related to Chen et al.’s work on Morse decomposition, it is
distinct in its hierarchical refinement framework for Morse
decomposition using local computation that enables faster
computation and consistent topology refinement. Further-
more, we provide an efficient algorithm to estimate the
Conley index for Morse sets, which is not discussed in [2].

A different approach to Morse decomposition is pre-
sented in [29]. In their method, the input vector field is first
approximated by a piecewise constant (PC) one, i.e.,
constant in the interior of every triangle. The Morse
decomposition is computed from the transition graph that
represents the trajectories of the PC vector field. While the
PC-based analysis is more efficient and produces Morse sets
of subtriangle precision, trajectories of the PC approxima-
tion represent a relatively poor approximation of the true
trajectories of the original system, roughly corresponding to
Euler’s method with step sizes proportional to the grid size.
In contrast, the method presented in this paper can work
with any integration method and any step size. Therefore,
the results can be expected to be closer to the true Morse
sets for the input vector field.

2.2 Morse-Smale Complex

Morse theory has been introduced by Edelsbrunner et al.
[9], [8] for scalar field topology. In their work, the analysis
of a scalar field is converted to the analysis of the gradient
of the scalar field, which gives rise to a curl-free vector
field. The Morse-Smale complex then decomposes the
manifold into cells (usually quadrilateral) of uniform flow
according to the gradient vector field. Note that this
decomposition is equivalent to the segmentation of the
flow domain using the topological skeleton of vector fields
[14] where the obtained cells are known as a basin. Recent
work on the Morse-Smale complex for the analysis of scalar
fields can be found in [12] and [13]. Our work on the Morse
decompositions of vector fields is concerned with the
extraction of the regions of flow recurrence containing fixed
points and periodic orbits, as well as their connectivity
information (Fig. 3). The focus is the reliable identification
of flow recurrence. In contrast to a Morse-Smale complex
which addresses scalar fields (curl-free fields), Morse
decomposition handles general vector fields.

2.3 Multiscale Processing of Vector Fields

The presented work can be considered as a means of
multiscale processing of vector fields, an active research
topic. There are two directions in multiscale processing:
refinement and simplification. While this paper focuses on
the refinement aspect, it is worth reviewing some simplifi-
cation work on this topic. One of the earliest investigations
on the subject of topological simplification in visualization

was done by De Leeuw and Van Liere [4]. They make use of
a distance metric to determine the pair of fixed points to be
canceled. In follow-up work, they perform topological
simplification based on an area metric [6]. These techniques
are applied to two important applications from vector field
simulation [5]. Tricoche et al. [34] present a simplification
method that also provides a piecewise analytic description
for the simplified field. In this way, complementary
visualizations such as texture-based methods [19] may be
combined with the visualization result. This method is later
extended to time-dependent 2D flows [36]. Tricoche et al.
[35] also present a topological simplification method very
similar to De Leeuw and Van Liere [6]. However, simplifica-
tions are achieved by actually modifying the vectors of the
original underlying data field. Theisel et al. [31] present an
algorithm for compressing vector fields while preserving
their topology. Later, they combine both topological
simplification and topology preserving compression techni-
ques [30]. Tong et al. [33] propose multiscale decomposition
of a vector field using Hodge decomposition and then
smooth each component independently before summing
them. Zhang et al. [40] introduce a framework for fixed point
pair cancellation based on Conley index theory for vector
field editing. Chen et al. [1] extend this idea to include
periodic orbits into this framework and present a more
complete pair cancellation scenario. For an overview of
related work on vector field topology, see Laramee et al. [17].

3 BACKGROUND

In this section, we review the relevant concepts related to
Morse decomposition for completeness.

3.1 Morse Decomposition and Morse Connection
Graph

Consider a vector field V on a manifoldM whose solution
defines a map ’ : IR�M!M. A trajectory through a
point x0 2 M is a curve onM that is obtained by solving the
initial value problem _x ¼ V ðxÞ, xð0Þ ¼ x0. A Morse decom-
position is a collection of disjoint closed sets (called Morse
sets) that together contain all the recurrent dynamics of the
flow induced by the vector field. More precisely, sets Mi,
i 2 f1; 2; . . . ; Ng form a Morse decomposition if and only if
the trajectory of any point is either 1) entirely contained in
one of the Morse sets or 2) contained in some Morse set Mi

for large enough negative times and in some other Morse set
Mj, with j > i, for large enough positive times. Intuitively,
2) means that the trajectory of any point outside the Morse
sets can only move from a set with lower subscript to a set
with a higher subscript. 2) excludes any recurrent dynamics
outside the Morse sets, making it gradient-like [3]. In
practice, the partial order between Morse sets can be
represented as an acyclic directed graph called a Morse
connection graph, or MCG.

An indexing of Morse sets consistent with the above
definition can be obtained from the MCG by means of
topological sort. For the example shown in Fig. 2a, the
Morse sets forming a Morse decomposition can be M1 ¼ R1,
M2 ¼ S1, M3 ¼ S2, M4 ¼ S3, M5 ¼ A2, M6 ¼ A1. Clearly, the
MCG contains more restrictions on connecting trajectories
than the resulting sequence (linear ordering) of Morse sets
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and therefore carries more information about the structure
of the flow.

We now turn to a review of the computation of Morse
decompositions. In this work, the underlying domain is
represented by a triangular mesh. Vector values are defined
at the vertices only, and interpolation is used to obtain
values on the edges and inside triangles. For the planar
case, we use the piecewise linear interpolation method [35].
On curved surfaces, we borrow the interpolation scheme of
Zhang et al. [40], which guarantees vector field continuity
across the vertices and edges of the mesh. These interpola-
tion schemes support efficient flow analysis operations on
both planes and surfaces.

Chen et al. [2] describe a pipeline for the computation of
Morse decompositions of the given vector fields. In this
pipeline, the input vector field is first converted into a
directed graph (i.e., FG), denoted by F , through flow
combinatorialization. The nodes of F are the individual
triangles of the mesh where the vector field is defined. The
directed edges of F indicate the flow mapping relations
between triangles. For instance, if there is a directed edge
T1 ! T2, some particles inside triangle T1 can reach T2

following the flow. In other words, F encodes the
dynamics of the flow at a combinatorial level. There are
two approaches to compute F : the geometry-based
approach [1] and the �-map approach [2]. The geometry-
based method computes the flow mapping (directed edges)
between neighboring triangles by considering the flow
behavior across each triangle edge. In contrast, the �-map
approach keeps track of the image of each triangle over a
constant time � to obtain the flow mapping. Fig. 5
illustrates these two approaches. The red curved closure
(Fig. 5 right) illustrates the real image IT of T . The set of
triangles that intersect with IT is referred to as the outer
approximation of this image.

Second, the strongly connected components are extracted
from the directed graph F . These strongly connected
components correspond to the regions enclosing flow
recurrence. The Conley index of each region is computed.
Those regions with nontrivial Conley indices contain the
Morse sets of interest [16]. The strongly connected
components consisting of more than two triangles are also
considered, since they may contain multiple features that
cancel each other such that the flow at the boundary acts
like a regular flow. For instance, in Fig. 2a, the Conley index
of Morse set S1 is trivial. However, it contains a saddle and
a source whose total indices sum to zero.

Third, each strongly connected component correspond-
ing to the region with either a nontrivial Conley index or

more than one triangle is collapsed into a single node. This
reduces the original graph into a quotient graph. From the
quotient graph, the final MCG can be computed through
path searching between these strongly connected compo-
nents using standard graph search algorithms.

The complete algorithm of this pipeline is provided in [2].
We point out that Chen et al. do not provide the algorithm
for Conley index computation which will be addressed in
this work. In addition, they do not show the relation between
the connections (dotted regions) of Morse sets and the
separatrices in the differential topology of vector fields. We
will provide such discussion in Section 5.2.

The computation of the Morse decomposition of a vector
field typically requires repeating experiments with different
� ’s according to the user’s requirements before a satisfying
MCG is returned. Fig. 4 illustrates such an iterative process.
This manual process can be labor intensive and inconsistent
in the sense that each trial relabels the MCG such that there
is no correspondence of Morse sets between any two
computations. We address this challenge by introducing an
automatic local update scheme for flow combinatorializa-
tion and MCG computation.

3.2 Conley Index

The computation and visualization of MCGs requires the
ability to classify the extracted Morse sets. Chen et al.
simply resort to the direction of the directed edges
emanating from the Morse sets to classify them [2]. The
more accurate classification requires the introduction of a
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Fig. 4. The MCG computation pipeline using Morse decomposition. Note
that the modules colored in black are the focus in this paper. More
specifically, we introduce the idea of local flow combinatorialization and
provide an efficient algorithm for the computation of an upper bound of
the Conley index.

Fig. 5. Two approaches to flow combinatorialization: a geometry-based
approach (left) and the �-map (middle and right). Each node in the
directed graphs corresponds to a triangle of the mesh. The images of
triangle T1 in the right two figures are shown as the red closures. The set
of triangles that intersect with each image of T1 is referred to as the outer
approximation of this image [2]. Note that the geometry-based method
produces an FG which is a super set of an FG using the �-map
approach. As such, the FG from a �-map approach is finer and more
accurate than the FG of the geometry-based method. For instance, the
path, colored in green, from T1 to T21 in the left FG does not reflect the
accurate flow map (the right FG’s). The right two figures also illustrate
how an increasing � value will make a better approximation of the flow
map. The brown dots (middle figure) are particles enclosed in T1 and
advected by the flow. The gray dots are particles inside the outer
approximation (union of the triangles T2; T3; T4; T8; T9; T10) of the image
of T1 over �1 but outside of the true image of T1 (the red closure). They
represent the error between the outer approximation and the true image.
To obtain the outer approximation of the image of T1 over �2 ¼ 2�1, we
can use the middle FG computed using �1. This is equivalent to advect
the particles inside the previous approximation (all the gray and brown
dots) over �1. This leads to the dark gray closure in the right figure.
However, directly tracking the image of T1 over �2 produces a smaller set
of triangles containing the real image of it (the red closure in the right),
which has smaller error than the one containing the dark gray closure.



topological descriptor called the Conley index. In our
approach the Conley index is used to classify Morse sets
and identify which Morse sets need further refinement
(Section 7).

Computing the Conley index of a set M is particularly
simple if M is an isolating block, i.e., if every point x on the
boundary of M is an exit point or an entry point. An entry
point is a point x whose trajectory for sufficiently small
negative times (traced in the reversed direction) is outside
M. Similarly, x is an exit point if its trajectory is outside M
for all sufficiently small positive times (traced in the flow
direction).

The Conley index of M can be defined as the homology
of the quotient space M=L, where L is the exit set consisting
of all exit points [15]. Intuitively, the quotient space can be
obtained from M by collapsing all points in L into a single
point (e.g., collapsing the two red segments of Fig. 6b into a
point). ðM;LÞ is an index pair in the sense of Conley [3]. In
what follows, we represent the Conley index of M as a
sequence of Betti numbers of M=L [7]. Let �k be the k-
dimensional Betti number. We assume that M is a subset of
a two-dimensional manifold surface, a triangulation of M is
available, and that L is a union of boundary edges of M,
called exit edges. Thus, the Conley index has the form of
CH�ðMÞ ¼ ð�0; �1; �2Þ since other Betti numbers are all zero
based on the assumption of two-dimensional manifolds.
More detailed explanation of how the Betti numbers of a
quotient space are computed is provided in Section 6.

Note that for a 2D flow, �0 and �2 cannot be both
positive. Further, �0; �2 � 1 for an isolated block with one
connected component (e.g., one Morse set). To that end,
given the three Betti numbers of the Conley index, a Morse
set can be classified as follows: If �0 ¼ 1, it is a sink-like
Morse set (colored in red); if �2 ¼ 1, it is a source-like Morse
set (colored in green); otherwise, it is a saddle-like Morse set
(colored in blue) (see Figs. 1, 2, and 3). In addition, a
number of fundamental Conley indices in 2D flow analysis
are as follows [1]:

x0 an attracting fixed point ðe:g:; sinkÞ ) CH�ðx0Þ ¼ ð1; 0; 0Þ
x0 a saddle fixed point) CH�ðx0Þ ¼ ð0; 1; 0Þ

x0 a repelling fixed point ðe:g:; sourceÞ ) CH�ðx0Þ ¼ ð0; 0; 1Þ
� an attracting periodic orbit) CH�ð�Þ ¼ ð1; 1; 0Þ

� a repelling periodic orbit) CH�ð�Þ ¼ ð0; 1; 1Þ
M ¼ ; ) CH�ðMÞ ¼ ð0; 0; 0Þ:

From this, we see that the Conley index is a more general
topological descriptor for the characterization of different

flow features than the Poincaré index [35]. Particularly, the
Poincaré index of M is �0 � �1 þ �2 [21].

To visualize the Conley index of each detected Morse set
in the MCG, we make the following modification com-
pared to the MCG visualization used by Chen et al. [2].
Since �0; �2 can only be either 0 or 1 and have been used to
classify Morse sets, we describe how we visualize the first
Betti number �1. Particularly, we visualize it using
concentric circles. For instance, if �1 ¼ 1, the corresponding
Morse set is visualized as a solid disk with a circle around
it (see the inlet image, for an example). Similarly, if �1 ¼ N ,
there will be N concentric circles around the solid disk. The
color of the additional circles is determined by the type of
the Morse set: green for source-like Morse sets, red for
sink-like, and blue for saddle-like. This improved visuali-
zation of MCG enables the user to distinguish the periodic
orbit like Morse sets from the source or sink like Morse sets
(e.g., the MCG in Fig. 1e versus the one in Fig. 1c). The
resulting MCGs have similar appearance as ECG with one
difference being the visualization of saddles. Specifically, in
an ECG saddles are displayed as blue disks, while in an
MCG they are drawn as blue disks surrounded by a few
circles (see the ECGs and MCGs in Fig. 3).

4 PIPELINE OF THE HIERARCHICAL MORSE

DECOMPOSITION

Theory of dynamical systems shows that an isolating
neighborhood (a polygonal region under a discrete setting)
exists for each Morse set [16]. In addition, Chen et al. [2]
demonstrate that computing the flow combinatorialization
does not require a constant � value everywhere in the
domain. This leads us to a local refinement scheme with
spatially varying � values. Next we describe our pipeline.

First, an MCG is computed from the FG using a
geometry-based flow combinatorialization. We denote the
Morse sets in this MCG as MðX;V Þ. Second, we compute
an upper bound of the Conley index of each detected Morse
set (Section 6) as well as a priority value based on this upper
bound and the area of the Morse set (Section 7). Third, all
Morse sets are placed in a priority queue Q. If Q is not
empty, we enter an iterative process.

We remove the top element Mi from Q and set � ¼ �min
(�min can be provided by the user) or 2� pre used � , a
previously used value if Mi has been refined before. We
then update the local FG, F i by conducting a �-map based
flow combinatorialization with � within Mi. Next, we
extract the strongly connected components of F i and
identify the Morse sets MiðX;V Þ by computing the upper
bounds of the Conley indices of these components. If the
number of Morse sets in MiðX;V Þ is larger than 1, which
means the selected Morse set is refined, we construct a local
MCGi and incorporate MCGi into MCG and add MiðX;V Þ
into Q . If the number of Morse sets in MiðX;V Þ equals 1
and 2� � �max (where �max is a user specified maximum �),
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Fig. 6. A number of simple examples of isolating blocks M (shaded
regions) containing (a) a sink ð1; 0; 0Þ, (b) a saddle ð0; 1; 0Þ, and (c) a
repelling periodic orbit ð0; 1; 1Þ. Red lines represent the exit sets L.



we set � ¼ 2� and proceed as before. Otherwise, Mi cannot

be further refined for the given �max and will be removed

from Q. This refinement process repeats until Q is empty.

Note that in order to allow the refinement to exhaustively

apply the values of � up to �max, �min can be computed as

�max=2k (k 2 IN).
Fig. 7 illustrates this pipeline. The modules colored in

black are the focus of this paper, with the implementation of

local flow combinatorialization provided in Section 5, the

computation of the Conley index discussed in Section 6, and

the computation of the priority value introduced in Section 7.

This pipeline proceeds in a hierarchical fashion and is

expected to produce an MCG (Fig. 1e) similar to the one

produced by the previous manual �-map approach [2] with

respect to a globally applied � (Fig. 1c). More importantly,

the intermediate and final MCGs produced using this

pipeline are guaranteed to be topologically consistent. In

contrast, the MCGs generated with different � values using a

global computation scheme lack such consistency (Figs. 1b

and 1c). After refining Morse sets (i.e., regions with flow

recurrence), the connection regions that connect them are

similarly refined (Section 5.2).

5 LOCAL FLOW COMBINATORIALIZATION

The key to our hierarchical Morse decomposition approach
is the ability to locally modify the flow combinatorializa-
tion. In this section, we show that locally updating the FG
in a particular fashion will not affect the flow structure with
respect to MCG outside of the bounded Morse neighbor-
hood of interest. In addition, the local update scheme can be
adapted to refine the connection regions (the dotted regions
in Figs. 1 and 2).

5.1 Refine Morse Sets

In this section, we discuss how to refine a Morse set Mi

locally. First, we update the flow combinatorialization
graph F . The update procedure replaces all edges out of
every triangle in Mi by edges computed using a larger �
value. The new edges are obtained using a function
identical to construct_multivaluemap in [2], but only edges
out of triangles in Mi are constructed.

Having updated the flow combinatorialization graph, we
are set to refine the Morse decomposition. This is done by
replacing Mi with strongly connected components of the
restriction F i of the refined flow combinatorialization graph
F to Mi. The set of vertices of F i consists of triangles in Mi

and the set of edges contains edges of F that start and end
at a triangle in Mi. Clearly, the resulting strongly connected
components are subsets of Mi.

The refinement process works by increasing the accu-
racy of the flow combinatorialization graph. To illustrate
this, assume that F 1 and F 2 are flow combinatorializations
for � and 2� (respectively). For a given triangle �, both
graphs provide an upper bound (i.e., the outer approxima-
tion) on the image D of the triangle under translation by
time 2� along the flow. To obtain an upper bound on D
from F 1, one can follow two-edge paths from � in F 1 and
union the triangles at the endpoints of these paths. The
upper bound provided by F 2 is the union of all endpoints
of edges in F 2 starting at �. The later bound is generally
better (i.e., smaller) than the former (see Fig. 5, middle and
right, for an illustration).

Fig. 2 provides an example of the MCG refinement using
our local updating scheme. We start from an MCG (left)
which is computed from a flow combinatorialization using
the geometry-based method. Next, we perform a local
update inside the extracted Morse sets with larger � values.
Note that in addition to the refined Morse sets, the
connection regions [2] between two Morse sets are refined
due to the refinement of the underlying F which we use to
compute the connection region.

5.2 Refine Connection Regions

After refining the Morse sets, we refine the connection
regions between the newly created Morse sets and their
original neighbors in the MCG before refinement. We first
review the computation of connection regions given an FG.

5.2.1 Compute Connection Regions

We are interested in the connections starting from saddle-
like Morse sets. Consider an FG and its Morse sets
MðX;V Þ. If Mj 2MðX;V Þ is a saddle-like Morse set, we
grow a region Rþ from it following the outgoing edges of
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Fig. 7. The pipeline of the proposed locally hierarchical refinement of
Morse decompositions of vector fields. Note that the highlighted
modules are the focus in this paper (Section 5 for local refinement,
Section 6 for Conley index computation, and Section 7 for the
computation of the priority values).



FG until it reaches another Morse set Mkðk 6¼ jÞ. Next, we
grow a region R� from Mk following the outgoing edges of
�FG (the inverse graph of FG). R ¼ Rþ \R� is a
connection region containing all the paths connecting Mj

and Mk. This process continues until we have identified all
the connection regions starting from Mj. A similar process
is conducted to take care of the other (both outgoing and
incoming) connection regions from Mj.

5.2.2 Connection Region Refinement

While the connection regions can be shown to contain all
connecting trajectories between two Morse sets (Section 10.2),
they tend to be large if computed using the geometry-based
method or a small value of � , similar to a Morse set generated
using the geometry-based method or a small � value.
Therefore, we present a refinement technique to improve
the precision of these regions.

Let R be a connection region for two Morse sets Mj and
Mk. Recall that R consists of all paths from Mj to Mk in a
flow combinatorialization graph FG. The edges of the FG
are obtained using either the geometry-based method or the
�-map with some positive value of � . The refinement
procedure removes all edges out of nodes in A :¼
R [Mj [Mk and into nodes in R from FG. These edges
are replaced with edges out of nodes in A into R computed
using a larger value of � (ideally, larger than the maximum
� used to compute a removed edge, but this is not required
for the containment property proved in Section 10.2). Let
FG0 be the updated graph. The region connecting Mj and
Mk is recomputed locally, by growing regions out of Mj

and Mk within R. The refined connection region R0 is the
union of all paths in R connecting the two Morse sets Mj

and Mk in the updated graph FG0.
This connection region refinement can be performed

either during the refinement of Morse sets or after all the
Morse sets have been refined. We elect to do the latter in our
pipeline because of the simplicity of implementation and
faster computation. Fig. 8 provides an example comparing
the connection regions before and after refinement.

6 CONLEY INDEX COMPUTATION

As described in Section 3.2, the Conley index is easy to
compute for an isolating blockM. Morse sets computed using
the geometry method are isolating blocks [1], but this is not
true for Morse sets computed using the �-map approach.
However, an upper bound on the Conley index (called an

estimate of the index later on), that tends to be the same as the
index itself, is easy to obtain for such Morse sets.

The construction described here is based on [28]. Let L0

be a union of edges of M obtained as follows: In order to
decide if an edge e on the boundary of M is contained in L0,
take a triangle T incident upon e (i.e., e is an edge of T ) and
outside M. Edge e is in L0 if and only if there is an edge of
FG that starts at a triangle in M and ends at T . Note that
ðM;L0Þ is not an index pair for the flow, in the sense of
Section 3.2. In particular, one cannot claim that the Conley
index is the same as the Betti numbers of M=L0. However,
in Section 10.1 we give a proof that the Betti numbers of
M=L0 are an upper bound for the Betti numbers of the
Conley index of the flow on Morse set M.

An example is shown in Fig. 9. Consider a boundary

edge e1 shared by triangles T1 2M and T9 62M. There is no

directed edge pointing from a triangle in M into T9. Edge e1

is not contained in L0. Now consider edge e3 and triangle

T11 62M. There is a directed edge from T4 2M to T11.

Hence, e3 � L0.
We now turn to the description of the computation of the

Betti numbers for M=L0. The zero-dimensional Betti number

�00 is equal to the number of connected components inM that

are disjoint withL0. IfM is connected, then �00 is zero ifL0 6¼ ;
and 1 otherwise. �02 is equal to the number of connected

components of M whose entire boundary is contained in L0.
By Dold [7], �ðM=L0Þ ¼ �00 � �01 þ �02 ¼ �ðMÞ � �ðL0Þ,

whereby �ðXÞ we mean the Euler characteristic of X.

�ðMÞ (�ðL0Þ) is equal to the number of triangles minus

number of edges plus number of vertices in M (respec-

tively, L0) and therefore is easy to compute. Since �00 and �02
are already known, �01 can be determined from the equation

�00 � �01 þ �02 ¼ �ðMÞ � �ðL0Þ.
Examples of upper bounds for the synthetic vector fields

are shown in Figs. 10 and 11. Note that for both data sets,

the upper bound is the same as the Conley index for each

Morse set.

7 MORSE SET IDENTIFICATION FOR FURTHER

REFINEMENT

In this section, we introduce two metrics used to identify

Morse sets for refinement in the automatic framework.
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Fig. 8. This figure shows the connection regions before (left) and after
refinement (right).

Fig. 9. This illustrates the classification of boundary edges. The image to
the left provides a portion of the mesh with a Morse set M inside the
shadow region. The image to the right provides the configuration of a
discrete map (i.e., a flow combinatorialization) F � . Note that we ignore
the inner configuration of the graph inside the Morse set M because it
does not affect the classification.



On the finest level of the hierarchy, one would like to

obtain Morse sets that correspond to hyperbolic fixed points

or periodic orbits (whenever possible). Thus, our first metric

is defined as the distance of the Conley index of the Morse set

to the closest Conley index of a hyperbolic fixed point or

periodic orbit. More precisely, let E be the set of all possible

indices of hyperbolic fixed points and periodic orbits, i.e.,

(Section 3.2)

E ¼ fð1; 0; 0Þ; ð0; 1; 0Þ; ð0; 0; 1Þ; ð1; 1; 0Þ; ð0; 1; 1Þg:

The topology metric of a Morse set M is defined by

tmðMÞ ¼ min
ð�0;�1;�2Þ2E

X2

k¼0

j�kðMÞ � �kj
( )

:

A motivation for this metric is that the more complex

indices typically indicate complex flow characteristics

which require further refinement (e.g., Fig. 11, R1).
The topology metric alone is not a sufficient refinement

criterion. For instance, the Morse set S3 in Fig. 10 (left) has
the same Conley index ð0; 1; 0Þ as a region containing a

saddle. However, a finer MCG reveals that it contains a
saddle and an attracting periodic orbit and therefore should
be refined. To handle such cases, we make use of a geometry
metric, defined as the number of triangles in the Morse set M
and denoted by gmðMÞ. It is intuitive that a Morse set
containing a large number of triangles (therefore larger area)
may contain more detailed dynamics. For instance, Fig. 12
(leftmost) shows the result of the Morse decomposition of
the gas engine simulation using a geometry-based approach.
Note that there is a Morse set at the back of the cylinder of
the engine which covers a large portion of the engine
surface. Further refining this Morse set reveals more
detailed structure.

Combining the above topology and geometry metrics,
we define the priority P ðMÞ of a Morse set M by

P ðMÞ ¼ ð1þ tmðMÞÞgmðMÞ: ð1Þ

This priority value is used to determine the order of the
refinement of Morse sets in the current MCG. The larger the
value, the earlier the Morse set will be refined. Morse sets
containing one triangle are not considered for refinement.

Ring-like regions containing a periodic orbit have larger
P value since they contain many triangles (for example,
Morse sets R3 and R4 in Fig. 10 (right)). In this case, further
refinement will discover that no more Morse sets can be
extracted. The system then removes these Morse sets from
the priority queue Q (Fig. 7). Note that once local
refinement has been applied to a Morse set without success
(until �max or a user specified maximum number of trials), it
will not be processed again. This rule ensures the refine-
ment process terminates even if �max ¼ 1 (see Section 8.3).
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Fig. 11. This figure illustrates an example on how the upper bound of the
Conley index can help identify Morse set with complex flow. Note that
Morse set R1 has an upper bound on its Conley index as ð0; 2; 1Þ. In the
meantime, the flow in this Morse set contains two repelling periodic
orbits (green loops) and a saddle (blue dot). Therefore, based on its
upper bound, we determine that R1 should be refined further.

Fig. 10. The computed upper bounds of the Conley indices of all Morse
sets extracted from two analytical vector fields. The image to the left
shows the results using a geometry-based method, while the image to
the right provides the results of an MCG derived from a �-map with
� ¼ 0:2. Note that the upper bounds for the Morse sets in the left
example are their actual Conley indices. In addition, in our experience
the obtained upper bounds for the Morse sets computed from a �-map
approach are typically equal to the ideal Conley indices, such as, in the
example to the right.

Fig. 12. This figure illustrates the refinement process of the MCG from a gas engine simulation. Left-most shows the MCG of a geometry-based
approach. From (1-3), we refine the circulated Morse set with � ¼ 0:2, 0.4, and 0.4, respectively. The MCG obtained using a global � ¼ 0:4 shows the
similar result (right-most). The color coding is provided in Fig. 1.



Fig. 12 provides the result of the consecutive refinement
for a gas engine simulation. Note that the combination of
the topology and geometry metrics in (1) may not be
intuitive. However, it works well for all the examples we
have examined. Exploring a better combination is a possible
direction for future work.

8 APPLICATIONS

We have applied our automatic hierarchical refinement
framework to a number of analytic and real-world simulation
data sets. In what follows, we provide and discuss the results.

8.1 Results

Figs. 1d and 1e provide the results of an analytic data set. This
planar data set consists of 6,144 triangles. Our experiment
takes 10.11 seconds to return the result given �max ¼ 0:2. The
global method with � ¼ 0:2 takes 22.88 seconds to compute.
Note that both methods return the same MCG and similar
Morse sets with the difference of a few featureless triangles
(i.e., triangles with gradient-like flow).

Although the performance gain on planar data is about a
factor of 3, we have observed better performance in the
analysis of the simulation data (see Table 1). Figs. 13, 14,
and 15 provide the analysis results of the present method
and the global method as the comparison for a gas engine,
diesel engine, and cooling jacket simulations, respectively.
All these data are the extrapolated boundary velocity fields
that are obtained through a 3D simulation inside the
respective models [18], [20]. In particular, the gas engine
simulation data set consists of 26,298 triangles. Our
hierarchical refinement process takes 65.97 seconds to
analyze, while the global method takes 273.2 seconds. They
both use �max ¼ 0:4. Note that both analyses successfully
extract the circular pattern at the back of the cylinder of the
engine. However, more detailed information will need a
larger � value. For illustration, we decompose the refine-
ment in steps as shown in Fig. 12. From (1-3), we refine the
circulated Morse set with � ¼ 0:2, 0.4, and 0.4, respectively.

The diesel engine simulation looks for patterns of the
combustion flow rotating around the axis of the cylinder [1],
[20]. Both our hierarchical analysis and the global method
can correctly identify this pattern at the bottom of the
engine (middle column of Fig. 14). However, our method
takes only 96.30 seconds for this data set with 221,574
triangles, compared to the 991.1 seconds using a global
method (�max ¼ 0:4 for both methods).

The cooling jacket simulation data set possesses 227,868
triangles and a complex geometry. Fig. 15 provides the
results using our hierarchical refinement framework and a
global �-map approach. We can see that most of the
extracted features (the colored regions) are regions of the
geometry above and below the cooling jacket gasket
(between the cylinder block and head). This is where the
flow exhibits the most complex behavior [18]. These regions
exhibit a number of swirling flow patterns which are
detrimental to effective heat transfer away from the engine
block. Both the hierarchical refinement and the global
computation return similar results. However, the former
takes 435.2 seconds while the latter takes 1,551.3 seconds.
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Fig. 13. This figure shows the results of the Morse decompositions of a
gas engine simulation data set using a global method (left column), and
the present automatic refinement (right column). Both methods employ
�max ¼ 0:4. Note that both methods produce comparable decomposition
with a slight difference of the shapes and sizes of the obtained Morse
sets. The color coding is provided in Fig. 1.

TABLE 1
The Complexity and Timing Results for Two CFD Data Simulating in-Cylinder Flow through a Combustion Engine

Times (in seconds) are measured on a PC with Intel(R) Xeon(R) 2.33 GHz dual processors and 8 GB RAM. Note that we compare only the
performance of the automatic refinement framework with the global � approach with the � ¼ �max. Note that the timing does not include the time for
connection region refinement.



Table 1 provides the timing information of the automatic
refinement of the MCGs (connection region refinement is
not included) of the data used in this paper. Note that we
compare the performance of the automatic refinement
framework only with the global � approach with � ¼ �max.
Additional time spent on smaller � values and the user
interactions for the global � scheme is not considered.
Regardless, our automatic refinement framework exhibits
better performance time. Note that all times are measured
on a PC with Intel(R) Xeon(R) 2.33 GHz dual processors
and 8 GB RAM. To achieve fast computation, the first-order
Euler integrator has been employed for all FG computa-
tions in Table 1. In addition, for all tests in Table 1 �min ¼
0:1 is used to start the refinement. From these results, we
see that our method improves the analysis with up to one
order of magnitude speedup for the real simulation data.

8.2 Discussion

8.2.1 Global Method versus Adaptive Framework

We have observed some discrepancy between the global
method and the presented adaptive refinement in some of
the results, although they are generally comparable. This
small discrepancy between the global � MCG and hier-
archical MCG is caused by the difference of the computed
FG’s. The hierarchical refinement uses adaptive � values
over the domain, while the global method uses a uniform � .
Also, the numerical inaccuracy incurred during the

computation of the samples along edges for estimating
the outer approximation, especially in a flow with high
divergence or stretching, contributes to this difference [2].
Addressing this issue is one of our future work directions.

Despite this small discrepancy, the adaptive refinement
is better. It is faster, more versatile, and more supportive of
the resulting Morse decomposition’s complexity. Therefore,
it is fully capable of performing topologically consistent
multiscale visualization.

8.2.2 Performance Analysis

From the experiments, we have observed different perfor-
mance gains for different data (see Table 1), due to the
varying complexity of the flows. For instance, if the flow
contains highly rotational (swirling) behavior, the obtained
Morse sets with a smaller � value can correspond to
relatively large regions in terms of area (e.g., the back of the
cylinder of the gas engine simulation in Fig. 12). It is likely
that more computation is needed in order to refine them.
On the other hand, if the flow is mostly gradient-like (curl-
free) (e.g., the cylinder body of the diesel engine simulation
in Fig. 14), the computation is typically much faster.

8.2.3 Comparison between MCGs and ECGs

Figs. 3 and 16, respectively, provide the comparison of the
MCGs and ECGs of the diesel engine and gas engine
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Fig. 14. This figure compares the results of the Morse decompositions of a diesel engine simulation data set using the present automatic refinement
(top) with the global method (bottom). Both analysis uses �max ¼ 0:4. The color coding is provided in Fig. 1.



simulations. To evaluate the stability of both methods,
different integration schemes were employed to compute
the ECGs and MCGs. From the results, we see that the ECG
computation returns different topological structures of the
same field, highlighted by the different extractions of
periodic orbits in both examples. On the other hand, MCGs
provide relatively stable structures under different integra-
tion schemes. This demonstrates that MCGs are more
reliable tool than ECGs in the analysis of flow structure.

Although MCGs need not extract as detailed informa-
tion as the trajectory-based topology, we point out that in
some engineering applications, identifying the regions
with certain flow behavior is more important than
computing the exact detailed structure. For instance, in
engine design, determining whether the simulated com-
bustion forms the ideal flow patterns is crucial for the
evaluation of the design quality of the engine blocks. This
can be achieved by identifying the desired flow behavior
at the boundary geometry of the engine [1]. The Morse set
at the back of the cylinder of the gas engine (Fig. 12)
indicates such an ideal behavior. In this case, it is more
useful to know there is certain swirling flow at the back of
the cylinder than to detail the number or types of the
periodic orbits. The same reasoning can be applied to the
cooling jacket simulation where the regions of stagnant
coolant flow are highlighted by the extracted Morse sets
(Fig. 15). We also note that if a more detailed structure is
needed, the trajectory-based (differential) topology [1],
[11], [20] can be extracted from the MCG with more
certainty [1], [2].

8.3 Extensions

As indicated in Section 3.1, the global method requires the
user to conduct a number of experiments with different �
values to obtain the optimal result. Although our previous
discussion uses a �max to terminate the refinement process,

this constraint is not necessary. For the further experi-
ments, we have removed this constraint and let the
refinement process continue until it converges. To guaran-
tee convergence, we also set a threshold k for each selected
Morse set. If the Morse set cannot be refined within k trials
(with k increasing values of �), it will be removed from the
queue Q. In the results provided in Fig. 17, we use k ¼ 4.
Parameter k can be increased for the extraction of more
detailed structure. The maximum values of � used for these
CFD data are 3.2 (Fig. 17, left), 12.8 (Fig. 17, middle), and
6.4 (Fig. 17, right), respectively. Such large values
(compared to the previously used 0.4) are apparently
difficult for the global method to predict and not necessary
for the whole domain. Note that the cumulative integration
errors with a large � could compromise the accuracy of the
obtained FG. Therefore, the obtained FG is no longer an
outer approximation of the true dynamics, and the upper
bound of the Conley index computation is no longer
guaranteed, which leads to incorrect classification of Morse
sets (e.g., the big blue ring-like Morse set in Fig. 17, left).
This is a limitation of the current Morse decomposition
computation which we would like to investigate more in
the future.

MCGs also provide a way to achieve hierarchical
topology representation of vector fields. This hierarchy
can be obtained by systematically increasing � to compute
the individual MCGs. However, the hierarchy obtained
using a global method lacks a consistent topological
relation between two successive levels, because each
computation relabels all the Morse sets (see Figs. 1b and
1c). In contrast, the present framework updates the MCG
locally and retains the consistent labeling, which provides
the consistent hierarchy (see Figs. 2 and 18). This
consistent hierarchy of a vector field can assist multiscale
visualization of the flow, which we plan to investigate in
future work.
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Fig. 15. The results on a cooling jacket simulation using the hierarchical refinement framework (top) and the global method (bottom). Both
computations use �max ¼ 0:4. The color coding is provided in Fig. 1.



9 CONCLUSION

In this paper, we have identified a major drawback of the

previous �-map based Morse decomposition method and

proposed a hierarchical refinement framework for the Morse

decompositions of vector fields. More specifically, our

recomputation is restricted to Morse sets identified through
a hybrid metric that includes the Conley index. The Conley
index is a more general topological descriptor than the
Poincaré index. In this work, we make use of the Conley
index to classify the extracted Morse sets and present a
combinatorial approach to compute this index. In addition,
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Fig. 16. This figure provides the ECGs and MCGs of the gas engine simulation computed using first-order Euler (left), RK2 (middle), and RK4 (right)
integrators (respectively) [24]. Note that the ECGs show different structures in terms of the number of periodic orbits: 20 (Euler), 21 (RK2), and 19
(RK4). Whereas, MCGs computed with � ¼ 0:3 show relatively stable results.

Fig. 17. This figure provides the Morse decompositions of the gas and diesel engine simulations, and cooling jacket simulation using the refinement
framework without setting �max. The analysis takes about 213, 1,012, and 4;524 s for these data sets, and returns MCGs with 63, 210, and 265 Morse
sets, respectively.



we present an algorithm to compute the upper bound on the
Conley index of a given Morse set based on a flow
combinatorialization graph (a discrete map). This upper
bound has been shown to be a good estimation to the true
Conley index for all the examples used in the paper. We have
proven the soundness of our hierarchical framework and
provided examples of applications to the real simulation
data which demonstrates the effectiveness of the framework.

The proposed framework improves the performance of
Morse decompositions by up to one order of magnitude for
the real simulation data. It also conducts the analysis in a
topologically consistent fashion. In addition, the hierarch-
ical framework and the computation algorithm for the
upper bound of the Conley index raises a future direction in
vector field simplification and multiscale processing and
visualization. We plan to investigate this in the future.

9.1 Extension to 3D and Unsteady Flow

The theory behind Morse decomposition and the Conley
index is dimensionless, i.e., it is possible to extend our work
to 3D steady vector fields. The implementation in 3D,
however, is unlikely to be a trivial extension of 2D and will
need more investigation. On the other hand, as a more
rigorous form than a vector field skeleton, Morse decom-
position is defined for steady vector fields. Extending it to
unsteady fluid mechanics will require new findings from
researchers in dynamical systems and fluid mechanics.

10 THEORETICAL RESULTS

10.1 Result 1

The k-dimensional Betti number of the Conley index of a Morse
set M obtained using the �-map approach cannot be larger than
the k-dimensional Betti number of M=L0, where L0 is determined
as described in Section 6.

Proof. By the results of Szymczak [28], the pair ðM;L0Þ is a
valid index pair for the continuous map ’� ¼ ’ð�; :Þ (note
that it is not necessarily a correct index pair for the flow).
In [22], it is shown that the k-dimensional Betti number
of the Conley index of the flow on M is equal to

lim
n!1

rank’n�;k;

where ’�;k is the automorphism induced by ’� on the
k-dimensional homology (with rational coefficients) of
the quotient space M=L0. The rank of an automorphism

cannot be higher than the dimension of the vector
space it acts on. In particular, the rank of ’n�;k is less or
equal than the k-dimensional Betti number of M=L0 for
any n. tu

10.2 Result 2

Connecting trajectories between Morse sets Mj and Mk are
contained in Mj [Mk [R, where R is the connection region

Proof. The �� and !� limit sets of x 2 M are closed subsets
of M which can be defined as

�ðxÞ : ¼ \t<0clð’ðð�1; tÞ; xÞÞ;
!ðxÞ : ¼ \t>0clð’ððt;1Þ; xÞÞ;

respectively. Let Mj and Mk be Morse sets and R be their
connecting region (before refinement). R is the union of
all paths in the FG that start in Mj and end in Mk. Take a
point x0 on the connecting trajectory between Mj and Mk,
i.e., such that �ðx0Þ �Mj and !ðx0Þ �Mk. The trajectory
of x0 eventually enters Mk when followed forward in
time. More precisely, there is a time T0 such that ’ðx0; tÞ 2
Mk for all t � T0. Let �0;�1; . . . ;�k be consecutive
triangles intersected by the section S of the trajectory
’ðx0; tÞ, with t 2 ½0; T0�. By definition of the FG, there is
an edge out of each of the triangles �l to a triangle �l0

with l0 > l or to a triangle in Mk. To see this, assume there
are no edges from �l to a triangle in Mk. If the edges in
FG out of �l are geometry edges, one can take l0 ¼ lþ 1.
Otherwise, edges out of �l are obtained using the �-map
and l0 is the index larger than l such that the correspond-
ing triangle contains ’ð�x; �Þ, where �x is the last point on
the section S of the trajectory of x0 and in �l. tu
By the above reasoning, there is a path in FG from a

triangle � containing x0 to Mk. Similarly, by traversing the
trajectory backward in time, one can argue that there is a
path from Mj to �. This proves that R [Mj [Mk (before
refinement) contains all trajectories connecting Mj and Mk.

The statement above can be proved for regions resulting
from refinement by induction on the number of refinement
steps. Assume all connecting trajectories are contained in
Mj [Mk [R. Now, updateFGas described in Section 5.2. Let
� be the �-value used in the update. Take x0 on a connecting
trajectory between Mj and Mk. Then, by following triangles
containing points ’ðx0; k�Þ, k ¼ 0; 1; . . . until the first one in
Mk, we obtain a path from a triangle � containing x0 to Mk.
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Fig. 18. The hierarchical representation of MCG on a portion of the cooling jacket. The arrows indicate the parent-children relations between the
obtained Morse sets. The first MCG is computed using the geometry-based method. Then, � ¼ 0:2, 0.4, and 0.8 are chosen to refine the
corresponding Morse sets.



Again, by reversing time, one can obtain a path fromMj to �.

Hence, � is in the region R0 resulting from refinement of R.

This proves that Mj [Mk [R0 contains all connecting

trajectories between the two Morse sets.
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