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Fig. 1. Visualization of the ground deformation associated with a simulation of the June, 1992 Mw=7.3 Landers, CA earthquake. (a)
new hybrid visualization of the displacement-gradient tensor field (α = 0.022, β = 0.8, iter = 800, mr = 10), (b) previous visualization
using hyperstreamlines only, (c) a common visualization method used in earthquake deformation studies showing the displacement
vector field only, (d) the expected deformation modes for a right-lateral fault. Note how the glyph packing in the complex domains (see
the highlighted region) better conveys the elliptical deformation pattern than the previous methods (e.g. (b) and (c)).

Abstract—Asymmetric tensor field visualization can provide important insight into fluid flows and solid deformations. Existing tech-
niques for asymmetric tensor fields focus on the analysis, and simply use evenly-spaced hyperstreamlines on surfaces following
eigenvectors and dual-eigenvectors in the tensor field. In this paper, we describe a hybrid visualization technique in which hyper-
streamlines and elliptical glyphs are used in real and complex domains, respectively. This enables a more faithful representation of
flow behaviors inside complex domains. In addition, we encode tensor magnitude, an important quantity in tensor field analysis, using
the density of hyperstreamlines and sizes of glyphs. This allows colors to be used to encode other important tensor quantities. To
facilitate quick visual exploration of the data from different viewpoints and at different resolutions, we employ an efficient image-space
approach in which hyperstreamlines and glyphs are generated quickly in the image plane. The combination of these techniques leads
to an efficient tensor field visualization system for domain scientists. We demonstrate the effectiveness of our visualization tech-
nique through applications to complex simulated engine fluid flow and earthquake deformation data. Feedback from domain expert
scientists, who are also co-authors, is provided.

Index Terms—Aasymmetric tensor fields, vector fields, glyph packing, hyperstreamline placement, view-dependent.

1 INTRODUCTION

Asymmetric tensor fields appear in a wide range of applications such
as solid and fluid mechanics, structural engineering, and medical
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imaging. In these applications, the asymmetric tensor fields often ap-
pear in the form of the spatial gradient of a vector field, such as the
velocity vector field in fluid dynamics or the deformation vector field
in solid mechanics. The velocity gradient tensor field describes all
of the non-translational kinematics in fluid parcels such as rotations,
stretchings, and volume changes which cannot be easily inferred from
direct visualization of the velocity vector field [43]. Consequently,
effective visualization techniques for asymmetric tensor fields can po-
tentially benefit many applications. In this work, we focus on the vi-
sualization of asymmetric tensor fields defined on a two-dimensional
manifold (plane, surfaces). 2D asymmetric tensor field visualization
is useful for cases where only two-dimensional data is available, such
as data taken by the Particle Imagery Velocimetry (PIV), satellite re-
mote sensing data on the water surface, and earthquake data. More-
over, as in the case of vector field and symmetric tensor field research,
two-dimensional visualization often provides key insight into the more
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challenging 3D analysis and visualization.

Despite the potentials of asymmetric tensor field visualization, there
has been relatively little work in this area. Most existing tensor field
visualization techniques focus on symmetric tensors and use either
glyphs or hyperstreamlines following the major or minor eigenvectors
of the tensor field. Due to fundamental differences between symmet-
ric and asymmetric tensors, these techniques cannot be easily adapted
to the visualization of the latter. For example, symmetric tensors al-
ways have real eigenvalues while asymmetric tensors can have com-
plex eigenvalues. Furthermore, the major and minor eigenvectors of
an asymmetric tensor with real eigenvalues need not be perpendicular.

To address this challenge, Zheng and Pang [46] introduce the con-
cept of dual-eigenvectors which provide directional information of a
2D asymmetric tensor field inside complex domains (i.e., complex
eigenvalues). Hyperstreamlines are used to follow the major dual-
eigenvectors in the complex domains and either the major or minor
eigenvectors in the real domains. Zhang et al. [43] extend this analysis
by introducing the concepts of eigenvalue manifold and eigenvector
manifold. With these manifolds, they develop analysis of 2D asym-
metric tensor fields providing physical interpretation of the velocity
gradient tensor field. Based on this analysis, the flow motion is dom-
inated by anisotropic stretching and rotations in the real and complex
domains, respectively. Zhang et al. also point out that the ellipti-
cal tensor patterns in the complex domains cannot be easily inferred
from hyperstreamlines following the dual-eigenvectors since the ec-
centricity information is missing. To overcome this difficulty, they
propose the concept of pseudo-eigenvectors. By intersecting evenly-
spaced hyperstreamlines that follow either the major or minor pseudo-
eigenvectors, one obtains diamond-shaped regions whose smallest en-
closing ellipses reflect the tensor patterns (Figure 1(b)). Finally, Zhang
et al. use colors to encode the tensor magnitude.

While the work by Zheng and Pang [46] and Zhang et al. [43] has
advanced our understanding of asymmetric tensors, we have found that
the provided visualization techniques are not adequate for domain ex-
perts from fluid mechanics and geophysics as pointed out by domain
experts Harry Yeh and Paul Vincent (co-authors of this paper). The ex-
isting visualization of the asymmetric tensor field in complex domains
using hyperstreamlines requires the user to infer the elliptical shapes
using the intersection of the hyperstreamlines. This intersection often
does not form the shape of a diamond due to the difficulty in achieving
perfectly evenly-spaced hyperstreamlines (see the region highlighted
by the yellow square in Figure 1(b)). This can cause difficulty in the
physical interpretation. For instance, the domain expert may not be
able to recognize the deformation pattern is rotation dominant because
their appearance is similar to those in the real domain. Furthermore,
the tensor magnitude, a quantity of great importance to the physical
interpretation has not been included in the previous visualization tech-
niques for asymmetric tensor fields. This means that the tensor magni-
tude has to be visualized using additional images, a situation domain
scientists wish to eliminate. Finally, efficient visual exploration of the
data sets requires the ability to inspect the data from any viewpoint and
at any level of detail, with quick feedback. Tracing hyperstreamlines
with controlled, possibly non-uniform spacing on surfaces is a com-
putationally expensive task as it requires extensive geodesic distance
computation. Compounding this with the fact that hyperstreamlines
need to be regenerated every time the user changes the level of detail
makes it computationally prohibitive to perform visual exploration of
tensor fields on surfaces.

This work addresses these challenges and presents an intuitive vi-
sualization in the context of solid and fluid mechanics as well as other
applications. Specifically, we make the following contributions: First,
we adapt the technique of glyph packing (represented as ellipses) to
the visualization of elliptical patterns in the complex domains. An
elliptical shaped glyph can provide more explicit visualization for ro-
tation dominant motion with the direction of stretching, and highlight
the distinct dynamic behaviors within real and complex domains bet-
ter than previous method using different colors [43] (see Figure 1 (a)
and (b)). Second, we encode the tensor magnitude into the size of
the glyphs and the density of the hyperstreamlines. Specifically, we
use denser hyperstreamlines and glyphs with smaller sizes (i.e. denser

packing since the density of glyphs is inversely proportional to glyph
size) to represent larger tensor magnitude. Even though tensor glyphs
typically indicate higher tensor magnitude with larger glyphs [17], we
feel an inverse magnitude representation is more consistent with that
used in flow vector fields, whereby the denser packing of streamlines
and the vortex lines represents larger discharge rates and vorticity, re-
spectively [35, 27]. Encoding the tensor magnitude in our hybrid vi-
sualization allows for the tensor patterns, magnitude, and eigenvalue
analysis to be presented in the same image, which facilitates the vi-
sual exploration and physical interpretation of the data. While this
approach has the advantage of including all deformation modes vi-
sualized in one plot, we recognize that users may prefer a different,
perhaps separate image to display the tensor magnitude. As such, we
are exploring different ways to display the tensor magnitude both in
the same plot as well as an option to toggle on and off a separate co-
registered image of tensor magnitude. Third, we present an efficient
image-space approach for our hybrid glyph and hyperstreamline tech-
nique. By carefully projecting the tensor field onto the image plane,
we reduce the run time for glyph packing and hyperstreamline place-
ment on surfaces with complex geometry, such as the cooling jacket,
from hours using an object-space approach to seconds; a two orders of
magnitude speed increase. The combination of these techniques pro-
vides an interactive visualization tool for domain experts to examine
their asymmetric tensor fields. The system provides users the ability
to quickly explore their data using hyperstreamlines, which is fast and
can provide the global configuration information of the data, followed
by the hybrid visualization when the user is satisfied with the current
view point. Finally, we apply our hybrid asymmetric tensor field vi-
sualization to both flow visualization and earthquake simulations. The
latter represents a new application of asymmetric tensor field visual-
ization, from earthquake fault mechanics. Interpretations from domain
experts Yeh and Vincent are provided.

The rest of the paper is organized as follows: Section 2 reviews
previous work related to this paper. Section 3 provides a brief descrip-
tion of basic concepts associated with asymmetric tensor field analy-
sis. The pipeline of our hybrid visualization framework is presented
in Section 4. Section 5 provides details of our modified glyph packing
in complex domains. An image-space implementation is described in
Section 6. In Section 7 we present visualization results of simulated
fluid flow and deformation data sets as well as physical interpretations
and analysis by domain experts. Section 8 summarizes this work.

2 RELATED WORK

There has been much work in the area of vector field visualization
though covering this work is beyond the scope of this paper. We refer
interested readers to the following surveys for comprehensive reviews
of these techniques [21, 22, 27]. Some of these techniques have been
adapted to second-order symmetric tensor fields. In contrast, there has
been relatively little work in the visualization of asymmetric tensor
fields.

Symmetric Tensor Field Visualization Symmetric tensor field anal-
ysis and visualization have been well researched for both two and three
dimensions. For the purpose of this paper, we will only refer to the
most relevant work. Delmarcelle and Hesselink [7] provide a compre-
hensive study on the topology of 2D symmetric tensor fields and de-
fine hyperstreamlines, which they use to visualize tensor fields. This
research is later extended to analysis in three dimensions [10, 45, 47]
and topological tracking in time-varying symmetric tensor fields [36].
Zheng and Pang provide a high-quality texture-based tensor field vi-
sualization technique, HyperLIC [44], which adapts the idea of Line
Integral Convolution (LIC) [4] to symmetric tensor fields. Hotz et
al. [13] present a texture-based method for visualizing 2D symmetric
tensor fields.

Evenly-spaced streamlines have been used to visualize vector fields
[5, 15, 24, 25, 28, 37, 39, 41]. Spencer et al. [35] improve the
efficiency of the streamline placement on surfaces via an image-
space approach. Rosanwo et al. [31] propose the dual streamline
seeding to avoid expensive geodesic computation on surfaces. The
idea of using evenly-spaced streamlines has been extended to tensor
fields [1, 9, 26, 42] and more generally N-way rotational symmetry
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(N-RoSy) fields [29, 30]. McLoughlin et al. [27] provide an overview
of seeding strategies.

Laidlaw et al. [19] stochastically place glyphs to minimize overlap
when generating multi-layered diffusion tensor visualization. A sim-
ilar glyph placement technique is introduced in the work of Kirby et
al. [18] in which glyphs represent certain vector and tensor attributes
of complex flow fields. The tensor splat method is proposed to con-
vert tensor values into tuned Gabor functions which are encoded into
2D and 3D textures [2, 3]. Reaction-diffusion equations have been
adapted by Kindlmann for tensor visualization [16] which are ex-
tended to the work on glyph packing [17]. In this study, a tensor-based
potential energy is defined to derive the placement of a system of parti-
cles whose final positions will be used to place glyphs. Hlawitschka et
al. [12] present an alternative glyph packing using Delaunay triangula-
tion which successfully reduces the computation cost. A similar tech-
nique that uses the dual of Delaunay triangulation, i.e. Voronoi tessel-
lation is also proposed by Feng et al. [8] to achieve better convergence
of glyph packing. Recently, Schultz and Kindlmann [33] introduce the
superquadric glyphs that can be used to visualize the general symmet-
ric second order tensors that could be non-positive-definite. Ellipsoid
packing has also been applied to generate anisotropic meshes [34].

In the flow visualization community, De Leeuw and Van Wijk [6]
visualize the local properties of a flow field by visualizing its gradi-
ent (Jacobian). They decompose the Jacobian matrix into symmetri-
cal and anti-symmetrical parts which are transformed to local frame
and further decomposed to different components representing acceler-
ation, shear, curvature, torsion, and convergence, respectively. These
components can then be mapped to different geometric primitives for
visualization. This is a relevant work. However, we apply a different
tensor decomposition in the present work.

Some past work has placed glyphs along hyperstreamlines such as
the work by Hlawitschka and Scheuermann on higher-order tensor
field analysis [11]. While such work also uses both primitives, it is
fundamentally different from our work since they are not placed in
complementary regions as in our case. It is not clear how to extend
their work to visualize asymmetric tensor fields in a straightforward
fashion. To our knowledge, our algorithm is the first to apply glyph
packing to visualize asymmetric tensor fields.

Asymmetric Tensor Field Visualization Hyperstreamline-based
techniques are employed for asymmetric tensor fields by Zheng and
Pang [46]. They present the concept of dual-eigenvectors for the com-
plex domains where eigenvalues and eigenvectors are complex. Their
visualization consists of hyperstreamlines following major and minor
eigenvectors in real domains and major dual-eigenvectors in complex
domains. Zhang et al. [43] extend this visualization and provide phys-
ical interpretation in the context of flow visualization, when the asym-
metric tensor is the velocity gradient tensor. They introduce the idea
of pseudo-eigenvectors, which are used to better illustrate the flow
patterns in the complex domains. They also define the concept of
eigenvalue and eigenvector manifolds used in tensor field analysis.
However, the visualization of the asymmetric tensor fields using hy-
perstreamlines computed in object space is prohibitively expensive for
the users. This work builds upon the analysis of Zhang et al. [43] and
focuses on the efficient visualization of the analysis result. This has
led to a thorough and interactive visualization system for asymmetric
tensor fields which can now be applied to the applications of fluid dy-
namics and earthquake engineering. We refer interested readers to the
accompanying video for a demonstration of our visualization system.

3 BACKGROUND

In this section we review the relevant background on asymmetric ten-
sor fields, based on [43, 46]. A second-order tensor T can be repre-
sented by an N ×N matrix Ti j where N is the dimension of the tensor.
T is symmetric when Ti j = Tji or anti-symmetric when Ti j =−Tji. The
trace of T is defined as ∑1≤i≤N Tii. T is traceless when the trace of T
is zero. Note that for any anti-symmetric tensor T Tii = 0 for 1≤ i≤N.

Any second-order tensor T can be uniquely decomposed as follows:

T = D+S+R (1)

where D is a multiple of the identity matrix, S is a symmetric and trace-
less matrix, and R is an anti-symmetric matrix. When T is the velocity
gradient tensor, D, S, and R represent the time rate of volume change,
angular deformation, and rotation, respectively. Similarly for the de-
formation gradient tensor in solid mechanics, D, S, and R represent
dilation or contraction, angular shear, and rotation, respectively.

In this paper, we will focus on two-dimensional asymmetric tensors,
i.e., N = 2. For this case, Equation 1 can be rewritten as

T = γdI + γs

(
cosθ sinθ
sinθ −cosθ

)
+ γr

(
0 −1
1 0

)
(2)

where γd = T11+T22

2 , γs =

√
(T11−T22)2+(T12+T21)2

2 , and γr =
T21−T12

2 are
the strengths of D, S, and R, respectively, while θ encodes the direc-
tions of angular deformation.

Because the eigenvector and dual-eigenvector information is not de-
pendent on γd , we can focus on traceless (deviatoric) tensors. Such
tensors can be parameterized as follows:

T (ρ,θ ,ϕ) = ρ cosϕ

(
cosθ sinθ
sinθ −cosθ

)
+ρ sinϕ

(
0 −1
1 0

)
(3)

Notice that the above form is a special case of Equation 2 in which

γd = 0, ρ =
√

γ2
s + γ2

r and ϕ = tan−1( γr

γs
) ∈ [− π

2 ,
π
2 ]. The eigenvalues

of T (ρ,θ ,ϕ) are:

E1,2 =

{ ±ρ
√

cos2ϕ if 0 ≤ |ϕ| ≤ π
4±ρ

√−cos2ϕ i if π
4 < |ϕ| ≤ π

2

(4)

where i satisfy i2 =−1. A tensor field T(p) is a tensor-valued func-
tion defined on an N-dimensional manifold D (N = 2 in our case).
We consider the map τ : D → S2 defined by τ : p �→ (θp,ϕp) where

θp and ϕp are the parameters corresponding to T (p). The S2 is the
so-called eigenvector manifold [43] for which the North and South
Poles (ϕ = π/2 and −π/2, respectively) correspond to pure rotations.
The latitude circles ϕ = ± π

4 represent tensors with equal real eigen-
values, and they form the boundaries of tensors with real eigenvalues
and with complex eigenvalues. The pre-image of τ of these tensors
are referred to as the degenerate curves [46], which divide the domain
into real domains (τ−1({(θ ,ϕ) : 0 ≤ |ϕ|< π

4 })) and complex domains

(τ−1({(θ ,ϕ) : π
4 < |ϕ| ≤ π

2 })).
In the context of fluids, i.e., when the tensor field is the gradient of

the velocity vector field, the following interpretation is applicable [43].
In the real domains, a linearized local flow pattern at a point resembles
a distorted hyperbola (see Figure 1 the stretching illustration in the
bottom row). The (real) eigenvectors indicate the direction of stretch-
ing an compression of fluid parcels. In the complex domains, lin-
earized local flow patterns are elliptical whose eccentricity is given by

e =
√

2sin(2|ϕ|)
1+sin(2|ϕ|) for π

4 < |ϕ| ≤ π
2 . The major and minor axes of the

ellipses are given by the dual-eigenvectors of the tensor, which are the
major and minor eigenvectors of the following symmetric matrix:

S(T ) =
sinϕ

|sinϕ| cosϕ

(
cos(θ + π

2 ) sin(θ + π
2 )

sin(θ + π
2 ) −cos(θ + π

2 )

)
(5)

Notice the dual-eigenvectors are not well-defined along the Equator
(ϕ = 0), pure symmetric tensors, and at the Poles (ϕ =±π/2), degen-
erate points in the eigenvector manifold. The set of degenerate points
in an asymmetric tensor field has a one-to-one correspondence with
the set of degenerate point of the symmetric tensor of Equation 5 [43].

4 HYBRID ASYMMETRIC TENSOR FIELD VISUALIZATION

The input to our visualization method is a triangular mesh and an
asymmetric tensor field defined on the vertices of the mesh. The spa-
tial gradient of a vector field is an example of the asymmetric tensor
fields.

The first step of our visualization pipeline is to perform tensor field
analysis [43], which computes the eigenvectors and dual-eigenvectors,
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(a) (b)

(c) (d)

Fig. 2. This figure illustrates the constituents of our hybrid visualization
using a synthetic vector field: (a) the color coding used for the back-
ground of the visualization which is based on the eigenvalue and eigen-
vector manifolds [43]. (b) the hyperstreamlines in the real domains, (c)
the glyphs in the complex domains. (d) shows the final visualization.

tensor magnitude, and the strengths of rotation, volume change, and
anisotropic stretching. Real and complex domain classification is per-
formed, and degenerate points are also extracted at this stage. In the
second step, we produce three intermediate constituents needed by the
final visualization: (a) colors encoding the eigen-analysis [43], (b) hy-
perstreamlines following the major and minor eigenvectors in the real
domains, and (c) glyphs showing the elliptical tensor patterns in the
complex domains. All three constituents are then integrated in the
same image (Figure 2(d)). The color coding for the eigenvalue analy-
sis (Figure 2(a)) is adopted from [43], which we briefly review here.
Regions dominated by expansion (positive volume change), contrac-
tion (negative volume change), anisotropic stretching, counterclock-
wise rotation, and clockwise rotation are colored with yellow, blue,
white, red, and green, respectively. For expansion, contraction, and
anisotropic stretching, we blend the colors with red or green to also
indicate the orientation of rotations in those regions (red: counter-
clockwise; green: clockwise) even though rotation is not the dominant
motion in these regions.

As the analysis of the input tensor field is handled using [43], we
now turn to the discussion of hyperstreamline placement in the real do-
mains and glyph packing in the complex domains, respectively. There
are a number of parameters we need for these two processes: 1) α: a
global scaling value to control the sizes of the glyphs and densities of
the hyperstreamlines; 2) β : the ratio of the total glyph area to the area
of a complex domain; 3) iter: the number of iterations for the glyph
packing; 4) mr: user specified maximum ratio of the maximum tensor
magnitude to the minimum tensor magnitude.

Hyperstreamline placement Our hyperstreamline placement adapts
the evenly-spaced streamline placement method of Jobard and
Lefer [15] to asymmetric tensor fields. Similar to [15], our method
traces hyperstreamlines from a set of seed points following the major
and minor eigenvectors, respectively. For each seed, a hyperstreamline
is generated and additional seeds along the hyperstreamline are added.
The tracing of a hyperstreamline stops when it approaches a degener-
ate point, hits the boundary of the mesh or a region, gets too close to an
existing hyperstreamline including itself, or has exceeded a maximal
length. To reflect the tensor magnitude, we incorporate this informa-
tion in the density of the hyperstreamlines. Specifically, during the

placement of a hyperstreamline, we reject the current integration point
p if its distance to a sample s on an existing hyperstreamline is smaller
than kα where k is a scaling factor determined by the tensor magni-
tude which will be described in Section 5.4. Note that k ≡ 1 returns
evenly-spaced hyperstreamlines. Similarly, we use k to determine the
positions of the new seeds from the latest hyperstreamline. For a point
p on the new hyperstreamline, we place two new seeds in directions
perpendicular to the hyperstreamline direction with a distance of kα
away from p. This placement ensures that potential seeds are not im-
mediately rejected for being too close to an existing hyperstreamline.

We now turn to the description of our algorithm for glyph packing
in the complex domains.

5 GLYPH PACKING IN COMPLEX DOMAINS

Our glyph packing technique extends the work of Kindlmann and
Westin [17] by incorporating degenerate points into the packing pro-
cess as well as taking into account the boundaries of the disjoint com-
plex regions (Figure 2(c)). We first briefly review their method. Kindl-
mann and Westin visualize a symmetric tensor field using elliptical
glyphs such that the size, shape and orientation of the glyphs reflect
the tensor field at the center location of the glyph. This is achieved by
placing a set of initial glyphs in the domain and moving them through
repulsion forces between nearby glyphs. The repulsion force is de-
rived from the underlying tensor field. The process terminates when
convergence is reached.

5.1 Glyph Tensor
In order to apply glyph packing which requires symmetric tensor fields
as input, we compute the following symmetric tensor which is equiva-
lent to that of Equation 5:

T = (u1 u2)

(
J1 0
0 J2

)
(u1 u2)

T (6)

where u1 and u2 are the two eigenvectors of the desired symmetric
matrix given by Equation 5, which are the major and minor dual-
eigenvectors of the original asymmetric tensor [43].{

J1 = max{|γs + γr|, |γs − γr|}
J2 = min{|γs + γr|, |γs − γr|} (7)

Note J1 and J2 computed this way are the singular values for the asym-
metric tensor obtained by subtracting the trace. This treatment takes
on the following physical interpretation. For 2D incompressible flu-
ids, the local linearization at any point inside the complex domain
is an elliptical pattern whose eccentricity and semi-axes are defined

by Equation 6. In this case, eccentricity ( J1

J2
) indicates the relative

strength between stretching and rotation. The smaller the eccentricity,
the stronger the rotation. When eccentricity is minimum (γs = 0), there
is no stretching but only rotation. That is where degenerate points oc-
cur (Poles in the eigenvector manifold). The limit when eccentricity
approaches infinity (γs = |γr|), indicates degenerate curves. In addi-
tion, J1 and J2 correspond to the lengths of the semi-axes of the glyph
which determine the size of the ellipse and reflect the tensor magnitude
at the center of the glyph, i.e.√

J2
1 + J2

2

2
=

√
|γs + γr|2 + |γs − γr|2

2
=
√

γ2
s + γ2

r

5.2 Glyph Seeding Strategy with Degenerate Points
Once we have generated the aforementioned symmetric tensor field in-
side the complex domains, we start the glyph packing process for one
region at a time. We have observed that the quality and computational
cost of glyph packing is greatly impacted by the initial seeding strat-
egy, i.e., how many seeds and where to place them. For aesthetically
pleasing results, we note that the area of the region to be seeded should
be slightly larger than the total area of the glyphs for the region. When
these two values are equal, glyph overlap will occur. To control this,
we use a density parameter β to help control the overall number of
glyphs seeded in the region.
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Fig. 3. Comparison of the asymmetric tensor field visualization results without seeding at degenerate points (a) and with fixed particles at degen-
erate points (b). Note that how the glyphs at degenerate points deliver the characteristics (isotropic) of tensor field near them (b) indicating a pure
circular rotation of the flow at those locations. The image in (c) shows the result of seeding degenerate points with fixed sizes during the repulsion.
This could prevent a proper placement of other seeds from being achieved (see the circled area).

Fig. 4. This figure shows the results of glyph packing without capping
the tensor magnitude (left) and with capping (right).

To seed a region A, we randomly place points in A until the total
area of seeds within A is larger than βArea(A). In our implementation,
β values range from 0.7 to 0.9 depending on the particular data set.
To generate seeds, for a given candidate position s, we calculate P =(

1− det
detmax

)
where det is the tensor determinant of the glyph tensor

T (Equation 6) at s and detmax is the maximum determinant over A,
which can be computed through a linear search over the tensors at all
the samples in the domain. Since the determinant is proportional to
the area of the glyph, P approaches zero as the glyphs get larger. With
the probability P we accept s as a seed and update the total area of the
seeds. The area of each seed point is evaluated as the area of the ellipse
with the seed point as the center (i.e. α2πJ1J2 where J1 and J2 are the
two values used in the creation of the symmetric glyph tensor from
Equation 6 at the seed). Note that this algorithm is conducted inside
each connected component of the complex domain individually.

The above seeding process is similar to [17]. However, Kindlmann
and Westin do not consider degenerate points, important features in
solid and fluid mechanics [43], in the seeding process. To better vi-
sualize the tensor behaviors near and at the degenerate points of an
asymmetric tensor field, we assign a seed point at the center of each
degenerate point. These glyphs will not move during glyph packing
although they can generate repulsion forces on nearby regular glyphs.
In our original implementation, seeds representing degenerate points
are inserted at the beginning of the initialization. They are fixed during
the repulsion stage. This poses some issues during the placement of
other seeds (Figure 3, right). More specifically, these fixed seeds block
the movement of other seeds from reaching optimal locations, which
leads to a number of holes in the result. To handle this, we modify
the seeding scheme at degenerate points as follows. Initially, we place

seeds at degenerate points with zero area (i.e. having zero influence on
the other seeds). After a certain number of iterations of repulsion, we
start increasing the area of the glyphs linearly located at the degenerate
points until they achieve the optimal sizes for final visualization.

5.3 Boundary Handling
To prevent the glyphs from entering or overlapping with specific ar-
eas, Kindlmann and Westin use a metric forcing points into the in-
terior of the specific regions [17]. To obtain a continuous visualiza-
tion between real and complex domains, our method requires more
control over the boundary handling. Given a seed s, whose veloc-
ity is �v, the next location of s is the current position of s plus �v.
We compute the point on the boundary of the region that

has the shortest distance to s, denoted by�v′. If the length

of �v′ is smaller than a specific value b, we flag s for

boundary handling. We calculate b as (J1u1) · �v
|�v| where

J1 is the major eigenvalue of the glyph tensor and u1 is
the major axis of the glyph. The value of b reflects the

width of the glyph along �v′. If s is flagged for boundary handling, we
modify the movement vector�v to move laterally along the boundary by

subtracting �v′ from�v to obtain the new position s′. If this new position
is still outside the boundary, s remains fixed in its original position.
This allows the particles to move along boundaries and through nar-
row regions or enter large and open parts of the region without exiting
it. The alignment of packed glyphs at domain boundaries can create
regular patterns that may visually distract from the flow patterns. Ad-
dressing this is a direction of further research.

5.4 Clamping
In our experiments, the determinants in different complex domains of
an asymmetric tensor field stemming from the flow field vary greatly.
So do their eigenvalues J1 and J2. This typically leads to large vari-
ation of the sizes of the glyphs. Figure 4 (left) provides such an ex-
ample. In addition, large eigenvalues require a large neighborhood
computation when accumulating forces exerted on a seed. This in-
creases the computation expense. To overcome this, we follow Kindle-
mann and Westin [17] by allowing the user to specify a threshold mr

for the ratio of the maximum (mmax) to the minimum (mmin) tensor
magnitudes in the whole domain. Let r = mmax

mmin
and m be the tensor

magnitude at a point p. We first normalize m as k′′ = m−mmin

mmax−mmin
. If

r > mr, set r = mr. Then, a linear mapping is applied to k′′ such that

k′ = ak′′+b, where a = r−1√
r

and b = 1√
r
. This maps the tensor mag-

nitude to the range of [ 1√
r
,
√

r]. This mapping preserves the ratio of

J1 and J2. Finally, we set k = 1
k′ such that the larger the tensor mag-
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nitude is, the denser the hyperstreamlines and the smaller the glyphs.
Figure 4 (right) shows the result after applying this mapping.

6 AN IMAGE-SPACE IMPLEMENTATION

Note that the placement of hyperstreamlines in real domains and the
glyph packing in complex domains can be accomplished in the object
space to preserve data authenticity. However, working in the object
space presents difficulties when placing hyperstreamlines or packing
glyphs on surface geometry. This is because points on hyperstream-
lines and glyphs are frequently compared with other nearby points in
the domain [15, 17]. For surfaces, this requires the geodesic distances
between points to be computed to determine neighbors within a certain
distance which is a computationally expensive task. This extra compu-
tational cost is possibly offset by the fact that the visualization needs
to be generated just once after which the user can find a particular
suitable viewpoint. However, under levels of magnification, the origi-
nal visualization can become sparse prompting the re-computation of
the visualization. If no method of determining visible regions is em-
ployed, the data generation time can increase dramatically as glyphs
and hyperstreamlines are more tightly packed in the object space.

Using an image-space approach can alleviate these issues. The ten-
sor field is projected to the image plane and the visualization is per-
formed in this fixed frame. The costly geodesic distance computation
can be omitted as the visualization no longer requires expensive dis-
tance computation on surfaces. Also, exploration of the data is possi-
ble as the visualization is only generated for a specific view. Image-
space methods have been used to visualize vector fields [23, 35, 38],
tensor fields [42] as well as generate pen-and-ink sketching [9] on sur-
faces with much success. The key is to be able to project the tensor
field from the surface onto the image plane with minimal error, account
for the distortion introduced by projection, and handle occlusion.

Tensor Field Projection There are two approaches to projecting a
tensor field. In the first approach, the tensor values at the vertices of
each triangle are projected onto the image plane. The tensor value for
a point inside the triangle can be obtained through barycentric interpo-
lation of the projected tensor values at the vertices of the triangle. This
approach is fast and lends itself naturally to GPU processing. How-
ever, blending projected tensor values can often lead to relatively large
errors. We instead use the second approach. In this case, for each
pixel in the image plane, we identify the nearest point s on the sur-
face whose projection covers the pixel. We then compute the tensor
value at s, which is then projected onto the image plane. While this
approach is slower than the first approach, it is still relatively fast and
provides pixel-level accuracy while the first approach only provides
vertex-level accuracy. To quickly identify the nearest point on the sur-
face that corresponds to a given pixel in the image plane, we render
the surface from the same viewpoint in two passes. In the first pass,
we assign a unique color to each triangle. In the second pass, we color
each vertex in the mesh with its barycentric coordinates. This results
in two buffers: triangle ID buffer, and barycentric coordinate buffer,
which will be stored as textures. With these two buffers, we can eas-
ily identify the nearest point on the surface that corresponds to a pixel
through texture accessing and obtain the tensor value at that point.

The original surface tensor is then used to decide whether it is in the
real or complex domain, compute the tensor magnitude, γd , γr, and γs,
as well as derive the shape, size, and orientation of glyphs (complex
domain) and the directions of hyperstreamlines (real domain). The
tensor quantities γd , γr, and γs are then used to decide the color of the
pixel based on the color scheme in [43]. If a pixel’s corresponding sur-
face point is in the real domain, we will compute the 3D coordinates of
the major and minor eigenvectors of the tangential tensor and project
them onto the image plane. This ensures that the projection onto the
image plane of a hyperstreamline on the surface passing through a
point s will coincide with the hyperstreamline in the image plane that
passes through the pixel corresponding to s. Similarly, we wish to
ensure that the projection of a glyph in the complex domain of the sur-
face matches the glyph generated from the projected tensor. This is
discussed later as the solution to this problem can be combined to also
deal with distortions introduced by projecting distance or vectors onto
the image plane.

Distortion in Projection Projections onto the image plane from a
point on the surface introduces anisotropic distortion. This means that
distance computations, used in controlling the spacing between hy-
perstreamlines and glyphs, need to account for this distortion or the
result will look different from the projection of the hyperstreamlines
and glyphs from the object space. We observe that under orthographic
projection, the length of a vector is maintained in a certain direction�v
but distorted the most in the perpendicular direction of �v. This direc-
tion is defined using the object normal at the point p on the surface.
Let�v =�n×�z where�n is the object normal at p and�z is the image nor-
mal. We can see that the length of�v is the same in both the local frame
of the point and the image plane. Along�u =�v×�n, distances are short-
ened by a factor of d =�n ·�z which is simply the z-component of�n. In
fact, this anisotropic distortion can be described by a symmetric tensor,
much like the stretching tensor used in surface parametrization [32].

We make use of this anisotropic scaling information along with the
tensor magnitude to vary the density of the hyperstreamlines. To cal-
culate the magnitude at a given point p under projection, we use the
following matrix:

M = (�ui �vi)
T

(
md 0
0 m

)
(�ui �vi) (8)

Here m is the magnitude of the tensor at point p, d is the shortening
factor associated with the normal at p, �vi is the projection of �v to the
image plane and �ui ⊥ �vi. �xT M�x is defined as the magnitude of the
tensor where �x is a direction in the image plane. This can be used
to define the tensor magnitude at p in the direction of a seed s to be

tested. By setting �x = p−s
|p−s| , we obtain the tensor magnitude. Instead

of simply storing the tensor magnitude per pixel, we store M.
For glyph packing, the anisotropic scaling can be encoded into the

glyph tensor instead of treating it separately as for hyperstreamline
tracing. We note that the magnitude is already inherently encoded into
the unprojected glyph tensor as well. The glyph tensor is defined in
the local 2D frame of a specific triangle and our target frame is the
image plane, which is also 2D. Therefore we can perform a 2D to 2D
projection of the symmetric glyph tensor to obtain this projected glyph
tensor. This becomes the following:

G′ = (�ui �vi)
T

(√
d 0

0 1

)
(�ul �vl)G(�ul �vl)

T

(√
d 0

0 1

)
(�ui �vi) (9)

Here G is the glyph tensor also defined in the local frame at p, �ui,
�vi and d are as in Equation 8, �vl is the projection of �v into the local
frame defined for the triangle in which p is located and �ul ⊥ �vl . We
first perform a change of basis from the local frame at p to the basis
�ul ,�vl . We then scale the glyph by the z component of�n in the direction
of �ul and 1 in the direction of �vl . We then perform another change of
basis back to the image plane. The resulting matrix G′ is defined in
the image space and can be used in the glyph packing.

A side effect of this projection is that degenerate points are not
maintained as their original circular shapes. Hence, degenerate points
cannot be classified after projection in the image plane. To account
for this, we extract and classify the degenerate points in the object
space, then project the positions of the visible degenerate points for a
particular viewpoint as well as their glyph tensors at those positions.
Notice that the extraction of degenerate points is local (per triangle in
the mesh) and there is at most one degenerate point per triangle. Con-
sequently, degenerate point extraction is faster when compared with
glyph packing. Moreover, it only needs to be performed once.

After projections, all tensors for points in the domain are computed
through a bilinear interpolation between pixels in the image space.

Occlusion Handling There are two additional considerations when
projecting the tensor field. First, occlusions introduced by the projec-
tion often lead to discontinuities in the image space. Such an issue
has been raised in [23, 35]. To address this, we borrow the technique
from [35] and make use of the depth buffer to detect pixels where
depths change sharply. We mark these pixels as cliff pixels. If the
depth value of two adjacent pixels is higher than a threshold value,
we denote a depth discontinuity. Note that these pixels may occur in
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the interior of a real or complex domain, and they do not always form
closed loops. Hyperstreamline tracing and glyph movement cannot
cross cliff pixels. In our implementation of glyph packing, the cliff
pixels are treated the same way as pixels on the boundaries between
the real and complex domains.

Binning Strategy As shown above, a neighborhood computation is
needed for both hyperstreamline placement and glyph packing. This
requires to identify the neighboring seeds within a disk centered at a
given seed. To do so, all seeds in the domain need to be checked (i.e.,
computing distance to the center seed). To speed up this neighborhood
computation, we adopt a spatial binning strategy in the image space
for each region. The size of each bin in a region is 2αλmax due to its
anisotropic property, where λmax is the maximum eigenvalue within
this region if it is real or the maximum J1 if it is complex. When
searching the neighborhood of a point p which is located at bin B(i, j),

all the its neighboring bins,
⋃i+1

r=i−1

⋃ j+1
c= j−1 B(r,c) are considered as

well as B(i, j). Only seeds in these bins will be considered.

7 APPLICATIONS

We have applied our hybrid visualization technique to simulated flows
inside a diesel engine and cooling jacket as well as a simulated earth-
quake deformation. For each of the images shown in the paper, hy-
perstreamline tracing typically took less than one second, and glyph
packing took 5−20 seconds, depending on the numbers of glyphs and
hyperstreamlines generated. This represents two orders of magnitude
speedup over the object-space approach. All the examples were gen-
erated on a workstation having Intel Xeon(R) CPU with 2 processors
(each of them is 2.33GHz), 8GB RAM, and an NVIDIA GeForce GTX
285 graphics card. Multi-thread programming is applied.

7.1 Domain Expert Review of Engine Simulation Flows
(Domain Expert Yeh)

Cooling Jacket Simulation Figure 5 shows the flow in the outer sur-
face of a cooling jacket data set. The upper portion is the jacket for
the cylinder head and the lower portion is for the cylinder block. It
is important to design a cooling jacket so that the flow within the
jacket be adequately mixed for efficient heat transfer. Note that the
combination of stagnation and rotation could be a sign of inefficient
heat transfer that must be avoided. Our visualization of the velocity
gradient tensor field allows to effectively explore flow kinematics on
this surface (Figure 5 (c) and (d)). For example, it is straightforward
to identify rotation dominant regions and how fluid elements deform
quantitatively within the regions by the glyphs. This is not the case
for the previous visualization as shown in Figure 5(b): the rotational
pattern must be inferred from the area enclosed by the hyperstream-
lines. With the proposed hybrid visualization, the density of the hy-
perstreamlines and sizes of the glyphs represent the tensor magnitude:
the denser the hyperstreamlines and the smaller the glyphs, the larger
the tensor magnitudes, consistent with the standard fluid mechanics
representations such as streamlines and vortex lines (see any funda-
mental fluid mechanics textbooks). Figure 5(c) is the visualization
of the same data set from the inlet, which is the front portion of the
jacket. The coolant enters through the round triangular-shaped inlet
that is shown near the bottom. The flow pattern adjacent to the inlet
can be interpreted by observing the orientation of major and minor
eigenvectors. The major eigenvectors are oriented parallel to the port
edge, while the minor eigenvectors are perpendicular to the edge. This
indicates that the flow decelerates by stretching the fluid parcels in the
transverse direction to the flow. Also note the formation of alternat-
ing clockwise-counterclockwise rotations after the coolant enters the
cylinder block although they are still in the real domain, i.e. stretching
dominant flows. Note that this type of kinematic information cannot
be extracted explicitly from the velocity vector visualization [20].

Near the top of the inlet, we see a pair of rotation dominant re-
gions (i.e. complex domain): the counterclockwise rotation (red) on
the right and the clockwise (green) on the left, connected with the
region of flow contraction (blue). Note that the coolant fluids are in-
compressible; hence the blue regions in the figure are interpreted as
contraction caused by the flow to the interior away from the visualized

surface in the figure. (Likewise, the yellow regions are interpreted as
expansion caused by the flow from the third dimension normal to the
surface of visualization.) The vicinity of the blue (flow contraction)
region between this pair of counter-rotating complex domains is a spot
for further investigation. The flow there has a small rate of deforma-
tion (the glyph size and the space of hyperstreamlines there are large)
and is rotation dominant which means small fluid mixing. Therefore,
the heat transfer in this vicinity might be inefficient. On the other hand,
this area is very close to the coolant intake; hence, we do not antici-
pate that the inefficient mixing behavior there would cause a serious
problem - the coolant temperature should still remain cool enough and
would unlikely cause overheating to induce undesirable air bubbles.
The glyph presentation shows how fluid parcels deform with rotation.
The elongation changes from the horizontal direction near the inlet to
the vertical direction towards the cylinder head. Note that the cylin-
der block and head are connected through the gasket, and some of the
coolant enters the cylinder head through the gasket right above the in-
let. The tensor magnitude adjacent to the connection is relatively large
(denser hyperstreamlines) and the major eigenvectors are oriented to-
wards the gasket, i.e. stretching, together with the flow contraction
(blue).

Once the coolant enters the cylinder head, a pair of vortices appears:
the clockwise rotation (green) on the right and the counterclockwise
(red) on the left. The glyph presentation shows the fluid parcel defor-
mation pattern associated with the pair of vortices created by a jet-like
flow through gasket. The horizontal orientation of major hyperstream-
lines (i.e. stretching) near the top of the cylinder head separates the
two counter-rotating vortices. The velocity-gradient tensor magnitude
is relatively large in this area, indicating significant deformation of the
fluid. The similar flow pattern can be observed in Figure 5(d) at every
gasket connecting the cylinder block and head.

Diesel Engine Simulation In Figure 6(c), gas enters through the left
intake port and exits through the right. We can see that flow contrac-
tion (blue) at the foot of the exhaust port (the right pipe) and a pair of
regions with opposing rotations in the pipe which indicate that the gas
is just commencing out from the cylinder to the exhaust. Unlike the
previous example of the cooling jacket, the flow in the diesel engine
cylinder is compressible; hence the yellow and blue regions represent
the combination of the actual volumetric changes and the effect of the
flow normal to the surface of visualization. The increase in magnitude
of rotation (green) in the top surface of the cylinder and the elonga-
tion toward the exhaust are clearly shown by the glyphs (with smaller
sizes). On the other hand, such a detailed fluid deformation patterns
are difficult to extract from the previous visualization without the use
of glyph presentation (Figure 6(a)). In addition, no information of ten-
sor magnitude can be included in the previous visualization of [13].
Note that without showing the tensor magnitude through the varying
sizes or densities of the elements, such information is difficult to iden-
tify (see Figure 6(b) where hyperstreamlines are evenly-spaced and the
glyphs have equal area).

Figure 6(d) shows the flow on the sidewall of the cylinder. We can
see that the tensor magnitude continues to decrease as the flow mi-
grates towards the bottom of the cylinder. The contrast of the tensor
magnitude near the bottom with that on the top surface of the cylin-
der is evident. This fluid deformation pattern indeed represents the
combustion stage at the commencement of the exhaust process. The
glyphs in the complex domain clearly exhibit the elongated counter-
clockwise rotation patterns. The sizes of glyphs are fairly uniform,
except near the bottom where the glyphs are slightly larger (i.e. weak
tensor magnitude) noting the motion being constrained by the bottom
face (the top of the piston). There appear four degenerating points:
two trisectors and two wedges. Considering that they are located near
the boundary of the complex domain, within the dilation dominant re-
gion (yellow) and near the irrotational flow (at the interface of light red
and light green), those weak degenerating points must represent flow
stagnation. It is emphasized that the visualization of tensor magni-
tude with the density of hyperstreamlines and the glyph sizes enables
us to better understand the flow fields. The foregoing intriguing flow
behaviors are a few examples. Many other features can be detected
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Fig. 5. Cooling jacket simulation: the geometry and illustrative coolant flow (a) [20]; the comparison of the evenly-spaced hyperstreamline-based
visualization (b) and our hybrid visualization (c) (α = 0.0029, β = 0.8, iter = 330, and mr = 50) from the side view, and the hybrid visualization from
the front view (d) (α = 0.0029, β = 0.8, iter = 300, and mr = 20).

Fig. 6. The comparison of the hyperstreamline-based visualization (a), hybrid visualization without encoding tensor magnitude (b) (α = 0.023,
β = 0.75, iter = 1200, mr is ignored here), and with tensor magnitude encoded (c), (α = 0.012, β = 0.76, mr = 10, iter = 1200) of the diesel engine
simulation. (d) provides a side view of the hybrid visualization.

effectively with the presented hybrid tensor field visualization, much
better than the previous visualization with the use of hyperstreamlines
only and no representation of tensor magnitudes.

7.2 Domain Expert Review of Simulated Earthquake De-
formation Data (Domain Expert Vincent)

We have also applied our hybrid visualization technique to a simula-
tion of coseismic displacements from the June, 1992 Mw = 7.3 Lan-

ders, CA earthquake sequence. The simulation data is from [40] and
based on the geodetic inversion source slip model of [14]. The model
has 29 different fault segments (including two conjugate faults at high
angle relative to the main rupture zone), each with its own strike (az-
imuth), length, dip, and coseismic slip vector. The fault segments with
their associated slip vectors were combined to compute the surface
displacements assuming an elastic half-space medium with a Poison’s
ratio of 0.25 [40].
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Figure 1(c) shows displacement vector field using a combination of
LIC-style streamlines (direction) and colors (magnitude) for the hori-
zontal (north and east) components of surface displacements from the
Landers earthquake simulation data set. The horizontal scale is 90 km
× 90 km and the relative sense of motion across the fault zone is right-
lateral–standing on one side of the fault looking toward the opposite
side one sees points move to the right. While the general pattern of
coseismic displacements is what would be expected for a right-lateral
strike-slip fault, there is additional information not contained in this
streamline/vector magnitude plot that becomes apparent when we ap-
ply our hybrid visualization technique to the simulation data set.

Figure 1(a) shows our hybrid visualization technique applied to the
data. Several additional features associated with the displacement field
become apparent. To help elucidate the additional information content
available by applying our visualization technique, and to put this in-
formation in the proper context of fault mechanics, Figure 1(d) is a
schematic drawing to illustrate the expected deformation modes for
a right-lateral fault that now becomes visible using our visualization
technique. For right-lateral motion across a fault (or fault zone) there
is a dominant counterclockwise rotation on both sides of the fault. This
is because right-lateral slip occurs on the fault but not away from the
fault setting up a counterclockwise rotation pattern on both sides of
the fault. Counterclockwise rotation can be seen in Figure 1(a) as red
coloring in the real and complex domains, and the glyphs represent
the complex eigenvalue regions where the rotational component dom-
inates the shear component of deformation. The green regions at the
fault tips and close to the fault represent clockwise rotations and sim-
ilarly where the glyphs are located are regions dominated by rotation
compared to shear. Boundaries between green and red (clockwise and
counterclockwise rotation respectively) represent regions of compres-
sion (northwest and southeast quadrants) and dilatation (southwest and
northeast quadrants) and are consistent with the seismic focal mech-
anism used to predict the seismic radiation pattern associated with
right-lateral slip across a vertical fault. This radiation pattern is not
visible using standard methods of displaying geodetic (surface defor-
mation) data of earthquakes. It is inferred from first arrivals on distant
seismometers (up or down for compression or dilatation respectively)
distributed in directions at each of the four quadrant azimuths. Using
our visualization method they can be seen easily. The two conjugate
faults (a large one to the west and a small one to the northeast of the
main rupture zone) are left-lateral and act to increase the rotational
component of deformation locally which can be seen as elongation of
the glyphs in the case of the large conjugate fault on the west side
of the rupture zone (see Figure 7). Again, this deformation pattern
cannot be seen using previous methods to display surface deformation
data. The combined deformation modes are now apparent using our
hybrid visualization method. By extracting more information, we are
able to show a multitude of relevant deformation modes that encom-
pass both geodetic displacement and seismic radiation pattern infor-
mation in one plot. The additional information content now available
will help geodesists and seismologists jointly interpret what has his-
torically been disparate data sets. For example, insights into earth-
quake rupture dynamics processes can now potentially be made by
viewing areas of localized stretching or dilation, or abrupt transitions
between stretching and rotation, that are not visible using standard
geodetic data visualizations of displacement or displacement gradi-
ents alone (e.g., Figure 1(c)). This new information could lead to new
insights into how faults rupture, why rupture begins and ends where
it does, and where the next rupture might originate. The visualization
of asymmetric tensor fields associated with surface deformation, us-
ing this approach, provides a critical connection between seismic and
geodetic data and interpretation that opens up many new avenues for
research.

8 CONCLUSION

Asymmetric tensor field visualization is becoming an important topic
within the visualization community where more work is needed. In
this paper, we highlight the challenges faced by existing techniques for
asymmetric tensor field visualization, including the loss of magnitude
information and the lack of effectiveness for conveying the elliptical

Fig. 7. Magnified view of the deformation associated with the conjugate
fault to the west of the main rupture zone.

tensor patterns in complex domains. In order to address these chal-
lenges, we introduce a hybrid visualization technique for asymmetric
tensor fields in which hyperstreamlines and glyphs are used to repre-
sent tensor patterns in real and complex domains, respectively. The
sizes of the glyphs and densities of the hyperstreamlines are used to
convey tensor magnitude, and degenerate points are retained in the vi-
sualization. This is the first time glyph packing is used in conjunction
with asymmetric tensor fields. The combination of these techniques
generates new hybrid visualization results that are capable of reveal-
ing the underlying physical characteristics of the data more effectively
and efficiently. We also present an efficient image-space approach for
visualizing asymmetric tensor data on surfaces. This reduces the com-
putation time for the visualization by two orders of magnitude and al-
lows the user to have more control over which portions of the view are
magnified and highlighted. This is also the first time an image-space
method is used for glyph packing for the depiction of asymmetric ten-
sor fields on surfaces. The result is an interactive system with which
the user can explore their asymmetric tensor fields using the proposed
hybrid visualization and other options. Finallly, we introduce an im-
portant new application of asymmetric tensor field data, namely earth-
quake deformation.

While the domain experts are more favarable toward the presented
new hybrid visualization, we recognize that this is not the only solu-
tion. To encode tensor magnitude, other strategies, such as varying
contrast and thickness of lines, can be employed. We also provide an
option in our system to allow the tensor magnitude to be displayed
in a separate plot. In addition, although the visual contrast between
hyperstreamlines and glyphs at the boundaries of real and complex
domains effectively highlights the distinct behaviors of these two do-
mains, it may cause visual distraction. As such, our system retains the
option of visualizing both domains using hyperstreamlines for more
coherent transition through the degenerate curves. Exploring other
unified visual primitive for both real and complex domains is possi-
ble. Superquadric glyphs [33] is a good candidate. In the future, we
wish to explore additional applications for asymmetric tensor visual-
ization. As our understanding of 2D asymmetric tensor fields matures,
we wish to expand the analysis and visualization to 3D asymmetric
tensor fields, which are significantly more challenging due to that fact
there are nine numbers in a 3×3 tensor versus four numbers in a 2×2
tensor. In addition, we plan to investigate faster glyph packing tech-
niques based on more recent development in Centroidal Voronoi Tes-
sellations (CVT) [8].
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Anisotropic polygonal remeshing. ACM Transactions on Graphics (SIG-

GRAPH 2003), 22(3):485–493, July 2003.

1987CHEN ET AL: ASYMMETRIC TENSOR FIELD VISUALIZATION FOR SURFACES



[2] W. Benger and H.-C. Hege. Tensor splats. In Visualization and Data

Analysis 2004, Proc. of SPIE, volume 5295, pages 151–162, June 2004.

[3] A. Bhalerao and C.-F. Westin. Tensor splats: visualising tensor fields

by texture mapped volume rendering. In Sixth International Conference

on Medical Image Computing and Computer-Assisted Intervention (MIC-

CAI’03), pages 294–901, Montreal, Canada, November 2003.

[4] B. Cabral and L. C. Leedom. imaging vector fields using line integral

convolution. In Poceedings of ACM SIGGRAPH 1993, Annual Confer-

ence Series, pages 263–272, 1993.

[5] G. Chen, K. Mischaikow, R. S. Laramee, P. Pilarczyk, and E. Zhang. Vec-

tor field editing and periodic orbit extraction using Morse decomposition.

IEEE Transactions on Visualization and Computer Graphics, 13(4):769–

785, 2007.

[6] W. C. de Leeuw and J. J. van Wijk. A probe for local flow field visualiza-

tion. In Proceedings of the 4th conference on Visualization ’93, VIS ’93,

pages 39–45, Washington, DC, USA, 1993. IEEE Computer Society.

[7] T. Delmarcelle and L. Hesselink. Visualizing second-order tensor fields

with hyperstream lines. IEEE Computer Graphics and Applications,

13(4):25–33, July 1993.

[8] L. Feng, I. Hotz, B. Hamann, and K. Joy. Anisotropic noise samples.

IEEE Transactions on Visualization and Computer Graphics, 14:342–

354, 2008.

[9] A. Hertzmann and D. Zorin. Illustrating smooth surfaces. Computer

Graphics Proceedings, Annual Conference Series (SIGGRAPH 2000),

pages 517–526, Aug. 2000.

[10] L. Hesselink, Y. Levy, and Y. Lavin. The topology of symmetric, second-

order 3D tensor fields. IEEE Transactions on Visualization and Computer

Graphics, 3(1):1–11, Mar. 1997.

[11] M. Hlawitschka and G. Scheuermann. HOT lines: tracking lines in higher

order tensor fields. In Proceedings IEEE Visualization 2005, pages 27–

34, 2005.

[12] M. Hlawitschka, G. Scheuermann, and B. Hamann. Interactive glyph

placement for tensor fields. In Proceedings of the 3rd international con-

ference on Advances in visual computing - Volume Part I, ISVC’07, pages

331–340, Berlin, Heidelberg, 2007. Springer-Verlag.

[13] H. Hotz, L. Feng, H. Hagen, B. Hamann, K. Joy, and B. Jeremic. Phys-

ically based methods for tensor field visualization. In Proceedings IEEE

Visualization 2004, pages 123–130, 2004.

[14] K. W. Hudnut. Coseismic displacements of the 1992 Landers earthquake

sequence. Bull. Seism. Soc. Am., 84:625–645, 1994.

[15] B. Jobard and W. Lefer. Creating evenly–spaced streamlines of arbitrary

density. In Proceedings of the Eurographics Workshop on Visualization

in Scientific Computing ’97, volume 7, pages 45–55, 1997.

[16] G. Kindlmann. Superquadric tensor glyphs. In Proceedings of IEEE

TVCG/EG Symposium on Visualization 2004, pages 147–154, May 2004.

[17] G. Kindlmann and C.-F. Westin. Diffusion tensor visualization with

glyph packing. IEEE Transactions on Visualization and Computer

Graphics (Proceedings Visualization / Information Visualization 2006),

12(5):1329–1335, September-October 2006.

[18] R. M. Kirby, H. Marmanis, and D. H. Laidlaw. Visualizing multivalued

data from 2D incompressible flows using concepts from painting. In Pro-

ceedings IEEE Visualization ’99, pages 333–340. ACM Press, Oct. 25–29

1999.

[19] D. H. Laidlaw, E. T. Ahrens, D. Kremers, M. J. Avalos, R. E. Jacobs, and

C. Readhead. Visualizing diffusion tensor images of the mouse spinal

cord. Visualization Conference, IEEE, pages 127–134, 1998.

[20] R. S. Laramee, C. Garth, H. Doleisch, J. Schneider, H. Hauser, and H. Ha-

gen. Visual analysis and exploration of fluid flow in a cooling jacket. In

Proceedings IEEE Visualization 2005, pages 623–630, 2005.

[21] R. S. Laramee, H. Hauser, H. Doleisch, F. H. Post, B. Vrolijk, and

D. Weiskopf. The state of the art in flow visualization: dense and texture-

based techniques. Computer Graphics Forum, 23(2):203–221, June 2004.

[22] R. S. Laramee, H. Hauser, L. Zhao, and F. H. Post. Topology-based flow

visualization: the state of the art. In The Topology-Based Methods in Vi-

sualization Workshop (TopoInVis 2005), Visualization and Mathematics,

pages 1–19, 2007.

[23] R. S. Laramee, J. J. van Wijk, B. Jobard, and H. Hauser. ISA and IBFVS:

image space based visualization of flow on surfaces. IEEE Transactions

on Visualization and Computer Graphics, 10(6):637–648, Nov. 2004.

[24] Z. P. Liu and R. J. Moorhead, II. An advanced evenly-spaced streamline

placement algorithm. IEEE Transactions on Visualization and Computer

Graphics, 12(5):965–972, 2006.

[25] X. Mao, Y. Hatanaka, H. Higashida, and A. Imamiya. Image-guided

streamline placement on curvilinear grid surfaces. In Proceedings IEEE

Visualization ’98, pages 135–142, 1998.

[26] M. Marinov and L. Kobbelt. Direct anisotropic quad-dominant remesh-

ing. Computer Graphics and Applications, 12th Pacific Conference on

(PG’04), pages 207–216, 2004.

[27] T. McLoughlin, R. S. Laramee, R. Peikert, F. H. Post, and M. Chen. Over

two decades of integration-based, geometric flow visualization. Com-

puter Graphics Forum, 29(6):1807–1829, 2010.

[28] A. Mebarki, P. Alliez, and O. Devillers. Farthest point seeding for effi-

cient placement of streamlines. In Proceedings IEEE Visualization 2005,

pages 479–486. IEEE Computer Society, 2005.

[29] J. Palacios and E. Zhang. Rotational symmetry field design on surfaces.

ACM Trans. Graph., 26(3):55, 2007.

[30] N. Ray, B. Vallet, W. C. Li, and B. Lévy. N-symmetry direction field
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