
Interactive Design and Optics-Based Visualization of Arbitrary
Non-Euclidean Kaleidoscopic Orbifolds

Jinta Zheng, Eugene Zhang, Senior Member, IEEE, and Yue Zhang, Member, IEEE

(a) (b) (c)

Fig. 1: Our mirror-metaphor visualization of orbifolds: (a) a spherical orbifold, (b) a Euclidean orbifold, and (c) a hyperbolic orbifold.
Notice the unusual deformation in the reflections of Buddha and the beams in (a) and (c). All of the orbifolds in this figure were created
using our orbifold construction algorithm (Section 5.1).

Abstract—Orbifolds are a modern mathematical concept that arises in the research of hyperbolic geometry with applications in
computer graphics and visualization. In this paper, we make use of rooms with mirrors as the visual metaphor for orbifolds. Given any
arbitrary two-dimensional kaleidoscopic orbifold, we provide an algorithm to construct a Euclidean, spherical, or hyperbolic polygon to
match the orbifold. This polygon is then used to create a room for which the polygon serves as the floor and the ceiling. With our
system that implements Möbius transformations, the user can interactively edit the scene and see the reflections of the edited objects.
To correctly visualize non-Euclidean orbifolds, we adapt the rendering algorithms to account for the geodesics in these spaces, which
light rays follow. Our interactive orbifold design system allows the user to create arbitrary two-dimensional kaleidoscopic orbifolds. In
addition, our mirror-based orbifold visualization approach has the potential of helping our users gain insight on the orbifold, including its
orbifold notation as well as its universal cover, which can also be the spherical space and the hyperbolic space.

Index Terms—Kaleidoscopic orbifolds, orbifold visualization, math visualization, orbifold construction, spherical geometry, hyperbolic
geometry

1 INTRODUCTION

Orbifolds are a modern mathematical concept originated from the study
of low-dimensional topology [32]. This concept has been used to study
the geometric structures of hyperbolic spaces and to prove in 2003
the famous Poincaré conjecture for the three-dimensional case, which
is the last case and thus the hardest case to be addressed [25]. In
addition, orbifolds have been used to describe spatial symmetries in
String Theory [13]. Orbifold theory has found applications in tensor
field topology [27, 29, 31], remeshing [8, 20, 22], non-photorealistic
rendering [16, 28, 36], and texture synthesis [2–4, 26].
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The concept of orbifolds can be difficult to digest, as its definition
involves various mathematical notions from topology and abstract alge-
bra, such as Hausdorff spaces, groups and group actions, charts, and
gluing maps. The problem is further compounded by the fact that most
of the orbifolds are non-Euclidean, thus making the understanding and
visualization of orbifolds more difficult. In this paper, we focus on two-
dimensional kaleidoscopic orbifolds that are generated by reflections
in the Euclidean plane, the sphere, and the hyperbolic space. We have
built an interactive system with which our users can create any arbitrary
two-dimensional kaleidoscopic orbifolds and interact with them to gain
insight into the orbifolds.

Most existing work on visualizing two-dimensional orbifolds make use
of texture patterns that tile the plane seamlessly. Such an approach is
commonly used to create illustrations. We observe the recent trend of
engaging learning through 3D graphics and animations and employ an
approach inspired by the kaleidoscopes. By placing some simple ob-
jects inside the kaleidoscope, fascinating images appear when we look
through the viewing hole. To be more engaging, our system promotes a
visual experience of being inside the kaleidoscope entirely. We utilize a
room with mirrors as a visual metaphor for a two-dimensional orbifold.

Interestingly, the reflectional symmetries in a kaleidoscope correspond
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Fig. 2: In (a-b), we show the comparison of the rendering of a hyperbolic orbifold with straight rays as in the Euclidean space (a) and the geodesics in
the hyperbolic space (b). In (c), we render a triangular non-orbifold with corner angles 2π
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12 . Notice the dragon now has two heads.

Fig. 3: The interface of our design system.

to the behaviors of a particular Euclidean orbifold. As shown in Fig-
ure 1, our system produces orbifolds (configuration of the ceiling and
the floor) and the symmetry that each orbifold induces. In addition,
through the bending of the mirror frames and the unfamiliar deforma-
tions of Buddha in (a) and (c), the notions of spherical geometry and
hyperbolic geometry are visually delivered, respectively.

While there are only a handful of Euclidean orbifolds, there are in-
finitely many spherical and hyperbolic orbifolds. In fact, any polygon
whose corner angles can each be expressed as π

k (k ∈ N+) is an orb-
ifold. To the best of our knowledge, there is no algorithm published
that allows the realization of arbitrary such polygons when their natural
spaces are hyperbolic. Most available tools focus on regular polygons.
For arbitrary polygons that represent an orbifold, the lengths of the
edges are challenging to determine.

In this paper, we address this difficulty by providing an algorithm that
can interactively realize any orbifold, whether spherical, hyperbolic, or
Euclidean (Section 5.1). As part of our algorithm, we provide a com-
plete enumeration of two-dimensional kaleidoscopic orbifolds based on
the cardinality of the underlying polygon and the type of the universal
cover (Section 4). With this ability, any two-dimensional orbifold can
be converted to a room, whose ceiling and floor have the configuration
of the polygon. Our system further allows interactive scene editing,
with the room and its virtual copies being visible at the same time
(Figure 3). Furthermore, the creation of the reflected copies in the
underlying space (universal cover) that is either the sphere or the hy-
perbolic space can reinforce the perception of geometric deformations
of these non-Euclidean spaces. To achieve this, we present a system
to generate the universal cover of any polygonal orbifold and provide
interactive updates to the virtual rooms in the universal cover through
Möbius transformations.

Light rays travel along the geodesics in the spherical and hyperbolic

spaces. When rendering a non-Euclidean scene using Euclidean straight
lines, incorrect appearances result as shown in Figure 2 (a). We modify
the rendering algorithms to account for the correct paths for rays (Fig-
ure 2 (b)). In addition, by adjusting the attenuation of some or all the
mirrors in the scene (Figure 4), we can further emphasize the orbifold
itself (a), intensify the emphasis of the universal cover (c), or highlight
the translational cover of the orbifold (the room and an adjacent virtual
room). With our design system and visualization, users can customize
their orbifolds for their purposes.

2 RELATED WORK

Our work follows recent research in mathematics visualization, such
as quaternions [15], knots and links [33], and branched covering
spaces [30].

Orbifolds are a modern mathematical concept [32]. The notion of
orbifolds has found applications in texture synthesis [2–4]. Nieser and
Polthier provide visualization of analytic functions over the complex
plane [23], while Roy et al. [30] visualize the notion and properties of
branched covering spaces with respect to N-way rotational symmetry
(N-RoSy) fields [28]. All of this work focuses on the visualization and
processing of orbifolds on two-dimensional surfaces. Moreover, the
orbifolds that they address only possess rotational symmetries, which
are a subclass of reflectional symmetries. In this paper, we address
orbifolds that are generated by reflections, which include not only
reflectional symmetries but also rotational and translational symmetries.

Conway et al. [9] explain the concepts and results related to planar
orbifolds by using popular artwork containing textures with symmetries.
Their approach focuses on Euclidean orbifolds. In our work, we provide
a system to generate a room that matches any given two-dimensional
kaleidoscopic orbifold, even when its universal cover is a non-Euclidean
space. Furthermore, we make use of the mirror metaphor to leverage
real-life experience with mirrors, which provides a complementary
approach to the texture-based visualization of orbifolds.

Our mirror metaphor turns a two-dimensional orbifold into a three-
dimensional room, which can also be considered as a three-dimensional
orbifold that is the product of the two-dimensional orbifold (floor and
ceiling) with a line segment (the height of the room). There has been
some past research on visualizing three-dimensional orbifolds [7, 24],
with a focus on the three-dimensional sphere S3 and three-dimensional
hyperbolic space H3. In these spaces, the geodesics are either a circular
arc or a hyperbola. In contrast, the geodesics in our product spaces
are spirals, which makes ray-triangle intersection different from those
in S3 and H3. Moreover, past research often focuses on using some
famous orbifolds in S3 and H3 such as the Poincaré sphere and the
mirror dodecahedron. In our paper, we allow the visualization of any
arbitrary two-dimensional orbifolds.
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Fig. 4: By varying the attenuations of the mirrors, our visualization can emphasize the orbifold (a), its translational cover (b), or its universal cover (c).

Fig. 5: An orbifold (right: the first quadrant in the real plane) and its
universal cover (left: all four quadrants) are related by a covering map
τ(x,y) = (|x|, |y|). The neighborhood of the origin in the orbifold (right) is
a quarter disk. The map τ introduces a symmetry group consisting a
horizontal reflection (the letter p to q), a vertical reflection (the letter p
to b), and a rotation by π (the letter p to d). The symmetry group is the
Dihedral group D2.

3 BACKGROUND ON ORBIFOLDS

In this section, we review necessary mathematical background on orb-
ifolds used in this paper which include the concepts of groups and
group actions [18], orbifolds [11, 21], and non-Euclidean spaces [12].
For a rigorous definition of these concepts, we refer our readers to the
aforementioned references.

An orbifold O is a topological space X paired with a discrete symmetry
group G such that X locally resembles a Euclidean disk under the action
of G. To better illustrate this, consider the space L = {(x,y)|x,y≥ 0}
(Figure 5 (right)). For each point in the first quadrant, we can find
a small enough disk-shaped neighborhood. However, for a point on
the positive Y -axis, there is a neighborhood of the shape of a half-
disk which corresponds to a full disk in the Euclidean plane (Figure 5
(left)) under the reflection across the Y -axis. In other words, the union
of the half disk in the first quadrant and its mirror reflection form a
full disk. Finally, the origin has a quarter-disk-shaped neighborhood
(Figure 5 (right)) which corresponds to a full disk in the Euclidean
plane (Figure 5 (left)) when being combined with its reflection across
the X-axis (in the fourth quadrant), the reflection across the Y -axis (in
the second quadrant), and the rotation by π around the origin (in the
third quadrant). Thus, L is an orbifold.

Globally, we can see that L is the range of the following function
τ(x,y) = (|x|, |y|), which introduces a map from R2 to L with the sym-

(a) ∗2222 (b) ∗333 (c) ∗244 (d) ∗236

Fig. 6: The four Euclidean orbifolds.

metry illustrated as follows. The letter p (Figure 5 (right)) corresponds
to the letter q in the second quadrant (Figure 5 (left)) through the reflec-
tion across the Y -axis and the letter b in the fourth quadrant through the
reflection across the X-axis. In addition, it corresponds to the letter d in
the third quadrant through a rotation of π around the origin, which is a
composition of the two aforementioned reflections. Thus, the symmetry
induced by the map τ leads to a symmetry group of four elements: the
identity, two reflections, and one rotation. The group is the Dihedral
group of order 2, i.e. D2, which, when acted on R2, leads to the orbifold
L. It has a corner point at the origin and two mirror lines (the positive
X-axis and the positive Y -axis).

In general, a two-dimensional kaleidoscopic orbifold O is a polygon
with a symmetry group induced by reflections across all of its edges.
Without causing ambiguity, we also refer to the polygon as O. Each
edge of the polygon is thus a mirror line, and every vertex of the polygon
is a corner point corresponding to the symmetry of Dk, the dihedral
group of order k. Note that Dk consists of k rotations (including the
identity) and k reflections. In Figure 6 we show four such orbifolds,
whose polygons have a configurations of a square (a), a 60◦−60◦−60◦
triangle (b), a 90◦ − 45◦ − 45◦ triangle (c), and a 90◦ − 60◦ − 30◦
triangle (d). These orbifolds are given the orbifold notations (a) ∗2222,
(b) ∗333, (c) ∗244, and (d) ∗236, respectively. A generic kaleidoscopic
orbifold corresponding to an N-gon O is given the notation ∗k1...kN
where the ∗ indicates the existence of the mirror and ki implies that the
angle of the polygon at the i-th corner is π

ki
.

An orbifold (the polygon) and all of its virtual copies through its sym-
metry group can seamlessly tile a space, which is its universal cover.
The aforementioned orbifolds are kaleidoscopic orbifolds whose uni-
versal cover is the Euclidean plane, thus Euclidean orbifolds. Each
Euclidean orbifold has a translational cover, which, along with its
translational copies, form the universal cover. The translational cover
of ∗2222 consists of the orbifold, two of its reflections, and one rotation
by π (Figure 6 (a): any 2× 2 subgrid with the letters q, p, d, and b).
The translations needed to generate the universal cover is the Gaussian



p q

Fig. 7: The hyperbolic space can be modeled as the upper-sheet of a
double-sheet hyperboloid. The geodesic passing through p and q in the
space is the intersection of the hyperboloid with the plane that passes
through p and q as well as the vertex of the lower sheet.

integer grid Z[i] [14]. The translational covers of the other Euclidean
orbifolds respectively consist of six copies arranged in a hexagon (Fig-
ure 6 (b): ∗333), eight copies arranged in an octagon (Figure 6(c):
∗244), and twelve copies arranged in a dodecagon (Figure 6(d): ∗236).
The set of translations for ∗244 is also Z[i]. On the other hand, the set of
translations for ∗333 and ∗236 is the Eisenstein integer grid Z[ω] [14]
where ω = −1+

√
3i

2 .

While it may seem that these are the only kaleidoscopic orbifolds and
that all kaleidoscopic orbifolds must be triangular or rectangular, there
are many more. In fact, given an arbitrary polygon with at least three
sides and whose corner angles divide π individually, there is an orbifold
that corresponds to the polygon. Figure 14 shows a room with three,
four, and five mirrors, respectively. However, these orbifolds cannot tile
the Euclidean plane as their universal covers are either the unit sphere
(spherical orbifolds) or the hyperbolic plane (hyperbolic orbifolds). The
hyperbolic plane can be modeled as the upper sheet of the double-sheet
hyperboloid z2− x2− y2 = 1 (Figure 7). Like the Euclidean orbifolds,
both spherical orbifolds and hyperbolic orbifolds are polygons whose
edges follow the geodesics in their universal cover. The geodesics in
the unit sphere are the great circles, and the geodesic passing through
two mutually distinct points p and q in the hyperbolic space is the
intersection of the plane containing p, q and the vertex of the lower-
sheet of the hyperboloid (Figure 7: the curve passing through p and
q). In fact, given an orbifold O =∗k1...kN where N is the number of
walls and ki > 1 (1≤ i≤ N), its universal cover is decided by the Euler
characteristic of the orbifold as follows:

χ(O) =
N

∑
i=1

1
2ki
− N

2
+1. (1)

An orbifold O is spherical, Euclidean, or hyperbolic when χ(O)> 0,
χ(O) = 0, χ(O)< 0, respectively.

In the next section, we describe our orbifold design system starting
with an enumeration of all two-dimensional kaleidoscopic orbifolds.

4 KALEIDOSCOPIC ORBIFOLD ENUMERATION

While there has been a complete enumeration of spherical and Eu-
clidean orbifolds, to our best knowledge such an enumeration is not
explicitly given for hyperbolic orbifolds. In addition, the enumeration
for spherical and Euclidean orbifolds is in the form of an exhaustive list.
Our orbifold design system is based on the number of walls (the cardi-
nality of the underlying polygon) in the orbifold. Thus, we strive for an
explicit enumeration for all two-dimensional kaleidoscopic orbifolds
based on the combination of the polygon cardinality and the universal
cover.

There are three types of spherical orbifolds: (1) one mirror, (2) two
mirrors, and (3) three mirrors. The only one mirror spherical orbifold

Table 1: Our enumeration of all two-dimensional kaleidoscopic orbifolds
based on the cardinality and the universal cover of the orbifolds. The
orbifolds on each row have the same N, which is the cardinality of the
underlying polygon.

N Spherical Euclidean Hyperbolic

1 ∗
2 ∗22, ∗33, ∗44, . . .
3 ∗222, ∗223, ∗224 . . .
∗233, ∗234, ∗235 ∗236 ∗237, ∗238, ∗239, . . .

∗244 ∗245, ∗246, ∗247, . . .
∗2k2k3 (k3 ≥ k2 > 4)

∗333 ∗334, ∗335, ∗336, . . .
∗3k2k3 (k3 ≥ k2 > 3)
∗k1k2k3 (k3 ≥ k2 ≥ k1 > 3)

4 ∗2222 ∗k1k2k3k4 (max1≤i≤4 ki > 2)
5 ∗k1k2k3k4k5
6 ∗k1k2k3k4k5k6
7 ∗k1k2k3k4k5k6k7
8 ∗k1k2k3k4k5k6k7k8
9 ∗k1k2k3k4k5k6k7k8k9
...

...

is ∗, which corresponds to a room that is half of the sphere with its
boundary being the mirror. There are no corners. In this case, one can
consider the room as a monogon. In the second case, the room has
two mirrors that intersect at π

k at both ends where k > 1. These are
diangular orbifolds ∗kk, which are the section of the unit sphere that
are between two longitudes that are π

k apart. Note that ∗11 is the same
as ∗ since the corner angles are π . In fact, every corner with an angle π

can be removed from the list of corners. Thus, in the orbifold notation,
we require every number to be at least 2 when there are at least two
walls.

For the triangular spherical orbifolds, i.e., three mirrors, there are two
sub-types. The first sub-type has the form ∗22k where k > 1. Figure 14
(a) shows one such orbifold (∗222). This type of orbifolds can be
obtained by taking half of the orbifold ∗kk in the northern hemisphere
and adding a mirror on the equator. The second sub-type has the
form ∗23k where k = 3,4,5. Notice that when k = 6 we have ∗236, a
Euclidean orbifold. From the discussion, we can see there are more
spherical orbifolds than Euclidean orbifolds.

There are bad orbifolds, namely, ∗k where k > 1 and ∗k1k2 where
k2 > k1 > 1. Note that neither type of the bad orbifolds can be realized
because it is not physically possible to have one great circle intersecting
itself at an angle not equal to π , nor is it possible to have two different
great circles that intersect at different angles where they meet. In our
system, we do not construct bad orbifolds.

The rest of polygonal kaleidoscopic orbifolds are hyperbolic, and there
are no bad hyperbolic orbifolds. There are three cases: (1) three
mirrors, (2) four mirrors, and (3) five or more mirrors. An orbifold
is hyperbolic if its has five or more mirrors (e.g. Figure 14 (c)). In
addition, all quadrangular orbifolds except ∗2222 are hyperbolic (e.g.
Figure 14 (b)). Finally, triangular hyperbolic orbifolds include six sub-
types: (1) ∗23k where k > 6, (2) ∗24k where k > 4, (3) ∗2k2k3 where
k3 ≥ k2 > 4, (4) ∗33k where k > 3, (5) ∗3k2k3 where k3 ≥ k2 > 3, and
(6) ∗k1k2k3 where k3 ≥ k2 ≥ k1 > 3. Notice the three cases, each of
which corresponds to a Euclidean orbifold that serves as the border
between the set of spherical and the set of hyperbolic orbifolds, namely,
∗236 for type (1), ∗244 for type (2), and ∗333 for type (4).

Our enumeration of all two-dimensional kaleidoscopic orbifolds based
on the combination of the cardinality of the underlying polygon and
the type of its universal cover is shown in Table 1. We provide the



computations behind our enumeration in Appendix A.

5 INTERACTIVE ORBIFOLD SCENE DESIGN

Our orbifold visualization system consists of two components: a de-
sign panel and the display (Figure 3). We employ the Irrlicht game
engine [1], which provides an effective balance between interactivity
and functionality.

In the design panel, the user can specify the type of the scene by
entering its orbifold notation in the form of a number N for the number
of walls in the scene and a list of N numbers, k1,k2, ...,kN . Here, ki
indicates that the angle of the i-th corner is π

ki
.

The default value of N is five, and five evenly spaced nodes are dis-
played on the disk inside the design panel (Figure 3), each of which has
a default value of two, i.e. ∗22222. The user can change the value of
each node, which can be a non-integer in order to create non-orbifold
scenes (Figure 2 (c)). The user can also change N, which results in a
room with more or fewer walls. The default value for each node in the
new setting is again two. Recall that there are two cases that are not
physically realizable: (1) a circular room with a single mirror (N = 1)
that self-intersects at an angle not equal to π (∗k where k > 1), and (2)
a room with two mirrors whose two intersection angles are mutually
distinct (∗k1k2 where k2 > k1). Thus, we disallow these cases from
occurring during the design phase. For example, when N = 1, the value
of the only node is set to one and cannot be changed. Similarly, when
N = 2, if the user changes the value of one node, the value of the other
node is automatically updated to match it.

Given the orbifold notation, our system instantaneously generates an
empty room (a right polygonal prism) whose floor and ceiling are
congruent to the orbifold and whose walls are the sides of the prism. In
our system, it is possible to have multiple mirrors on a wall as shown
in Figure 1. The user can also change the height of the room, the color
and attenuation of a mirror, and the textures for the ceiling and the
floor. Objects can be added to the scene, whose locations, orientations,
sizes, base colors, and material properties (e.g. marble, glass) can be
modified from their default values as needed. Light sources can also
be added to the scene, with control over their locations, shapes, and
optical properties. Unwanted objects and light sources can be removed
from the scene.

All of the above scene design operations are interactively rendered
in order to support the What-You-See-Is-What-You-Get (WYSIWYG)
paradigm, and all of the examples included in the paper and accompa-
nying video were created using our design system.

At the core of our system is the ability to create a room given any
arbitrary two-dimensional kaleidoscopic orbifold and to correctly de-
form an object in the scene when it moves. In addition, in our design
system, mirrors are not explicitly generated. Instead, we emulate the
mirror effects by creating copies of the original room which together
approximate the universal cover of the orbifold. We provide detail on
each of these topics next.

5.1 Orbifold Scene Construction

We first compute the Euler characteristic of the orbifold O. If χ(O) = 0,
i.e. a Euclidean orbifold, it is then ∗2222, ∗333, ∗236, or ∗244. As
we know the internal angles and the ratios between the side lengths,
we can place the vertices of the underlying triangle or square on the
floor. Then, with a user-specified room height, we create the ceiling
polygon by duplicating the floor polygon and raising it to match the
height. Both the floor and the ceiling are represented by a triangular
mesh, so are the rectangular walls in the room.

Fig. 8: Under the stereographic projection, a geodesic in the sphere is
mapped to a circle that intersects the boundary of the unit disk at a pair of
antipodal points (left). Using the Poincaré disk model, a geodesic in the
hyperbolic space is mapped to a circular arc that interests the boundary
of the disk at the right angle (right).

For a non-Euclidean orbifold, its universal cover is either the sphere
or the hyperbolic space. Constructing a 3D room over the sphere and
the hyperboloid would require a second sphere or hyperboloid to hold
the ceiling. While it is possible to construct the room this way, we
instead choose to express the orbifold using a planar model, i.e. the
stereographic projection for the sphere [17] and the Poincaré disk [12]
for the hyperbolic space. By using these models, we have a unified
framework in which any polygon, regardless of the type of its universal
cover, can be constructed in the plane. Next, we describe our algorithm
to identify the side lengths of any non-Euclidean kaleidoscopic orbifold.

Spherical Orbifolds: The stereographic projection [17] maps the unit
sphere to the plane z = 0 such that the equator (a unit circle) is mapped
to itself and the north pole is mapped to the origin in the plane. In this
case, the northern hemisphere is mapped to the inside of the unit disk
bounded by the equator while the southern hemisphere is mapped to
the outside of the unit disk. This plane can be identified as the complex
plane, i.e. the set of complex numbers. The south pole is mapped to ∞.
The geodesics are mapped to circles in the plane that intersect the unit
circle at a pair of antipodal points (Figure 8 (left)).

As shown in Table 1, the underlying polygon of a spherical orbifold
is either a monogon, a diangle, or a triangle. In all of these cases, O
can be contained inside a hemisphere. That is, under the stereographic
projection, it can be contained inside the unit disk in the complex plane.
For the monogon, i.e. ∗, the equator is the mirror. For a diangular
orbifold ∗kk (k > 1), the corner points are on the real axis which are
connected by a pair of circle segments that intersect at the corner points
at π

k . Note that the stereographic projection is conformal [10], i.e. angle-
preserving, thus our choice of the angles at the intersection points. The
triangular orbifold ∗22k (k > 1) is exactly half of the orbifold ∗kk for
the same k (Figure 9: top row).

Finally, the orbifolds ∗23k (k = 3,4,5) can be constructed by placing
the corner points (Figure 9, bottom row) in the stereographic plane as
follows. Let p1, p2, p3 be the corners of the orbifold corresponding
to 2, 3 and k, respectively. The spherical lengths, di,i+1, of the edges
pi pi+1 in the polygon are uniquely determined by the angles π

ki
, π

ki+1

and π

ki+2
of the polygon as follows [32]:

di,i+1 = cos−1

 cos
(

π

ki+2

)
+ cos

(
π

ki

)
cos
(

π

ki+1

)
sin
(

π

ki

)
sin
(

π

ki+1

)
 (2)

where i = 1,2,3, d3,4 = d3,1, k4 = k1 = 2, k5 = k2 = 3, k3 = k, and
p4 = p1. With this information, we first place the vertex p1 at (1,0) in
the complex plane. Next, we compute a geodesic emanating from p1,
along which we travel for a spherical distance of d1,2 to find p2. Since
p1 and p2 are both represented as complex numbers in the stereographic
plane, their spherical distance can be computed from their complex
number representations as follows [17]:
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Fig. 9: In the stereographic plane, the ∗ is realized as the unit disk (top
row: left). A ∗kk orbifold can be created by placing its corner points at a
pair of antipodal points on the unit disk (top row: middle). The ∗22k type
of orbifold is half of the ∗kk orbifold (top row: right). The ∗23k (k = 3,4,5)
can be constructed as shown in the bottom row.

d(p1, p2) = 2tan−1
(∣∣∣∣ p2− p1

1+ p1 p2

∣∣∣∣) (3)

where p is the conjugate of a complex number p. Solving for p2 in
Equation 3 can be challenging given any arbitrary geodesic γ . However,
on the unit circle in the stereographic plane, one can find p2 without the
need to solve Equation 3. This is because the unit circle corresponds
to the equator in the sphere under the stereographic projection, thus
the spherical distance between the two points is the same as the arc
distance between them on the unit circle. However, γ is not always
the unit circle. To address this, we identify a translation in the sphere,
which, under the stereographic projection, takes γ (Figure 10 (left):
the arc) to the upper-half of the unit circle. Such a translation can be
modelled by Möbius transformations [6] that have the following form:

f (z) = eiθ z− z0

z0z+1
. (4)

Here, θ ∈ [0,2π) and z0 and z are complex numbers. A Möbius
transformation is uniquely determined by three pairs of corresponding
points [17]. We first extend γ until it intersects the unit disk and map the
intersection points to (−1,0) and (1,0), respectively (Figure 10 (left)).
We select the third point to be middle point of γ , which is mapped to
(0,1). Call this Möbius transformation M. Since Möbius transforma-
tions in the stereographic plane correspond to rotating the sphere before
the stereographic projection, spherical distance is preserved M. Thus,
we can find the point M(p2) on the unit circle which has an arc distance
of d1,2 from M(p1). Finally, performing the inverse of M, which is also
a Möbius transformation to M(p2), we can find p2 = M−1(M(p2)).

From p2, we compute a second geodesic which has an angle of π

k2
with the first geodesic. Then, travelling along the new geodesic for a
spherical distance of d2,3, we can locate p3. Thus, we have constructed
the ∗23k type of orbifolds (Figure 9: bottom row).

Hyperbolic Orbifolds: We now consider the hyperbolic case, where
χ(O) < 0. The hyperbolic space can be modelled by the Poincaré
disk [12], which is the interior of the unit disk in the plane. Under this
model, the geodesics of the hyperbolic space are circles that intersect
the boundary of unit disk at the right angle (Figure 8 (right)). Recall that
a hyperbolic orbifold is a polygon with three or more sides (Table 1).
To create such a polygon, we follow the same approach for spherical
orbifolds. That is, we start with the location of p1 in the Poincaré disk

pi

M(pi)

pi

M(pi)

pi+1

M(pi+1)

pi+1

M(pi+1)

Fig. 10: Given a point pi, we simplify the computation of pi+1 by per-
forming a Möbius transformation in the stereographic plane for spherical
orbifolds (left) and the Poincaré disk for hyperbolic orbifolds (right). In
both cases, the unique Möbius transformation M maps the extended
geodesic (including the intersections with the unit disk) to the upper semi-
circle for spherical orbifolds and line segment between (−1,0) and (1,0)
for hyperbolic orbifolds. In addition, the center of extended geodesic is
mapped to (0,1) in the spherical case (left) and (0,0) in the hyperbolic
case (right). Then we identify M(pi+1) from which we can recover pi+1
using the inverse of M.

and a geodesic emanating from p1. We then travel along this geodesic
for a prescribed distance to locate p2. From there, we identify a new
geodesic whose angle with the original geodesic is π

k2
, which we follow

to identify p3. This process terminates once when we have identified
pN . The main difference lies in the fact that the hyperbolic distance
between two points in the Poincaré disk is different from the spherical
distance of the same two points in the stereographic plane.

Given a triangular hyperbolic orbifold ∗k1k2k3, the length of the edge
between pi and pi+1 (i = 1,2,3, d3,4 = d3,1, k4 = k1, k5 = k2, and
p4 = p1) is given by [32]

di,i+1 = cosh−1

 cos
(

π

ki+2

)
+ cos

(
π

ki

)
cos
(

π

ki+1

)
sin
(

π

ki

)
sin
(

π

ki+1

)
 (5)

In addition, when represented as complex numbers in the plane con-
taining the Poincaré disk, the hyperbolic distance between pi and pi+1
is given by [17]:

d(pi, pi+1) = ln
(
|1− pi pi+1|+ |pi+1− pi|
|1− pi pi+1|− |pi+1− pi|

)
(6)

Similar to the case of spherical orbifolds, finding pi+1 from pi on an
arbitrary geodesic γ in the Poincaré disk requires solving Equation 6 for
pi+1 which can be challenging. To simplify the matter, we identify the
hyperbolic translation in the Poincaré disk that takes γ (Figure 10 (right):
the arc) to the line segment from (−1,0) to (1,0) in the Poicnaré disk
(Figure 10 (right)). This translation takes the intersection with the unit
circle (two dark green points on the unit circle) to (1,0) and (−1,0) (the
rightmost and the leftmost burgundy points). It also takes the middle
points on γ (the middle dark green point) to (0,0) (the middle burgundy
point). Such a translation can be modelled by a Möbius transformation
of the following form:

f (z) = eiθ z− z0

1− z0z
(7)

where θ ∈ [0,2π) and |z0|< 1. Call the translation M. Since transla-
tions maintain hyperbolic distances, the hyperbolic distance between
pi and pi+1 is the same as the distance between M(pi) and M(pi+1).
However, since M(pi) and M(pi+1) are on the real axis, it is easier to
solve Equation 6. Once we have found M(pi+1), we can recover pi+1
by applying M−1.
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Fig. 11: Two example scenarios of our decomposition algorithm for
hyperbolic orbifolds: (left) a quad is divided into two ∗22k3k4 type quads,
and (right) a hexagon is divided into two ∗22k3k4 quads and two ∗2222k5
pentagons.

However, deciding the side lengths of a hyperbolic polygon with at least
four edges is more challenging as there are no published formulas to
the best of our knowledge. To address this, we compute the side lengths
based on two facts [21]: (1) any quadrangular hyperbolic polygon can
be decomposed into the disjoint union of at most two quads with two
right angles (∗22k3k4), and (2) any hyperbolic polygon with at least
five sides can be decomposed into the disjoint union of a finite number
of quads of the type ∗22k3k4 and pentagons of the type ∗2222k5, i.e.
four right angles. Examples of the two facts are shown in Figure 11.

The side lengths of the ∗22k3k4 polygon (Figure 12 (left)) are given
by [21, 32]:

d2,3 = sinh−1
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
(8)

where d1,2, the length of the cut edge in the decomposition, is a free
variable. This is similar to the case where the width and length of the
∗2222 orbifold (a rectangle) are free variables.

A generic quadrangular orbifold (∗k1k2k3k4) can be decomposed into
the disjoint union of two quads (∗22k1k2) and (∗22k3k4) (Figure 11,
left). This allows us to compute side lengths of the two special quads,
which, when combined, give rise to the side lengths of the generic quad.

The side lengths of the ∗2222k5 polygon (Figure 12 (right)) can com-
puted as follows: [21, 32]:
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(9)
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Fig. 12: The special quad ∗22k3k4 (left) and the special pentagon ∗2222k5
(right) are the building blocks of our decomposition algorithm. The free
variables are colored in red, which correspond to the edges (dashed)
introduced during the decomposition.

where d2,3 and d5,1, the cut edges in the decomposition, are free vari-
ables.

Generic pentagons and higher-order N-sided polygons can be decom-
posed as the union of N−4 pentagons of the type ∗2222k5 with up to
two additional quads of the type ∗22k1k2. To do so, we first consider
the simplest case where there exist ki = ki+1 = 2 and k j = k j+1 = 2
where i, i+ 1, j, j + 1 are mutually distinct. We can find a geodesic
that intersects pi−1 pi and pi+1 pi+2 at the right angle. This geodesic
removes from the original polygon a pentagon involving pi, pi+1, and
pi+2 which has four right internal angles, thus the type ∗2222k5. The
remaining polygon has one fewer vertex and still has four internal right
angles (Figure 11). Repeating this process can lead to N−4 pentagons
of the type ∗2222k5. On the other hand, a generic polygon with at
least five edges can be reduced into the simpler setting by removing
up to two quads of the type ∗22k3k4. We can then compute the side
lengths of each of the sub-polygons, which, when combined, give the
side lengths of the original polygon.

Every cut edge in the decomposition gives rise a free variable, which
can be modified by the user. The default value for the free variables is
set to 1.4.

With our algorithm, any spherical and hyperbolic orbifold can be con-
structed given its orbifold notation. Figure 13 show two example
orbifolds with their universal covers.

5.2 Object Embedding and Movement

Once the orbifold has been realized as a polygonal prism, the user can
add objects to the scene.

However, when bringing an object, which is created in a presumably
Euclidean space, to a non-Euclidean space, a natural question to ask is
how to perform the embedding. Due to the difference in their respective
distance metrics, it is not always possible to embed the model in such
a way that the length of every edge in the mesh is maintained. To
address this challenge, when embedding the object into the scene, we
first place it so that its center of mass is at the origin of the plane for
both the stereographic plane and the Poincaré disk. The coordinates of
the object are now considered their corresponding coordinates in the
stereographic plane and the Poincaré disk. Then, the embedded mesh
is translated to the user-specified initial location with the translation
native to the non-Euclidean space.

Translations in both the spherical and hyperbolic spaces are isometries.
In the spherical space, translations can be modelled in the stereographic
plane by Möbius transformations according to Equation 4. Interestingly,
translations in the hyperbolic space using the Poincaré disk can also be
modelled by Möbius transformations according to Equation 7.



(a) ∗235 (b) ∗23456789(10)(11)

Fig. 13: Two orbifolds generated using our orbifold layout creation
algorithm: (a) the ∗235 orbifold (spherical) and (b) the orbifold
∗23456789(10)(11) (hyperbolic).

We store the Möbius transformation of each object, and update it when
the model is interactively moved inside the room. The Möbius transfor-
mation, which corresponds to a translation of the spherical space or the
hyperbolic space, is applied to all the vertices in the mesh.

5.3 Universal Cover Construction

Being able to see the universal cover, i.e. all mirror reflections, can
be important for a user while exploring our tool. However, capturing
mirror reflections can be computationally expensive with high-quality
renderers such as Mitsuba [19]. Williams and Zhang [34] address
this for Euclidean kaleidoscopic orbifolds by creating a finite number
of copies of the reflections of the original room that approximate the
universal cover. This is based on two observations. First, as copies
are farther away from the room, their images perceived by the viewer
approach the vanishing line and thus do not contribute much to the
pixels. Second, the color intensity of faraway copies diminishes as
the number of bounces off from the mirrors increases. We employ
a similar approach, which focuses on non-Euclidean orbifolds. Two
examples of universal covers created by our method are shown in Fig-
ure 13: (a) the spherical orbifold ∗235 and (b) the hyperbolic orbifold
∗23456789(10)(11).

In our system, the construction of the universal cover for Euclidean orb-
ifolds closely follows that of Williams and Zhang [34], which computes
the translational cover of the orbifold and generates additional copies
of the translational cover using either the Gaussian integer lattice Z[i]
for the ∗2222 and ∗442 cases and the Eisenstein integer lattice Z[ω]
for the ∗333 and ∗632 cases.

For spherical and hyperbolic orbifolds, the notion of translational cover
is not well-defined. Consequently, we employ the following process.
Starting from the original room, we iteratively add a virtual copy by
reflecting the room across one of its mirrors. It is also possible to reflect
a virtual room across its mirror. To avoid duplicates, i.e. a virtual
room that is discovered through two different paths from the original
room, we compare the center of a potentially new room to the centers
of already visited room and virtual rooms [35].

To locate the corners of each newly added room, we apply reflections in
the spherical or hyperbolic spaces to the already visited room involved
in the reflection. Inside the stereographic plane, a reflection in the
spherical space can be represented as the compositions of some Möbius
transformations (Equation 4) and the conjugation function with respect
to the real axis f (z) = z. Similarly, inside the Poincaré disk, a reflection
in the hyperbolic space can also be expressed as the composition of
some Möbius transformation (Equation 7) and the conjugation function
with respect to the real axis. The Möbius transformation is stored in
the form of a 2×2 matrix whose entries consist of a, b, c, and d [5].

For each copy of the room we save the transformation needed to take
the original room to the copy, which is a combination of a Möbius
transformation and up to one conjugation function. In addition, for each
object in the original room, we also save its Möbius transformation.
Then, the position and orientation of an object in a virtual copy of
the original scene can be calculated by combining the matrix for the
virtual room and the matrix of the same object in the original scene.
Also, the computation for both object manipulation and universal cover
construction is done using the shader.

6 OPTICS-BASED ORBIFOLD VISUALIZATION

Our mirror-based visual metaphor and interactive orbifold design algo-
rithm are motivated by a number of tasks for understanding the concept
of orbifolds. Additional results illustrating concepts and properties
related to orbifolds can be found in Appendix B. Below we list four
tasks and show the results of using our approach to address them.

Recognizing Non-Orbifolds: One of the most fundamental tasks for
orbifold visualization is to decide whether a given mirror scene is an
orbifold. Non-orbifolds can be difficult to conceptualize, especially
when one or more angles at the corners violates π

k for k ∈ N+. The
resulting rendered images and/or videos can deliver a sense of whether
the room is a kaleidoscopic orbifold. When the room is a kaleidoscopic
orbifold, the viewer should be able to move around the scene and see
a consistent larger scene (the universal cover) that is seamlessly tiled
by copies of the original room (the orbifold). On the other hand, if
the viewer sees conflicting results, such as the double-headed dragon
in Figure 2 (c), it is an indication of a non-orbifold. In this particular
example, the room has a corner with an angle of π

k where k = 2
3 , which

is not an integer.

Sensing the Orbifold: An orbifold is a topological space that stands
on its own. Using our mirrored scenes, we can produce visualizations
that emphasize different aspects of an orbifold. For example, for the
scene shown in Figure 4, we can adjust the attenuation factors for the
mirrors to emphasize the orbifold itself (Figure 4 (a)) by setting high
attenuation for both mirrors, or the translational cover (Figure 4 (b)) by
setting high attenuation for one mirror and low attenuation for the other
mirror, or the universal cover (Figure 4 (c)) by setting low attenuation
for both mirrors. Notice that in all of these cases, our mirror-based
visualization provides a clear sense of the orbifold, the room.

Determining the Orbifold Notation: Once an intuitive sense of the
orbifold is established and the structure of the reflection is observed,
it becomes a relatively straightforward task to determine the type of
the orbifold in terms of its orbifold notation. Given the power of 3D
graphics and animation, we produce either a panorama of the scene
or an animation in which an avatar walks along the walls (see the
accompanying video). As the avatar approaches the i-th corner, so do
its nearest reflections. There appear to be ki pairs of avatars approaching
the corner. Then, ki pairs of the same avatars leave the corner for the
next one. This helps the user identify ki for the i-th corner. By walking
around the room one time, each corner is visited. This can help the user
write down the orbifold notation.

Identifying the Type of the Universal Cover: With the same
panorama and walkaround animations, the user can gain insight into the
type of the universal cover. Both the spherical space and the hyperbolic
space can bring unfamiliar experience to someone new to the concept.
For example, inside the spherical space, objects do not always appear
smaller when they are further away. Specifically, when the viewer is at
the south pole, objects near the north pole appear much wider than the
same object at the equator (Figure 14 (a)). On the other hand, objects
farther away always look smaller in the hyperbolic space. However,
with the seemingly same distance to the viewers, an object can look
much smaller in the hyperbolic space than in the Euclidean space (Fig-
ure 14 (b-c)). As the objects move around the scene such as the avatar
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Fig. 14: An avatar walks along the walls of the orbifolds. The universal cover is the sphere for (a) and the hyperbolic space for (b) and (c).

in Figure 14 and the accompanying video, the way the reflections of
the objects deform in non-Euclidean spaces is rather different from that
in the Euclidean space. For example, a reflection of the avatar may
suddenly grow much bigger and then shrink quickly in the spherical
space. With a relatively simple scene (the orbifold), the user can gain
insight into the entire universal cover through mirror reflections.

7 RENDERING

Once the scene has been constructed, we can either display it interac-
tively during the design stage (Figure 3) or send it to Mitsuba [19] for
high-quality off-line rendering. For the latter, we make use of a ray-
tracing type of approach with Mitsuba. Recall that our non-Euclidean
room is modelled by a subset in D× [0,h] where D is the unit disk and
h is the height of the room. Thus, any geodesic γ in the space satisfies
that its horizontal projection is a geodesic in the spherical or hyperbolic
space. Consequently, γ takes the form of a 3D spiral. To generate the
correct rendering of such scenes, we modify the ray-triangle intersec-
tion algorithm in Mitsuba from line-plane intersection to spiral-plane
intersection.

Given a point p0 in the room and a tangent direction v, the spiral ema-
nating from p0 in the direction of v is the tensor product of horizontal
projection and the vertical projection of the spiral. The horizontal pro-
jection is a circle (can also be a line) in the floor that starts with the
projection of p0 onto the floor and travels in the direction of vH , the
projection of v onto the floor. The vertical projection of the spiral is a
line that starts at p that travels in the direction of vZ , the z-component
of v. This leads to a parametric form of γ which we use to find the
intersection of the spiral γ with a given triangle on an object in the
scene. When there are multiple intersections with the triangle, we find
the one that has the smallest positive t value, which represents the
closest intersection from the reference point p.

During the design stage, we make use of scan conversion for interactive
feedback. Recall that in this case, we also render the universal cover
since we do not model mirror reflections during design. For each vertex
on an object in the scene or a virtual copy, we project it to the image
plane by using the same spiral-triangle intersection as in the case of
Mitsuba rendering. We then perform barycentric interpolation to find
the footprint of any triangle in the image plane by interpolating their
vertices’ locations. Given enough mesh resolution, the error in this
interpolation-based approach is relatively small since all of its vertices
are projected correctly using the spiral-triangle intersection.

8 PERFORMANCE

Our interactive design system is evaluated on a computer featuring
an i7-8700K @3.70GHz CPU and an NVIDIA GeForce GTX 2080

GPU. For an orbifold ∗22222 with 26,022 primitives at an 800×600
resolution, our system can render its universal cover approximated by
166 copies of the original room at 11 frames per second. When the
number of copies is reduced to 61, the frame rate is increased to 30
frames per second.

For off-line rendering, we make modifications to Mitsuba 0.6. The
rendering was performed on a Linux Cluster, comprised of machines
equipped with 12-core 2.67 GHz processors and 48 GB SDRAM, to
generate high-resolution images and videos based on the scenes that
we created. Due to the increased computational cost from the spiral-
triangle intersections, the rendering is considerably slower for non-
Euclidean orbifolds than Euclidean orbifolds. As an example, for
the single frame of the spherical orbifold ∗222 that contains 12,572
primitives (shown in Figure 14 (a)), it required 7.69 minutes when
rendered at a resolution of 800×600.

9 CONCLUSION AND FUTURE WORK

In this paper, we propose the use of mirror reflections as a visual
metaphor for orbifolds and provide a system in which the user can
interactively design any two-dimensional kaleidoscopic orbifold. At
the core of our interactive design system is the ability to determine
the configuration of the room (locations of the corners, shapes of the
walls) given the orbifold notation provided by the user. Our system
can handle not only Euclidean orbifolds, but also spherical orbifolds
and hyperbolic orbifolds. In addition, we provide an enumeration of
two-dimensional kaleidoscopic orbifolds based on the combination of
the cardinality of the underlying polygon and the type of the universal
cover. As part of the design system, we also enable the interactive
construction of the universal cover of the orbifold as well as movement
of the objects in the scene. The user can also generate high-quality
photorealistic renderings of the scene, panorama, and animations with
Mitsuba, which we have modified to account for the geodesics in
spherical and hyperbolic geometry along which light travels.

Making rendering more efficient with the off-line rendering with Mit-
suba is important, and we plan to investigate efficient spatial hashing
data structures for the non-Euclidean spaces. In addition, the quality of
the meshes used to represent the floor and the ceiling can impact the
rendering speed, and we plan to explore optimal meshing structures for
our purpose.

For future directions, we wish to expand our rendering system to ar-
bitrary three-dimensional orbifolds. In addition, not all orbifolds are
kaleidoscopic, and we would like to incorporate the visualization for
non-kaleidoscopic orbifolds, such as the ones involving gliding reflec-
tions. Finally, we wish to explore the visualization of non-orientable
orbifolds, whose universal cover is a non-orientable surface such as the
Projective plane and the Klein bottle.
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