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Figure 1: High quality all-hex meshes of complex shapes automatically generated by our method and the PolyCubes we compute
to create them. For the kiss both fine and coarse meshes are shown.

Abstract
While hexahedral mesh elements are preferred by a variety of simulation techniques, constructing quality all-hex
meshes of general shapes remains a challenge. An attractive hex-meshing approach, often referred to as sub-
mapping, uses a low distortion mapping between the input model and a PolyCube (a solid formed from a union
of cubes), to transfer a regular hex grid from the PolyCube to the input model. Unfortunately, the construction
of suitable PolyCubes and corresponding volumetric maps for arbitrary shapes remains an open problem. Our
work introduces a new method for computing low-distortion volumetric PolyCube deformations of general shapes
and for subsequent all-hex remeshing. For a given input model, our method simultaneously generates an appro-
priate PolyCube structure and mapping between the input model and the PolyCube. From these we automatically
generate good quality all-hex meshes of complex natural and man-made shapes.

1. Introduction

Due to their numerical properties, hexahedral meshes are
preferred and widely used for numerical simulations in sev-
eral engineering domains [SJ08,Owe09]. However, the auto-
matic meshing of arbitrary objects with high quality, or well
shaped, hexahedra remains an open problem [LL10, SJ08].
Consequently, industrial practitioners still largely rely on a

variety of semi-manual approaches which require consider-
able user interaction, and can involve days or even weeks to
generate meshes of complex shapes [SJ08].

An appealing approach for all-hex meshing, referred to
as mapping or sub-mapping [Owe09], relies on a volu-
metric mapping between the input model and a PolyCube
[THCM04], a solid formed by joining several cubes face-
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Figure 2: Overview (left to right): Given an input tet mesh (a) we first use a soft, rotation-based, low-distortion deformation
framework to align most surface normals with the major axes (b). We then introduce hard positional constraints to obtain the
final PolyCube deformation (c). We use the mapping between the input model and the obtained PolyCube to hex-mesh the input
with a high quality mesh (d) at a desired fine (left) or coarse (right) resolution.

to-face which has a trivial hex mesh. Sub-mapping methods
transfer the resulting mesh to the input model using the pro-
vided mapping. For these methods, hex quality is directly
linked to mapping distortion, however computing the Poly-
Cube structure and a low-distortion mapping between the
PolyCube and the input remains an open problem for gen-
eral shapes [XHY∗10].

Our work introduces a new method for computing low-
distortion PolyCube maps of general shapes and subsequent
quality all-hex remeshing based on those (Figures 1, 2). The
method uses a volumetric deformation approach to simul-
taneously compute the Polycube structure and mapping to
the input, and is based on the observation that surface nor-
mals of a PolyCube are axis-aligned. The method forms the
PolyCube by rotating surface normals appropriately, while
minimizing the subsequent distortion throughout.

Using the mapping between the input models and the gen-
erated PolyCubes (Section 6) we are able to naturally align
mesh elements with the input shapes to automatically gener-
ate well shaped all-hex meshes of complex natural and man-
made shapes (e.g. Figure 1). The resulting meshes have very
regular, structured, connectivity, and are a good approxima-
tion of the input (Section 7).

2. Background and Related Work

Our work builds on previous research on mesh generation,
PolyCube construction and parameterization, mesh defor-
mation and smooth vector or tensor field computation.

Mesh Generation: In recent years production quality meth-
ods were developed for generating tetrahedral volume
meshes, e.g. [TWAD09, LS07] and surface quad meshes,
e.g. [BZK09, DSC09]. However, despite extensive research
effort quality hex meshing remains an open problem [SJ08].
Surveys of the existing methodologies are provided by
[SJ08, Owe98, Owe09].

While it is fairly easy to generate a basic all-hex mesh
(e.g. by subdividing a tet mesh) the main goal of hex-
meshing is to generate meshes with reasonable quality in

terms of both element shape and connectivity. The ele-
ment quality, often defined as deviation from a perfect cube
[PTS∗07], affects the accuracy and robustness of simula-
tions. Simulation results depend not only on average ele-
ment quality but also on minimum quality [PTS∗07, LS07]
with even a single “inverted” (negative Jacobian) element
making a mesh unusable for simulation. Connectivity also
directly impacts computation time; structured meshes with
regular connectivity reduce processing time and simplify
parallelization significantly [SJ08].

Many hex meshing methods work well for subsets of
shapes [MH01, STS05, SOB06] but may not be designed
for or robust enough for general inputs [SJ08]. Shepherd
[She07] proposes a grid-based method which works well
for natural shapes, but requires significant user input for
CAD models. Sub-mapping methods [Owe09] used in in-
dustry typically rely on an explicit PolyCube structure for
the input and so cannot be applied as-is to general inputs.
The submapping approach can be extended to general shapes
when suitable PolyCubes [LXW∗10] are available, however
construction of such PolyCubes remains an open problem.
In fact, even generating PolyCube domains manually is chal-
lenging for users, Han et. al. [HXH10] state “... Thus, it re-
quires the users to be very skillful in designing the param-
eterization domains”, referring to users needing to balance
domain simplicity with parameterization distortion.

Consequently, methods used in industry for tend to fall
into two categories: hex-dominant and grid-based. Hex-
dominant methods, e.g. [VS09, LL10], create high quality
meshes but often include a significant percentage of non-hex
elements (e.g. often more than 20% for [LL10]). Non-hex el-
ements require specialized numerics and may not suit some
applications [Owe98].

Grid or octree methods [Sch96, Mar09] intersect the in-
put model with a Cartesian grid defining the mesh interior.
This grid is then connected to the surface using a variety of
methods. Grid methods often need excessively fine local el-
ement sizes on off-axis or concave features and may form
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scaled jacobian avg: 0.952 min: 0.196
                        % irregular vertices: 3.57

scaled jacobian avg: 0.915 min: 0.005
                      % irregular vertices: 11.99

[Marechal 2009]
Rectilinear

Parameterization

Figure 3: (left) Meshes generated by grid-based techniques, e.g. [Mar09], are poorly aligned with off-axis features, resulting in
irregular connectivity and sub-optimal element shape near those ( [Mar09] results kindly provided by the author). (right) Our
method naturally aligns the mesh with the boundary surface, improving quality. The biggest improvement shows in the quality
of the worst element (a factor of forty in this example) and in the percentage of irregular vertices which drops by a factor of
three. [LL10] use this example in their paper as well generating a hex-dominant mesh with over 20% non-hex elements and a
minimal dihedral angle of 19◦, our all-hex mesh has a minimal dihedral angle of 20◦.

low quality elements with irregular connectivity in those ar-
eas, as illustrated in Figures 3 and 12.

PolyCube Construction and Parameterization: Poly-
Cubes in their most general form are volumes bounded by
axis-aligned planes. Tarini et al. coined the term PolyCube in
[THCM04] and defined a mapping from input objects to the
surface of manually constructed PolyCubes. Although recent
surface parameterization methods use rectilinear base do-
mains (e.g. [KNP07, BZK09]), the domain structure is gen-
erally not applicable to building PolyCubes. So far very few
researchers have addressed automatic PolyCube construc-
tion. Lin et al. [LJFW08] use a protrusion based segmen-
tation of the input which is approximated by box-primitives,
forming very coarse PolyCubes (Figure 4, top-left) with sig-
nificant distortion. Furthermore their segmentation approach
is unlikely to work on CAD models with no such features,
e.g. models in Figures 1, 3 and 12. He et al. [HWFQ09]
use a distance-based, divide-and-conquer strategy to approx-
imate the input with a PolyCube. Their method is sensitive
to off-axis features and may generate over-refined polycubes
(see Figure 4) with complex connectivity requiring fine hex
meshes for our application. Additionally both methods op-
erate on the surface only, require a separate method to com-
pute the mapping between the volume and PolyCube. This
ignores the impact that the PolyCube can have on the distor-
tion of the volumetric mapping in the interior, and comput-
ing volumetric mappings from a given PolyCube surface is
a challenge in itself, only addressed via complex numerical
optimization [LXW∗10] or significant user input [XHY∗10].

Deformation: Existing deformation method for surfaces,
surveyed by [Sor06], and volumes, e.g. [BCWG09,
BPWG07] try to preserve shape subject to user specified an-
chor deformation. The user is required to provide feasible
deformations for a sparse set of anchors that allow a smooth,
meaningful deformation of the input. Our method requires a
dense set of anchors over the input surface, so neither space
deformation methods [BCWG09] nor multi-resolution ap-
proaches [BPWG07] are suitable for our needs. Addition-

Figure 4: The protrusion-based method of [LJFW08] (top
left) produces overly coarse PolyCube maps which intro-
duce significant distortion, while the divide-and-conquer ap-
proach of [HWFQ09] (bottom left) oversegments off-axis
features and produces unneccessarily complex PolyCube
map structure. Our deformation-based approach (right col-
umn) performs better and produces PolyCube maps that ap-
proximate the inputs well, but are less prone to oversegmen-
tation.

ally, since we operate over volumes rather than surfaces,
non-linear approaches become prohibitively expensive.

Symmetry Tensors: A natural approach for hex-meshing
would seem to be extending state-of-the-art quad meshing
algorithms, e.g. [BZK09, DSC09], to volumes. The draw-
back to these methods for volumetric meshing is the use of
symmetry tensors (or cross-fields) that are aligned with prin-
ciple curvature directions. On surfaces and in 2D, the singu-
lar features of these fields are easily handled and determine
mesh structure, however singular features in 3D may have
very complex features [LL96] that are costly to extract and
challenging to resolve in a principled manner.

Our work aims to extend the sub-mapping all-hex mesh-
ing approach to general shapes via automatic construction
of suitable low-distortion PolyCube maps. By using the au-
tomatically computed PolyCube deformation we naturally
align the local mesh connectivity with both axis-aligned and
off-axis features, creating much more regularly structured,
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better quality meshes than the grid-based approaches (Fig-
ure 3, right and Section 7).

3. Algorithm Overview

The input to our algorithm is an isotropic tetrahedral mesh of
the object to be meshed, typically containing 100K to 200K
tetrahedra. We generate these meshes with Tetgen [Si] from
isotropic surface meshes. Non-isotropic surface meshes are
remeshed using Graphite [Lev] prior to tet-meshing.

Our method uses a two step process to deform the input tet
mesh into a PolyCube from which an all-hex mesh (Figure
2) is extracted.

Rotation-Driven Deformation: The first step of our algo-
rithm gradually aligns the model’s surface normals with one
of the six global axes (±X ,±Y,±Z), preserving shape as
much as possible (Section 4, Figure 5). This exposes the
PolyCube structure and performed in two steps. First, mini-
mal axis-aligning rotations are propagated from the surface
through the object volume as deformation gradients. Then,
these gradients are integrated using Laplacian deformation
to obtain a more axis-aligned deformed object. The first step
is carefully designed to prevent singularities from occurring
in the deformation gradient field. This property is a key con-
tribution of our method since it allows a volumetric Poly-
Cube structure to be extracted by virtue of unambiguous
axis-labeling throughout the object volume.

Position-Driven Deformation: After rotation-driven defor-
mation, models are sufficiently axis-aligned to allow a Poly-
Cube structure to be determined (Section 5.1). This struc-
ture is extracted and additional positional constraints added
to align each PolyCube face with the appropriate axis and
enforce planarity (Figure 2, c).

Mesh Generation: The final step meshes the resulting Poly-
Cube with an axis-aligned grid. It then maps the mesh back
to the input shape using the explicit correspondence pro-
vided by the volumetric deformation. The result is a struc-
tured all-hex mesh (Section 6, Figure 2, d). Standard mesh
improvement techniques are then used to optimize element
quality. In the next sections we describe the stages of the
pipeline in detail.

4. Rotation-Driven Deformation

Our rotation-driven deformation slowly aligns the model
surface normals with the global XY Z axes. A gradual, shape
preserving process is used to avoid oversegmenting and ex-
cessively distorting the final PolyCube (as happens with
high-frequency detail when each normal is greedily rotated
and enforced strictly). Each iteration of this process pro-
duces successively more axis-aligned models (Figure 5) that
preserve the overall shape.

4.1. Computing Deformation Gradients

Deformation gradients are computed as the minimal rota-
tion necessary to align each surface vertex normal with one
of ±X ,±Y,±Z. Gradients are computed for every surface
vertex (except those on sharp features) and smoothly prop-
agated to feature and interior vertices to define a volumetric
deformation gradient field. Feature vertices are determined
by a normal similarity theshold. The use of a two stage de-
formation scheme is similar to those of [YZX∗04,ZHS∗05].

We represent deformation gradients with quaternions q =
[qx,qy,qz,qw]

T , ||q|| = 1 and operate on them using nor-
malized linear interpolation with positive, convex weights.
These choices allow standard linear solvers to be used on
each component independently when propagating surface
gradients smoothly into the object volume. However, the
quaternion representation is ambiguous in the sense that
q and −q represent the same rotation. This ambiguity ad-
mits the possibility of generating zero-norm (or degener-
ate) quaternions when using linear interpolation. Degener-
ate quaternions cause highly undesirable singular features
within the fields, since they represent the only places where
the otherwise smoothly varying orthogonal bases repre-
sented by the quaternion field break down.

We suppress this ambiguity by coherently-orienting the
minimal, axis-aligning rotations used in constructing quater-
nions. When constructing a quaternion from a rotation ma-
trix R, we first reorder and reflect the columns of R to
maximize its trace. This process guarantees that the scalar
components qw of the quaternions are strictly positive in
all cases, which ensures that ||q|| > 0 and thus the quater-
nion is non-degenerate. The use of positive, convex weights
then ensures that no quaternion obtained via interpolation
(either within a tetrahedron or while propagating gradients)
is degenerate, and hence the resulting fields are singularity
free. Coherently-orienting the quaternions also keeps rota-
tions close to one another, reducing the approximation er-
ror introduced by using linear interpolation rather than more
complex, non-linear methods.

The surface deformation gradients are propagated to in-
terior/feature vertices by solving a Laplace equation per
quaternion component. The system is solved in a least
squares sense with low (unit) weights associated with the
surface anchor rotation constraints. Low weights improve
robustness to potentially inaccurate initial gradients by grad-
ually enforcing alignment over successive iterations (see
Figure 5). Uniform weights are used to discretize the Lapla-
cian operator since the input tet meshes are fairly uniform.

The resulting quaternion field is then normalized to obtain
the full set of deformation gradients, and is free of singular
features by virtue of the coherent orientation step.
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Iteration 2 Iteration 3 Iteration 6Iteration 1

Figure 5: (Left) First deformation iteration: (left) surface
gradients, the color shows the target axis for each normal;
(right) deformed model. (Right) Consecutive deformation
iterations produce progressively more axis-aligned results,
converging after roughly four iterations.

Figure 6: Position-driven deformation, left to right: closest
axis for each normal after completing the rotation-driven de-
formation step, extracted PolyCube structure, final PolyCube
deformation.

4.2. Computing Vertex Positions

The deformation gradients are then integrated to obtain a de-
formed version of the input. For each edge (i, j) with original
coordinates ṽi and ṽ j the new vector vi−v j can be expressed
as vi− v j =

1
2 (∇i +∇ j) · (ṽi− ṽ j) where∇i and∇ j are the

rotation matrices corresponding to the deformation gradients
at i and j respectively. These are computed as described in
the preceding sections and averaged to approximate the de-
formation gradient along the edge. Using this formulation
for all edges results in a Poisson equation, where the triplet
of rows corresponding to the i’th vertex is:

vi−
1
N

N

∑
j=1

v j =
1
N

N

∑
j=1

∇i +∇ j

2
· (ṽi− ṽ j). (1)

Here the j index runs over the N neighbors of vertex i.
Pinning one vertex is sufficient to make equation 1 non-
singular. Except for the right-hand-side the system for each
coordinate axis is identical, and is solved independently.
The resulting deformed model has more pronounced axis-
alignment than the input, but is not perfectly axis-aligned
since the formulation balances alignment constraint satis-
faction with volumetric distortion. The rotation driven de-
formation step is repeated 5 times, after which it is largely
converged (Figure 5). The iterations can be performed effi-
ciently by factorizing and storing the relevant systems.

5. Position-Driven Deformation

To complete the PolyCube deformation we extract the Poly-
Cube structure from the deformed meshes and enforce strict
planarity constraints on each of the axis-aligned faces, or
charts, of the PolyCube. This structure is obvious in most
cases, with the deformed models consisting of well-defined
largely axis-aligned charts that are separated by nearly-
straight boundary edges (Figure 6 left ).

5.1. Extracting a PolyCube Structure

Extracting basic structure: To extract PolyCube structure
we label surface triangles according to the closest axis to
smoothed triangle normals and group similarly labeled tri-
angles into charts. Charts correspond to PolyCube faces
and the boundaries between charts correspond to PolyCube
edges and vertices. We ‘straighten‘ chart boundaries by rela-
beling any triangle along a chart edge with two neighbors of
a common label to the label of the neighbors, which reduces
jaggedness. We then remove small, spurious charts bounded
by at most two edges (e.g. tiny blue charts in Figure 6, left).
Triangles of the deleted charts have their labels reassigned
by flood-filling labels from their neighbors. For many mod-
els this simple process generates a valid PolyCube structure
that can be used as-is for the final position-driven deforma-
tion step, however it is often necessary to modify the seg-
mentation by rotating parts of the surface by a fairly large
angle to “add” or “delete” charts.

The goal of this segmentation-modifying step is to obtain
a segmentation that admits a PolyCube deformation, but un-
fortunately the required properties of orthogonal polyhedra
are not fully known [EM10]. Instead we use a simple greedy
heuristic based on the observation that PolyCube edges must
be axis aligned and straight. The output from the rotation-
driven deformation step is usually close to satisfying this
requirement consisting of nearly planar charts with nearly
straight edges, however we note two situations where this
is not the case. The first is when a single chart should map
simultaneously to opposite sides of the final PolyCube, as
in Figure 7, which we call a multi-orientation chart. This
causes the chart to have two U-shaped edges which violate
our edge-straightness heuristic. To handle this case, a new
chart should be introduced to split the multi-orientation chart
into two separated charts, each a single orientation.

The second configuration occurs when charts are highly
non-planar (such as the red and white charts in Figure 8,
left), which introduce S-shaped edges. Such configurations
may or may not allow topologically valid PolyCubes to be
formed but introduce considerable distortion when planarity
constraints are enforced. Highly non-planar charts are also
handled by splitting, which reduces distortion once planarity
constraints are enforced.

Splitting multi-orientation charts: Multi-orientation
charts are detected by introducing orientation labels for
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Figure 7: Handling multi-orientation charts: The white
chart maps to top and bottom of the PolyCube (left), so a sep-
arating chart is introduced (top right) which allows a valid
PolyCube to be formed (bottom right)

Wedge

Extrema

Figure 8: Processing highly non-planar charts (two wedges
highlighted): three possible axis-aligned cut options for the
red wedge with selected one highlighted (center); produced
segmentation (right). In this example only the yellow cut is
valid, since the magenta cuts would introduce charts with
only two neighbors. Enforcing planarity on the two resulting
white patches will no longer collapse the red wedge.

each triangle to indicate whether its normal points in the
positive or negative direction of the axis to which it maps.
Charts with multiple orientations are topologically invalid
and are split along the boundary where the orientation labels
change. A separating chart is introduced along the splitting
boundary to separate the two resulting charts (see Figure 7)
with width set equal to the user-specified mesh edge-length.
The axis-assignment of the separating chart is found by
considering its four neighbors. If there are two pairs with
the same assignment, the chart is assigned the remaining
axis. Otherwise, the assignment from one of the unmatched
neighbors is used, with the choice determined by normal
similarity. Once detected, multi-orientation charts are split
immediately.

Splitting highly non-planar charts: The algorithm detects
highly non-planar charts by examining the chart edges.
It traverses each chart edge looking for “extrema”; points
where the edge doubles back on itself. This search is per-
formed on smoothed copies of the chart edges (which are
discarded), to avoid detecting spurious extrema introduced
by edge jaggedness. Such extrema occur at the end of what
we refer to as “wedges” (Figure 8, left), which vary in size
depending on how non-planar the adjacent charts are. The
severity of an extremum is characterized by the area of its
corresponding wedge, which is approximated by the triangle
formed by the the extremum itself and its immediately adja-
cent extremum on either side (or the chart-edge endpoint if
there isn’t one). Directly enforcing planarity constraints on
charts adjacent to wedges flattens the wedges to lines and
causes high amounts of distortion. Wedges are resolved by

splitting the concave chart starting at the wedge tip and in-
troducing a separating chart along the split.

Extrema are processed in decreasing order of severity.
The algorithm finds candidate paths along which to cut the
concave chart chart adjacent to the extrema by breadth-first
search from each extrema through the chart for boundary
vertices of the chart at which to terminate the cut. Valid cuts
are defined as those that would not introduce new charts
with three or fewer neighbors. Each cut from a to b is as-
signed a cost C(a,b) = αL(a,b)(1.1−Align(a,b)) based on
L(a,b) which is the cut path-length and Align(a,b) which
is the maximum dot product of b−a

||b−a|| with the global XY Z
axes to favor axis aligned cuts. The factor α is 0.5 for cuts
that connect two extrema, and 1 otherwise which favors cuts
that resolve multiple extrema simultaneously. Once found,
a separating chart is introduced along the lowest cost cut.
. As before, this separating chart will have four neighbors.
If these neighbors have only two axis-assignments among
them, the remaining third assignment is used. Otherwise the
assignment from the chart forming the wedge is used. The
width of the separating chart is set to half of the width of the
wedge, defined as 2D distance between the wedge endpoints
in the plane corresponding to the two adjacent chart axist as-
signments (e.g. if the extremum is on an edge between charts
assigned to x and y, the distance between the endpoints in the
xy plane is used.

For all inputs tested, these two splitting rules have pro-
duced valid PolyCube structures which allow the subsequent
position-driven deformation step to proceed.

5.2. Position-Driven Deformation

With the PolyCube structure extracted, the final PolyCube is
obtained by constraining each chart to an axis-aligned plane.
For this step, an additional variable per-chart (the chart co-
ordinate) is introduced to the Poisson formulation (Equa-
tion 1) which all vertices on the chart are constrained to. To
avoid self-intersections, which can occur for close-by sur-
faces aligned with the same axis (see e.g. casting model
(Figure 1), soft distance preservation constraints are added
to preserve the ordering and distance between nearby charts
aligned to the same axis. Without these constraints, the or-
dering of charts can occasionally flip. To measure distance,
a per-vertex approximate Voronoi diagram of charts is built
within the object volume that stores at the vertices the clos-
est vertex on the closest chart. Edges connecting Voronoi re-
gions of two similarly labeled charts indicate ordering con-
straints between the charts, with distance equal to the dis-
tance along the chart axis between the closest points. These
distances are averaged over all edges having a vertex in each
Voronoi region of a pair of charts, and used as the constraint
distance for the pair. The weight of each constraint is set
by a Gaussian function of the distance between the charts

e
max(di−mind ,0)

2

σ2 , where mind is set to twice the output mesh
edge-length and σ is set to 3mind to produce a sharp falloff.
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Figure 9: Closeup of the neck of the girl. Input mesh (left),
mesh after position driven deformation (right). Inverted tets
(red) occur when an input tet has four vertices on the sur-
face and at concave edges of the polycube (right). Isolated
inversions (not shown) can occur occaisionally in the mesh
volume if low-quality sliver tetrahedra from the input invert
during deformation.

Once solved, a set of chart coordinates are obtained. These
are rounded to the nearest integer and a Laplace equation
solved for each axis, using the known chart coordinates as
pin constraints for vertices on each chart. Mean value coor-
dinates in 2D (surface vertices) and 3D (volume vertices)
[FKR05] are used to discretize the Laplace operator. The
result of this is a PolyCube with the same connectivity as
the input, so the mapping between input and output is triv-
ial. This PolyCube is generally not bijective and has over-
laps at concave features, however our mesh generation step
is designed to handle such cases. Other applications with
more stringent bijectivity restrictions could potentially use
better input meshes combined with untangling or on-the-fly
remeshing such as [WRK∗10].

6. Mesh Generation

To extract a hex-mesh from the resulting PolyCube, hex ver-
tices and centroids are generated in the PolyCube domain
and mapped to the original model using barycentric coordi-
nates. In the PolyCube domain hex corners occur at points
with integer coordinates and centers are offset from these
by [ 1

2 ,
1
2 ,

1
2 ]

T . Hex vertices are generated first for the Poly-
Cube corners, then edges, then facets and finally volume. As
vertices are generated, those that conflict with the PolyCube
structure in their local neighborhood (e.g. volume vertices on
the wrong side of a PolyCube facet) are suppressed and dis-
carded, as are vertices for which another vertex already ex-
ists with the same parameterization coordinates within five
desired edge-lengths. Processing vertices in this order en-
sures that the necessary information for consistency checks
is present when needed. For example, when adding volume
vertices, all facet vertices will already be in the lattice, so
conflicting facets can be found by examining the lattice posi-
tions adjacent to the current vertex. We have found that pro-
cessing vertices in this manner makes the method robust to
a lack of bijectivity in the PolyCube Parameterization. Hex
centroids are generated after the vertices in the same way as
hex vertices in the PolyCube volume. Output hexahedra are
then formed by breadth-first search from each hex centroid
for the 8 hex vertices needed to form a hex. The search is
performed within the volume of the model. This avoids con-

Figure 10: PolyCubes of complex shapes and corresponding
hex meshes both generated automatically by our method.

necting nearby but disconnected features of the model since
hex-centroids will not be generated in these regions, without
needing complex intersection tests.

The resulting meshes are then improved
with two standard post processing steps: in-
sertion of a padding layer [She07, Mar09]
(inset figure) and mesh optimization. The
padding layer is formed by extruding sur-
face quads to form hexes, which provides ex-
tra degrees of freedom when hexahedra from
PolyCube edges or vertices are placed on
smooth parts of the model. Mesh optimiza-
tion shifts mesh vertices to improve quality,

while leaving connectivity unchanged. We reposition ver-
tices individually to maximize the minimum quality of ad-
jacent elements, followed by shape-improvement with the
Mesquite software [BDK∗03].

7. Results and Discussion

We tested our method on a variety of natural shapes and
CAD models. Runtimes were generally less than 10 min-
utes running single-threaded on a Macbook laptop. The chal-
lenge for the method is to capture major features while si-
multaneously determining the PolyCube structure. Figure 1
shows results for the casting and kiss models, illustrating the
method’s applicability to inputs with thin features and cases
where the PolyCube structure may not be obvious. The girl
(Figures 2, 5 and6) is a similarly detailed complex natural
model, showcasing our method’s ability to capture promi-
nent yet narrow features such as the ponytail (Figure 6). As
seen in Figure 10, PolyCubes computed by our method nat-
urally capture the major features of complex models, includ-
ing off-axis and sharp features of CAD models and intricate
details of smooth shapes such as the bumpy torus, resulting
in regular meshes that capture the input geometry well.

The hand (Figure 11) and the camel (Figure 11 ) show
our method’s behavior on models with multiple elongated
features, typical of humanoid and animal shapes. The bunny
(Figure 11) is an interesting test model, as its ears are com-
pletely misaligned with respect to the global coordinate sys-
tem, in the standard front-facing orientation we used. While
this presents some challenges to our method leading to some
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over-segmentation of the PolyCube (Figure 4), the overall
mesh quality is still high. The dragon (Figure 11) is the
most ambitious model we remeshed. In addition to the cast-
ing (Figure 1) we tested the method on a number of other
CAD models of varying complexity, containing both smooth
and sharp features (Figures 3, 11 and 12), generating high
quality meshes which approximate well the input geome-
tries. As shown in Figure 4, PolyCubes generated by our
method are better suited for hex-meshing than previous ap-
proaches. Our method captures input model features better
than [LJFW08] and avoids oversegmenting off-axis features
as occurs with [HWFQ09]. This results in meshes that better
approximate the input but with very regular connectivity.

With extensive research in hex-meshing, we limit compar-
ison to the most recent fully-automatic methods applicable
to general shapes, providing comparisons to two representa-
tive hex-dominant [LL10] and grid-based [Mar09] methods.

All of our meshes have positive Jacobian, a minimal re-
quirement for simulation, although this is not guaranteed
by the method. To evaluate our output meshes, we use the
scaled Jacobian metric [PTS∗07] which has a range [−1,1]
with one being optimal. Our meshes have high minimum and
average values for this metric in addition to low percentages
of irregularly connected vertices (see Tables 1 and 2). We
have also measured the mean and max symmetric Hausdorff
distances with [CRS96], and obtained average values of 0.1
and 1.1 edge-lengths (most meshes use an edge length of
1% of the bounding box diagonal), which is comparable to
surface remeshing methods. The average of the maximum
Hausdorf distances is skewed somewhat by the camel and
dragon models which have narrow but long features that are
not resolved well by the fixed-size mesh.

Levy and Liu’s [LL10] hex-dominant method generates
good quality meshes, but with a large percentage of non-
hexes. For example, their method produces meshes with
20% and 35% non-hexes for the ANC and dragon models
respectively. Our method produces only hex-elements, mak-
ing it more suitable for many simulators [SJ08].

Figures 3 and 12 compare meshes generated by our
method and by the automatic all-hex method of Marechal
[Mar09] (who generously provided output meshes, the
bounding surfaces of which we used as inputs for our
method). Statistics are summarized in Table 2. Our meshes
have a lower percentage of irregular vertices (4% vs. 12−
29%) in addition to higher average quality and significantly
higher minimum quality using both scaled Jacobian and
Marechal’s metrics in all models but the pipe, where our
average quality is slightly lower using Marechal’s metric
(0.830 vs. 0.874). Our method often produces minimum
scaled Jacobian values nearly an order of magnitude higher
than Marechal’s method, while maintaining equal or better
average quality. Although the method may round-off sharp
edges, the Hausdorff distances from Marechal’s meshes are
comparable to our other results.

Model Num. Scaled Scaled avg Hausdorff
Hexes Jacobian Jacobian dist. dist.

avg. avg. (x10−3) (x10−3)
casting 21k 0.845 0.195 1.21 5.67

kiss 215k 0.920 0.125 0.325 10.2
girl 194k 0.925 0.235 0.481 13.2

camel 16k 0.901 0.169 1.18 31.5
fandisk 45k 0.959 0.251 1.23 6.96

bumpy torus 35k 0.891 0.270 1.21 7.86
fertility 20k 0.911 0.196 1.06 4.01
bunny 81k 0.930 0.138 1.19 4.01
carter 21k 0.823 0.177 1.19 6.58
femur 13k 0.930 0.334 1.21 9.14
hand 12k 0.928 0.270 0.833 11.5

dragon 173k 0.882 0.002 0.694 28.9
rocker arm 18k 0.899 0.226 1.16 3.95

bimba 44k 0.905 0.257 1.23 12.8

Table 1: Quality statistics for the models shown in the paper.
As demonstrated by these numbers our automatic remeshing
algorithm closely approximates both smooth and sharp fea-
tured models with good quality all-hex meshes. Meshes were
originally generated with an edge length of 10−2 bounding-
box diagonals, although the kiss, girl and dragon were sub-
sequently subdivided.

8. Conclusions

We presented a robust method for all-hex mesh generation,
capable of producing better quality meshes than previous
techniques. Our method significantly improves the quality
of the worst mesh element generating meshes that can be
largely used as-is by commercial solvers while producing
structured meshes which are more efficient for computation.

The key component of our method is the rotation-driven
PolyCube deformation step which gradually aligns the nor-
mals on the boundary surface of the model with the global
coordinate axes while smoothly deforming the mesh inte-
rior. Each iteration of the method uses a quaternion de-
formation gradient propagation approach which generates a
singularity-free deformation gradient field in the interior of
the domain, enabling all subsequent processing.

Limitations: The primary limitations of the method is that,
like many automatic all-hex meshing algorithms [Mar09,
She07], there are no theoretical guarantees on output mesh
quality. Furthermore, the chart insertion process is not guar-
anteed to produce a valid PolyCube segmentation, it is
simply a local greedy heuristic for the global PolyCube
consistency problem that works well in conjunction with
our Rotation-Driven deformation. However in practice our
method is capable of producing high quality output meshes
for a wide range of inputs, as illustrated by our results.

The method also has a few limitations which can be ad-
dressed by future work. Currently a single-resolution struc-
tured mesh is generated, so fine local features can be lost un-
less sufficiently fine sizing is used (Figure 12, folded-sheet).
Using an adaptive meshing scheme similar to [Mar09] could
improve this. Second, the results of our method depend on
the orientation of the model and would benefit from an au-
tomatic method of choosing a suitable orientation. Finally,
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Figure 11: Meshes of a variety of natural and CAD models generated by our method.

Figure 12: Comparison with [Mar09] (left to right): rod and block, bent sheet, and pipe. Our results are on the right or bottom.
Quality statistics listed below. Please zoom into the image using digital version to better see the meshes. On all of these models
our method produces more regular meshes leading to better element quality.

Marechal PolyCube deformation
Model num. Jac. Jac. Mar. Mar. % num Jac. Jac. Mar. Mar. % Hausdorff

hex avg. min. avg. min. irr. hex avg. min. avg. min. irr. dist. (x10−3)
ANC 316k .915 .005 .917 .08 12 74k .952 .196 .917 .242 4 8.59
rod 18k .822 .016 .850 .158 29 18k .950 .131 .928 .493 3 5.53

block 85k .821 .018 .844 .321 27 34k .936 .215 .913 .500 3 3.23
bent sheet 62k .868 .056 .833 .251 17 99k .957 .105 .904 .389 3 10.4

pipe 52k .865 .017 .874 .185 20 84k .873 .178 .830 .205 2 5.22

Table 2: Quality comparisons with [Mar09]. For each method we measure (left to right): number of elements, Scaled Jacobian:
average and minimum, quality metric of [Mar09]: average and minimum, percent of irregular vertices. Haussdorf distances for
our meshes with respect to output meshes from [Mar09] are provided in the final column; our meshes were generated using the
bounding surface of his meshes as inputs.
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sharp edges may be rounded by our method due to a lack of
dedicated sharp feature handling, as seen in Figures 1 (left),
3 and 12, resulting in reduced approximation quality.
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