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Figure 1: Pen-and-ink sketching of the Venus using four different fields: (a) the curvature tensor smoothed as a 2-RoSy field, (b) the curvature
tensor smoothed as a 4-RoSy field, (c) topological editing operations applied to (b), and (d) more global smoothing performed on (b). Notice
that treating the curvature tensor as a 4-RoSy field (b) leads to fewer unnatural singularities and therefore less visual artifacts than as a 2-RoSy
field (a). In addition, both topological editing (c) and global smoothing (d) can be used to remove more singularities from (b). However,
topological editing (c) provides local control while excessive global smoothing (d) can cause hatch directions to deviate from their natural
orientations (neck and chest).

Abstract

Designing rotational symmetries on surfaces is a necessary task for
a wide variety of graphics applications, such as surface parameteri-
zation and remeshing, painterly rendering and pen-and-ink sketch-
ing, and texture synthesis. In these applications, the topology of a
rotational symmetry field such as singularities and separatrices can
have a direct impact on the quality of the results. In this paper, we
present a design system that provides control over the topology of
rotational symmetry fields on surfaces.

As the foundation of our system, we provide comprehensive analy-
sis for rotational symmetry fields on surfaces and present efficient
algorithms to identify singularities and separatrices. We also de-
scribe design operations that allow a rotational symmetry field to
be created and modified in an intuitive fashion by using the idea of
basis fields and relaxation. In particular, we provide control over
the topology of a rotational symmetry field by allowing the user to
remove singularities from the field or to move them to more desir-
able locations.

∗e-mail: {palacijo|zhange}@eecs.oregonstate.edu

At the core of our analysis and design implementations is the obser-
vation that N-way rotational symmetries can be described by sym-
metric N-th order tensors, which allows an efficient vector-based
representation that not only supports coherent definitions of arith-
metic operations on rotational symmetries but also enables many
analysis and design operations for vector fields to be adapted to ro-
tational symmetry fields.

To demonstrate the effectiveness of our approach, we apply our de-
sign system to pen-and-ink sketching and geometry remeshing.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Geometric algorithms, lan-
guages, and systems;

Keywords: rotational symmetry, field design, field analysis, sur-
faces, topology, non-photorealistic rendering, remeshing.

1 Introduction

Many objects in computer graphics can be described by rotational
symmetries, such as brush strokes and hatches in non-photorealistic
rendering, regular patterns in texture synthesis, and principle cur-
vature directions in surface parameterization and geometry remesh-
ing. Intuitively, an N-way rotational symmetry (N-RoSy) represents
phenomena that are invariant under rotations of an integer multiple

of 2π
N . Example N-RoSy’s include a vector (N = 1), an eigenvector

of a symmetric matrix (N = 2), and a cross (N = 4).

Symmetries naturally appear in surfaces, such as the five Platonic
shapes (Figure 2). Notice that the order of the symmetry N is equal
to the ratio between 2π and the angle of deficit at a vertex. In sur-
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Figure 2: N-way rotational symmetries appear naturally in the Platonic solids: tetrahedron (N = 2), octahedron (N = 3), cube (N = 4),
icosahedron (N = 6), and dodecahedron (N = 10).

faces where global symmetry is lacking, local symmetries can still
occur, such as the singularities (the vertices). In Figure 1 (c), sin-
gularities of a 4-RoSy field appear in natural places such as the
corner of the shoulder (not visible due to the highlight) and under
the armpit.

The ability to design and control N-RoSy fields on surfaces is es-
sential in many applications. For example, in non-photorealistic
rendering, the orientation of brush strokes and hatches are usu-
ally guided by an N-RoSy field. Different artistic effects can be
achieved by using guiding fields with different characteristics. In
addition, singularities in the guiding field can lead to visual arti-
facts such as brush strokes and hatches with unnatural orientations.
Singularities also present difficulties in the construction of a global
surface parameterization, where a significant amount of stretch can
occur in nearby regions. Similarly, it is difficult to produce ideal tri-
angular and quad elements near singularities in geometry remesh-
ing. For these applications, a design system can be used to create
a wide variety of N-RoSy fields on surfaces, to add desirable fea-
tures in an existing field, and to control the number and location
of the singularities in the field. Most existing design systems focus
on vectors (N = 1) [Praun et al. 2000; Turk 2001; Wei and Levoy
2001; Theisel 2002; Stam 2003; Zhang et al. 2006] and tensors
(N = 2) [Zhang et al. 2007]. A number of difficulties must be ad-
dressed before a general design system can be developed for N ≥ 3.

First, there has been a lack of a mathematical representation for
rotational symmetries, which is required to define algebraic oper-
ations on N-RoSy’s such as sums and scalar multiples as well as
important concepts of N-RoSy fields such as singularities, continu-
ity, and differentiability. We overcome this difficulty by embedding
N-way rotational symmetries in the space of N-th order tensors,
which allows algebraic operations to be carried over from N-th or-
der tensors to N-RoSy’s. We further derive a vector-based repre-
sentation of rotational symmetries based on the embedding, which
enables efficient analysis of N-RoSy fields on surfaces as well as
allows vector field design functionalities to be adapted to N-RoSy
fields. Furthermore, the concepts of singularities, continuity, and
differentiability are well-defined.

Second, there is relatively little understanding of the topological
structure in an N-RoSy field. While the concepts of singularities
have been used before, a proper definition of separatrices is miss-
ing when N ≥ 3. To address this, we present efficient algorithms on
extracting the singularities and separatrices in a field. In particular,
we adopt the approach of Zhang et al. [2006] that allows contin-
uous N-RoSy fields to be generated on mesh surfaces despite the
discontinuity in the surface normal.

With the above issues addressed, we present a design system for
N-RoSy fields on surfaces that not only allows a wide variety of N-
RoSy fields to be generated but also provides explicit control over
the number and location of the singularities in the field. The main

functionalities of our work is reminiscent of that for vector field de-
sign [Zhang et al. 2006]. However, the implementations are rather
different. For instance, we can create an initial N-RoSy field on a
surface using relaxation techniques [Turk 2001] which do not re-
quire a global surface parameterization. This greatly increases the
interactivity of our system. We also reuse algorithms for singularity
pair cancellation and movement in vector fields through the afore-
mentioned vector-based representation.

We have applied our design system to graphics applications such as
pen-and-ink sketching and quad-dominant remeshing.

In this paper, we make the following contributions.

1. We provide coherent definitions for algebraic operations on
N-RoSy’s by observing the link between N-RoSy’s and N-th
order symmetric tensors. This link also enables the definitions
of analytic properties of N-RoSy fields such as continuity, dif-
ferentiability, and singularity.

2. We present a vector-based representation for N-RoSy’s that
supports compact storage of discrete N-RoSy fields on mesh
surfaces and facilitates the analysis and design of N-RoSy
fields.

3. We describe the topology of N-RoSy fields on surfaces and
provide efficient algorithms to extract singularities and sepa-
ratrices.

4. We develop a design system in which N-RoSy fields can be in-
teractively created and modified on surfaces. In particular, our
system provides explicit control over the number and location
of the singularities in the field. We demonstrate the effective-
ness of our system with pen-and-ink sketching of surfaces and
quad-dominant remeshing.

The remainder of the paper is organized as follows. We first review
related work on N-RoSy fields in Section 2 and present our vector-
based representation of N-RoSy’s in Section 3. Next, we discuss the
analysis and design of N-RoSy fields in Sections 4 and 5, respec-
tively. In Section 6, we show the results of applying our analysis
and design system to pen-and-ink sketching and geometry remesh-
ing. Finally, we summarize our contributions and discuss some pos-
sible future work in Section 7.

2 Previous Work

There has been a significant amount of work in the analysis and
design of vector and tensor fields. In contrast, relatively little is
known about N-RoSy fields when N ≥ 3.

N-RoSy Analysis and Design: To the best of our knowledge,
Hertzmann and Zorin [2000] are the first to propose that hatches
should follow a cross field (4-RoSy). They provide a smoothing
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operation on 4-RoSy fields that is based on a non-linear optimiza-
tion. Ray et al. [2006a] construct a periodic global parameterization
that facilitates quad remeshing. At the heart of their approach is the
use of 4-RoSy fields, which allows more natural-shaped quads to be
generated near singularities. They also develop a framework that
allows the optimization to be performed on the sines and cosines
of the parameterization, which turns a non-linear optimization into
a linear one. They later provide the analysis of singularities on N-
RoSy’s by extending the Poincaré-Hopf theorem as well as describe
an algorithm in which a field with a minimal number of singulari-
ties can be constructed based on user-specified constraints and the
Euler characteristic of the underlying surface [Ray et al. 2006b].

Vector and Tensor Field Design: There have been a number of
vector field design systems for surfaces. Most of them are gen-
erated for a particular graphics application such as texture synthe-
sis [Praun et al. 2000; Turk 2001; Wei and Levoy 2001], fluid sim-
ulation [Stam 2003], and vector field visualization [van Wijk 2002;
van Wijk 2003]. These systems do not address topological control
in the field. Systems providing topological control include [Theisel
2002; Zhang et al. 2006]. The system of Zhang et al. has also been
extended to create periodic orbits [Chen et al. 2007] and to design
tensor fields [Zhang et al. 2007]. Our system is also reminiscent of
the vector field design system of Zhang et al. [2006] in terms of the
functionality. However, the implementation is rather different.

Vector and Tensor Field Analysis: There has been much work
in vector and tensor field analysis. To review all the work is be-
yond the scope of this paper. Here we refer to the most relevant
work. Helman and Hesselink [1991] propose vector field visu-
alization techniques based on topological analysis. Delmarcelle
and Hesselink provide analysis of second-order symmetric tensor
fields [1994].

3 Vector-Based Representation

The analysis and design of N-RoSy fields require coherent defin-
itions of the following concepts: summation and scalar multipli-
cation of N-RoSy’s as well as continuity, singularity, and differen-
tiability. However, it is not immediately clear how to define these
concepts in a consistent manner given that a non-zero N-RoSy s
consists of N directions. For convenience, we will refer to these
directions the member vectors of s. Consider the case when N = 2,
i.e., lines that can be modeled by eigenvectors of a symmetric ma-
trix with a zero trace [Zhang et al. 2007]. Given two 2-RoSy’s

s1 = {±

(

1
0

)

} and s2 = {±

(

0
1

)

}, defining s1 + s2 as the sum of

member vectors can lead to inconsistent results: (1) {±

(

1
1

)

}, or

(2) {±

(

1
−1

)

}. As demonstrated by Zhang et al. [2007], treating

a line field as a vector field results in discontinuities and inconsis-
tencies. This is also true for N-RoSy fields when N ≥ 3.

To overcome this problem, we describe a representation for N-
RoSy’s that is free of directional ambiguity. For an N-RoSy

s = {

(

Rcos(θ + 2kπ
N )

Rsin(θ + 2kπ
N )

)

| 0 ≤ k ≤ N −1} (1)

where R ≥ 0 is the strength of s and θ is the angular component of
one of the member vectors, we define the representation vector of

s as

(

RcosNθ
RsinNθ

)

. Notice that the representation vector is indepen-

dent of the choice of member vectors since

Figure 3: A comparison between a 4-RoSy field (left) and its rep-
resentation vector field (right). Notice that the sets of points with a
zero value are the same for both fields (colored dots). Representa-
tion vectors remove the directional ambiguity in an N-RoSy field.

N(θ +
2kπ

N
) ≡ Nθ mod 2π (2)

for any integer k. Consequently, directional ambiguity no longer
exists under this representation. We will define a map γ which maps
an N-RoSy s to its representation vector γ(s). Given two N-RoSy’s
s1 and s2 and a real number λ , we define

s1 + s2 = γ−1(γ(s1)+ γ(s2)), λ s1 = γ−1(λγ(s1)) (3)

These definitions are coherent as they do not rely on the choice of
member vectors, which allow us to define important concepts on
N-RoSy fields, such as continuity, singularity, and differentiability
in a consistent manner.

A representation vector and a member vector differ in how their
components change under a change of basis. Consider the case
where the transformation matrix from the new basis to the original

basis has the form Q =

(

cosϕ −sinϕ
sinϕ cosϕ

)

. While a member vector

v will have the form Qv under the new basis, a representation vec-

tor w will be of the form Q′w where Q′ =

(

cosNϕ −sinNϕ
sinNϕ cosNϕ

)

.

Therefore, a representation vector is not a vector since its compo-
nents do not change like a vector under changes of basis. In the
Appendix, we show that N-RoSy’s can be represented by symmet-
ric N-th order covariant tensors of a special form and such tensors
can be compactly represented by a vector (representation vector)
under any given basis. Consequently, the components of a repre-
sentation vector transform differently than a vector under a change
of basis.

As will become apparent soon, γ not only provides a coherent and
compact representation of N-RoSy’s, but also allows efficient im-
plementations of key operations on N-RoSy fields by borrowing
corresponding algorithms for vector fields, such as interpolations
and singularity extraction (Section 4.3), blending (Section 5.1), and
topological editing (Section 5.2). Figure 3 shows a 4-RoSy field
(left) and its representation vector field (right). Notice that they
have the same set of singularities. Next, we discuss the analysis
and design of N-RoSy fields on surfaces.

4 Topological Analysis of N-RoSy Fields

In this section, we describe important topological properties of N-
RoSy fields on manifold surfaces, such as singularities and separa-
trices. We will also present efficient algorithms to compute these
quantities on mesh surfaces.

Singularity identification is necessary for providing explicit con-
trol over the number and location of singularities, which is needed
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Figure 4: This figure illustrates the importance of singularity and
separatrix extraction in quad-dominant remeshing. Given a 3D
model (left), the singularities and separatrices are highlighted by
colored dots and curves, respectively. Including separatrices during
remeshing can lead to better meshes near the singularities (right)
than not including them (middle).

in pen-and-ink sketching of 3D surfaces as undesirable singulari-
ties cause visual artifacts [Hertzmann and Zorin 2000] (Figures 1
and 7). Singularity and separatrix extraction allow better meshing
near singularities during the remeshing process (Section 6.2). Fig-
ure 4 illustrates this with a 3D surface obtained by joining two cubes
with rounded corners. In the left, the singularities are highlighted
by colored dots and the separatrices are the colored curves emanat-
ing from the singularities. Notice that singularities appear in nat-
ural places (corners and joints) and separatrices indicate important
directions near the singularities. Utilizing separatrices during the
remeshing process produces meshes that can better maintain fea-
tures in the original mesh (Figure 4, right) than disregarding them
(Figure 4, middle).

The concepts of singularities and separatrices are well defined for
vector and tensor fields, i.e., when N = 1,2. Next, we will extend
them to N-Rosy fields when N ≥ 3.

4.1 Singularities

For simplicity, consider a planar vector field V (x,y) =

(

F(x,y)
G(x,y)

)

.

A singularity p0 is a point in the domain where V (p0) = 0. p0

is isolated if there exists an open neighborhood U of p0 with the
property that p0 is the unique singularity in the interior of U and
there are no singularities on the boundary of U . An isolated singu-

larity p0 can be characterized by its Jacobian DV (p0) =

(

a b
c d

)

,

where a = ∂F
∂x

(p0), b = ∂F
∂y

(p0), c = ∂G
∂x

(p0), and d = ∂G
∂y

(p0).

The local linearization of V at a point p0 is a function LV (p) =
DV (p0)(p−p0).

We now consider how the angular component of a vector field
changes on an infinitesimal circle Γ centered at p0. Given a

point p ∈ Γ, we have p = p0 +

(

r cosθ
r sinθ

)

where (r,θ) are the

polar coordinates. The local linearization at p0 is LV (p) =

r

(

acosθ +bsinθ
ccosθ +d sinθ

)

. The angular component is

tan−1(
ccosθ +d sinθ

acosθ +bsinθ
) (4)

which has a derivative

ad −bc

(acosθ +bsinθ)2 +(ccosθ +d sinθ)2
(5)

When ad − bc 6= 0, the sign of the quantity ad − bc is related to
the Poincaré index of p0, which is defined in terms of the winding
number for the Gauss map.

Let V be a continuous planar vector field and D0 ⊂ R
2 be the

zero set for V . The Gauss map ε : R
2 \ D0 → S1 is defined as

ε(x) =
V (x)
|V (x)|

. ε is continuous in R
2 \D0. In particular, it introduces

a continuous map ε|Γ on any simple loop Γ that does not contain
any singularity. When traveling along Γ in the positive direction
once, the image under ε|Γ necessarily covers the unit circle S1 an
integer number of times counting orientation. This integer is the
winding number of V along Γ. The Poincaré index of an isolated
singularity p0 is the winding number of any simple loop that en-
closes p0 and contains no other singularities either in its interior or
on the boundary. Denote this number as κ(V ;p0). The Poincaré in-
dex is +1 for sources, sinks, centers, and foci. It is −1 for saddles,
and 0 for regular points.

The Poincaré-Hopf theorem links the topology of a vector field to
that of the underlying domain in the following way. Let M be a
closed orientable manifold with an Euler characteristic χ(M). Fur-
thermore, let V be a continuous vector field defined on M with only
isolated singularities p1, ...,pn. Then

n

∑
i=1

κ(V ;pi) = χ(M) (6)

.

We now extend the concepts of singularities to N-RoSy fields where
N ≥ 2. Given a planar N-RoSy field S, we define VS(p) = γ(S(p)) as
the representation vector field of S. Then, a point p0 is an isolated
singularity of S if and only if it is also an isolated singularity of VS.
We define the index of a singularity p0 with respect to S as

κ(S;p0) =
κ(VS;p0)

N
(7)

A singularity p0 is of L-th order if its index is | L
N |. p0 is positive,

negative, or regular if κ(S;p0) > 0, κ(S;p0) < 0, or κ(S;p0) = 0,
respectively. As in the case of vector fields and tensor fields, an
L-th order singularity can be constructed by clustering L first-order
singularities [Scheuermann et al. 1998; Delmarcelle and Hesselink
1994]. Assuming an N-RoSy field has first-order singularities only,
N|χ(M)| provides a lower bound on the number of singularities
in the field. While more singularities can occur, their signed sum
remains constant, i.e., χ(M).

Figure 2 shows natural symmetries on the Platonic solids. To un-
derstand what symmetry is natural in a shape, let us consider the

total angle around a vertex of the cube, which is 3π
2 . In order to ad-

mit continuity across such a corner, one must accept a rotation of π
2 ,

which is essentially the case when N = 4. Similarly, an octahedron
naturally admits 3-RoSy’s, an icosahedron admits 6-RoSy’s, a do-
decahedron admits 10-RoSy’s, and a tetrahedron admits 2-RoSy’s
(tensors). In all these cases, there are K first-order positive singular-
ities where K is the number of vertices in the shape. Furthermore,
the total signed index sum is 2, which is the Euler characteristic of a
genus-zero surface. Let β be the angle of deficit of a vertex, which
equals 2π minus the total angle around the vertex. β 6= 0 implies

that the neighborhood of the vertex is likely to admit an N = 2π
|β |

symmetry. When β > 0, the vertex is a positive singularity, and
when β < 0, the vertex is a negative singularity. Next, we discuss
the separatrices in an N-RoSy field.
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4.2 Separatrices

A separatrix in a vector field is a trajectory that passes through a
saddle. The topology of a vector field on a two-dimensional surface
consists of singularities and separatrices. Extending the definition
of separatrices to N-RoSy fields when N ≥ 2 is more difficult be-
cause separatrices can emanate from singularities with a positive
index. To address this, Delmarcelle and Hesselink [1994] define
separatrices for a tensor field (2-RoSy) as the boundaries of a hy-
perbolic sector, which is a region in the vicinity of a singularity
inside which trajectories sweep pass the singularity. As an exam-
ple, there are four hyperbolic sectors for every saddle.

We adopt this approach and define separatrices of an N-RoSy field S
as the boundary of a hyperbolic sector for a singularity. Figure 5 (a-
d) show the four hyperbolic sectors for a positively-indexed singu-
larity in a 3-RoSy field, and (e) their composition. The red lines are
incoming separatrices and the green lines are outgoing separatri-
ces. In (f) we show the separatrices of a negatively-index singularity
in a 4-RoSy field. When N is even, separatrices do not have direc-
tions. Notice when N ≥ 3, hyperbolic sectors can overlap, which is
a reflection of the fact that there are N member vectors. When N
is even, there are N

2 streamlines passing through every non-singular
point. When N is odd, there are N such streamlines.

To extract separatrices, we make use of the following observation:
a separatrix approaches a singularity in a radial direction. In other
words, given an isolated singularity p0, we consider its local lin-

earization DS =

(

a b
c d

)

, which is defined in terms of the lin-

earization of the representation vector field. On an infinitesimal
circle centered at p0, we consider directions v = p−p0 such that v
is also a member vector at p. Let φ be the angular coordinate of one
of the member vectors. The aforementioned statement is equivalent

to finding directions v =

(

cosθ
sinθ

)

such that

Nθ ≡ Nφ mod 2π (8)

which can be used to find a separatrix that passes through the singu-
larity. Note that this is consistent with the definitions of separatrices
in vector fields [Tricoche 2002] and tensor fields [Delmarcelle and
Hesselink 1994]. The condition can be rewritten as

sinNθ

cosNθ
=

ccosθ +d sinθ

acosθ +bsinθ
(9)

Recall that

cosNθ =
N

∑
i=0

cos
iπ

2

(

N
i

)

cosN−i θ sini θ (10)

sinNθ =
N

∑
i=0

sin
iπ

2

(

N
i

)

cosN−i θ sini θ (11)

.

Consequently, solving Equation 9 amounts to finding the roots of
an (N +1)-th order polynomial.

A first-order negative singularity has N + 1 separatrices while a
first-order positive singularity has at most N +1 separatrices. Note
that the above definition extracts all the separatrices in an N-RoSy
field S only when N is even. In case N is odd, the solutions to Equa-
tion 9 correspond to the outgoing separatrices only. To capture the
incoming separatrices, we need to compute the solutions to

(a) (b) (e)

(c) (d) ( f )

Figure 5: The separatrices of an N-RoSy field are the boundaries
of the hyperbolic sectors in the vicinity of a singularity. In (a)-(d),
we show the four hyperbolic sectors for a positive singularity of
a 3-RoSy field. These sectors overlap and each of them has an in-
coming separatrix (red line) and an outgoing separatrix (green line).
Together, they describe the topology of the field near the singularity
(e). In (f), we show the separatrices for a negative singularity in a
4-RoSy field. Notice that separatrices do not have directions when
N is even.

Nθ ≡ Nφ +π mod 2π (12)

which is equivalent to computing the separatrices of −S. Next, we
describe how we represent an N-RoSy field on a triangular mesh
surface and how to extract the topological features in the discrete
setting.

4.3 Discrete Representation

On a triangular mesh, we use a vertex-based representation for an
N-RoSy field S. In such a setting, the values of S are defined at
the vertices and interpolations are used to obtain values on edges
and inside triangles. Note that in practice we use the representation
vector field VS instead of S itself.

When the triangular mesh represents a planar domain, we use the
popular piecewise linear interpolation scheme of vector fields [Tric-
oche 2002]. Basically, inside every triangle the representa-
tion vector field VS is linear and therefore can be expressed

as

(

ax+by+ e
cx+dy+ f

)

under the global coordinate systems. Here,
(

a b
c d

)

is the Jacobian of the representation vector field, and it

is constant inside every triangle. This representation supports effi-
cient singularity and separatrix extraction. We perform the follow-
ing steps in computing the topology of an N-RoSy field.

1. We locate the singularities of the representation vector field
using the method in [Tricoche 2002] and compute the lin-
earization, which is constant for each triangle.

2. We extract separatrix directions by solving Equation 9 for
every singularity.

3. For each separatrix direction w, we perform streamline tracing
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from a point sufficiently close to the singularity in the direc-
tion of w.

On meshes that represent curved surfaces, the above piecewise lin-
ear scheme no longer produces continuous N-RoSy fields. We re-
fer the readers to [Zhang et al. 2006] for an example when N = 1.
Furthermore, a curved surface in general lacks a global parameter-
ization and consistent local frames. To overcome these problems,
Zhang et al. [2006] develop a non-linear interpolation scheme that
produces continuous vectors fields and supports efficient singular-
ity and separatrix extraction. Their scheme is based on the ideas of
geodesic polar maps and parallel transport from differential geom-
etry. Extending this scheme to N-RoSy fields is straightforward,
and it has been done when N = 2 [Zhang et al. 2007]. Recently,
Wang et al. [2006] have proposed another scheme based on edge
subdivision and discrete differential forms. Adapting their scheme
to N-RoSy fields is also promising.

5 Design of N-RoSy Fields

In this section, we describe our design system for N-RoSy fields
on 3D surfaces. In our approach, the user can create a field either
from scratch or by modifying an existing field, such as the curva-
ture tensor. Our system allows a user to add features to the field,
to remove unwanted singularities, and to relocate singularities to
more natural locations. These functionalities can be used in pen-
and-ink sketching to reduce visual artifacts caused by singularities
(Section 6.1) and in geometry remeshing to maintain geometry de-
tails (Section 6.2).

Our design system employs a two-stage pipeline: initialization and
editing. In the first stage, the user quickly creates or modifies an
N-RoSy field through a set of constraints called design elements.
Design elements can be in the forms of desired orientations or sin-
gularities at a given point. The field obtained this way often con-
tains unwanted or misplaced singularities, which can be handled
in the second stage through editing operations such as singularity
pair cancellation and movement. This pipeline is consistent with
the design systems for vector fields [Zhang et al. 2006] and ten-
sor fields [Zhang et al. 2007] when N = 1 and N = 2, respectively.
Given the intrinsic connection between an N-RoSy and its repre-
sentation vector, our design system can be adapted from a vector
field design system such as [Zhang et al. 2006]. Next, we describe
our implementations for both stages.

5.1 Initialization

There have been a number of techniques for creating a vector field
on a 3D surface, such as blending basis fields on surfaces [Zhang
et al. 2006] or in 3D [van Wijk 2003], relaxation [Turk 2001; Wei
and Levoy 2001], and propagation [Praun et al. 2000]. These ap-
proaches provide tradeoffs among a number of factors such as con-
trollability, interactivity, and ease of use. For planar domains, the
idea of using basis fields is highly desirable due to its simplicity and
intuitiveness [van Wijk 2002]. We employ this approach to create
an N-RoSy field S in the plane by creating its representation vector
field VS. Basically, given a set of constraints C = {c1, ...,ck}, we

define VS = ∑k
i=1 VSi

where

VSi
(ρ,θ) = e−dρ2

(

cosN( Lθ
N +θ0)

sinN( Lθ
N +θ0)

)

(13)

In the above equation, (ρ,θ) are the polar coordinates of a point
(x,y) with the center of ci being the origin. θ0 is the phase shift
constant that can turn a source into a sink or a center when N = 1.
L is the order of the design element. When L = 0, Equation 13 leads

to a field of a constant direction. When L 6= 0, the design element
is either a positive or negative L-th order element. Finally, d is a
constant that is used to describe the falloff speed in the strength of
VSi

. Such a falloff function enables fast blending of basis fields so
that a user-desired pattern is not affected by other basis fields [van
Wijk 2002].

While our system can be used to generate singularities of arbitrary
orders, we are primarily interested in the cases when L = 0 or L =
±1 since an L-th order element can be simulated by combining L
first-order elements.

On surfaces, the idea of blending basis vector fields encounters a se-
rious difficulty, i.e., Equation 13 requires a global parameterization,
which is often unavailable for a 3D surface. Zhang et al. [2006]
address this problem by computing a global parameterization with
respect to each design element. However, this approach is rather
expensive. Van Wijk [2003] creates volume basis vector fields be-
fore projecting them onto the tangent planes. While this approach
is fast, it is difficult to achieve local patterns such as sources, sinks,
and saddles due to surface curvature.

Relaxation techniques such as [Turk 2001; Wei and Levoy 2001]
provide a nice balance between controllability and computational
cost. In this approach, vector values are defined at a (small) num-
ber of vertices. Then, values elsewhere are obtained by solving
a Laplace equation on each of the three components of the vector
field with the specified vector values being the boundary conditions.
While being fast and intuitive, two issues must be addressed before
we can use such an approach to create N-RoSy fields on surfaces.
First, how do we automatically generate vector values so that the
resulting N-RoSy field contains the desired singularities. Second,
directly performing relaxation on the representation vector field VS

is likely to produce undesired results as VS depends on the local
frame. Yet, without a global parameterization, local frames at the
vertices are typically uncorrelated.

The first issue can be resolved relatively easily. Given a design
element whose L = −1,0,1, we can compute the N-RoSy values
at the three vertices of the triangle containing the design element.
When |L|> 1, the support of the element is larger than one triangle.
In practice, we find it sufficient to only specify zeroth- and first-
order design elements as an L-th order element can be created by
designing L first-order elements.

The second issue is more challenging, and it is related to the con-
cept of parallel transport from differential geometry. Consider two
points p and q on the surface M and a geodesic Γ : [0,1] → M such
that Γ(0) = p and Γ(1) = q. Given two vectors vp and vq that are
defined at p and q respectively, vp is said to be equivalent to vq with
respect to Γ if the angle between vp and Γ′(p) is equal to the angle
between vq and Γ′(q). Recall that the shortest geodesic between
the two incident vertices is the edge connecting them. This allows
us to set up the Laplace equation ∇2V = 0 and its discrete form on
a mesh surface,

wi = ∑
j∈J

ωi jTi j(w j) (14)

where wi is the representation vector value at vertex vi, ωi j is the
mean value coordinate [Floater 2003] and Ti j is the transport func-

tion from the tangent plane at vertex v j to vertex vi. Let

(

Fi

Gi

)

be

the coordinates of wi under the local frame at vertex vi. Equation 14
has the following more explicit form:
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(

Fi

Gi

)

= ∑
j∈J

ωi j

(

cosN∆θi j −sinN∆θi j

sinN∆θi j cosN∆θi j

)(

Fj

G j

)

(15)

where ∆θi j is the difference between the angle from the X-axis to
the geodesic at q and that from the X-axis to the geodesic at p.

Equation 15 is a sparse linear system that can be solved efficiently
by a bi-conjugate gradient solver.

There have been a number of other relaxation methods for smooth-
ing a 4-RoSy field that are similar to our formulation in spirit.
Hertzmann and Zorin [2000] define a non-linear functional. While
high-quality, it is more time-consuming than linear optimization ap-
proaches. Ray et al. [2006a] set up a linear system by performing
smoothing on member vectors. As discussed in Section 3, smooth-
ing (adding) member vectors may lead to incoherent results.

Note that none of the aforementioned techniques including relax-
ation provide explicit control over the number and location of the
singularities in the field. Consequently, unwanted or misplaced sin-
gularities can occur. We address this issue through topological edit-
ing operations such as singularity pair cancellation and movement,
to be described next.

5.2 Editing

Topological control over an N-RoSy field requires the ability to per-
form local modification to the field near a singularity. Our system
offers two topological editing operations: singularity pair cancel-
lation and singularity movement. Singularity pair cancellation al-
lows a first-order positive singularity to be cancelled with a nearby
first-order negative singularity. Note that a singularity cannot be
removed by itself due to the topological constraints imposed by the
surface. Singularity movement allows a singularity to be moved to
a more desirable location. Given the vector-based representation of
an N-RoSy field, we perform both operations on its representation
vector field, which allows us to reuse corresponding vector field
editing algorithms such as [Zhang et al. 2006].

In their framework, singularity pair cancellation and movement op-
erations are implemented in a unified fashion that is based on Con-
ley index theory from dynamical systems [Mischaikow and Mrozek
2002]. According to this theory, to cancel a singularity pair in a
vector field that have opposite Poincaré indices, one can systemati-
cally find a region that encloses the singularity pair without cover-
ing any other singularities. By construction, this region will have
a trivial Conley index, which means that it is possible to alter the
flow inside the region such that no singularity exists after the mod-
ification. Singularity movement is performed similarly. Zhang et
al. [2006] provide practical algorithms to compute the region and
perform vector-valued Laplacian smoothing in order to modify the
flow inside. We refer the readers to [Mischaikow and Mrozek 2002]
for details on Conley index theory and to [Zhang et al. 2006] for the
implementation details on topological editing on vector fields. Fig-
ure 6 illustrates topological editing operations on a 4-RoSy field
that contains two positive singularities and one negative singular-
ity (left). First, the negative singularity is cancelled with a posi-
tive singularity (middle). Next, the remaining singularity is moved
(right). The actual pair cancellation and movement operations are
conducted on the representation vector fields.

Performing singularity pair cancellation and movement on surfaces
requires the ability to conduct Laplacian smoothing on the repre-
sentational vector field inside a region. To avoid the use of surface
parameterization that is computationally expensive, we reuse the
idea of parallel transport discussed in Section 5.1, which allows re-
laxation to be carried out on surfaces.

Figure 6: This figure illustrates the topological editing operations of
our system. The fields shown in the images are: a 4-Rosy field with
three singularities (left), after singularity pair cancellation (middle),
and after singularity movement (right). The actual editing was per-
formed on the representation vector fields, which allows us to reuse
corresponding vector field editing operations.

6 Applications

We have applied our design system to pen-and-ink sketching and
quad-dominant remeshing.

6.1 Pen-and-ink Sketching of Surfaces

Pen-and-ink sketching of surfaces is a non-photorealistic style of
shape visualization. The efficiency of the visualization as well as
the artistic appearance depend on a number of factors, one of which
is the direction of hatches. Girshick et al. [2000] show that 3D
shapes are best illustrated if hatches follow principle curvature di-
rections. However, curvature estimation on discrete surfaces is a
challenging problem. While there have been several algorithms
that are theoretically sound and produce high-quality results [Hertz-
mann and Zorin 2000; Meyer et al. 2002; Cohen-Steiner and Mor-
van 2003; Rusinkiewicz 2004], most of them still rely on smooth-
ing to reduce the noise in the curvature estimate. Consequently,
these methods do not provide control over the singularities in the
field. Hertzmann and Zorin [2000] propose the concept of cross
fields, which are 4-RoSy fields obtained from the curvature tensor
(a 2-RoSy field) by removing the distinction between the major and
minor principle directions. They demonstrate that smoothing on
the cross field tends to produce more natural hatch directions than
smoothing directly on the curvature tensor. They also point out the
need to control the number and location of the singularities in the
field. Zhang et al. [2007] address this issue by providing singularity
pair cancellation and movement operations on the curvature tensor
field. However, their technique cannot handle a 4-RoSy field.

In this paper, we follow Hertzmann and Zorin [2000] by treating
hatch directions as a 4-RoSy field and use topological editing oper-
ations to control the number and location of the singularities. Fig-
ure 7 illustrates the utility of topological editing operations with the
Bimba model. The original 4-RoSy field (left) was obtained from
the curvature tensor, which we computed using the algorithm of
Meyer et al. [2002]. This field contains three singularities on the
visible side of the face, which cause visual artifacts in the result.
Two of them (on the lower side of the face near the neck) were re-
moved through singularity pair cancellation (middle), and the third
one (near the corner of the right eye) was moved within the high-
light region (right).

Figure 1 provides the following comparisons with the Venus model:
2-RoSy (a) versus 4-RoSy (b), and topological editing (c) versus
global smoothing (d). Representing the curvature tensor as a 4-
RoSy field leads to smoother results. Notice the visual artifacts
caused by the singularities on the chest in (a). The hatch directions
in those regions are more natural with 4-RoSy’s (b). In (c) and (d),
we compare topological editing and global smoothing that can both
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Figure 7: Topological editing operations were applied to pen-and-ink sketching of the Bimba model in order to remove visual artifacts caused
by undesirable singularities. The original 4-RoSy field (left) contains a number of such singularities on the visible side of the face (left). Two
of them (on the lower side of the face near the neck) were removed through singularity pair cancellation (middle). Next, a singularity near
the corner of the right eye was moved to reduce the amount of discontinuity in the hatching directions near the eye.

be used to further reduce the visual artifacts caused by unwanted
singularities. Compare these images to (b) near the chest and un-
der the armpit. Furthermore, topological editing operations provide
local control that is lacking in global smoothing. Notice that ex-
cessive global smoothing can lead to significant deviations in the
hatch directions. Compare (b) and (d) around the neck and on the
chest. Topological editing operations, on the other hand, preserve
curvature directions in regions where topological editing was not
performed. See the same regions in (c).

6.2 Quad-Dominant Remeshing

The problem of quad-dominant remeshing, i.e., constructing a
quad-dominant mesh from an input mesh, has been a well-studied
problem in computer graphics. The key observation is that a nice
quad-mesh can be generated if the orientations of the mesh ele-
ments follow the principle curvature directions [Alliez et al. 2003].
This observation has led to a number of efficient remeshing algo-
rithms that are based on streamline tracing [Alliez et al. 2003; Mari-
nov and Kobbelt 2004; Dong et al. 2005]. Ray et al. [2006a] note
that better meshes can be generated if the elements are guided by a
4-RoSy field. They also develop an energy functional that can be
used to generate a periodic global parameterization and to perform
quad-based remeshing. The connection between quad-dominant
remeshing and 4-Rosy fields has also inspired Tong et al. [2006]
to generate quad meshes by letting the user design a singularity
graph that resembles the behavior of the topological skeleton of a
4-RoSy field. On the other hand, Dong et al. [2006] perform quad-
remeshing using spectral analysis, which produces quad meshes
that in general do not align with the curvature directions.

We apply our design system to a 4-RoSy field that is obtained from
principle curvature directions by not distinguishing between the
major and minor directions. Our method is based on streamline
tracing. In contrast to most existing approaches, we first trace all
the separatrices for a certain distance. This allows singularities to
be the vertices in the new mesh and that the nearby regions con-
sist of nice quad elements (Figure 8). Notice that this would not
have been possible without the analysis of N-RoSy fields. In addi-
tion, 4-RoSy field design enhances the chance of obtaining a better
mesh by removing noise and placing singularities in natural loca-
tions. Figure 8 illustrates this with two examples fields, both were
obtained by editing a 4-RoSy field corresponding to the curvature

tensor. The top field corresponds to a sequence of global smooth-
ing, which tends to lose sharp features in the model and no longer
follows the principle curvature directions. The bottom field, on the
other hand, was obtained through a sequence of singularity editing
operations that allow singularities to be edited in an isolated fash-
ion, thus maintain sharp features and natural singularities.

We wish to emphasize that the focus of our work is on the analy-
sis and design of N-RoSy fields. While we have employed a
streamline-based remeshing approach [Alliez et al. 2003] to demon-
strate the capabilities of our system, fields designed using our sys-
tem can potentially be input to other and more recent remeshing
techniques such as [Ray et al. 2006a].

7 Conclusion

In this paper, we have developed a design system for N-RoSy fields
on surfaces with explicit control over the number and location of
singularities in the fields. We demonstrate the effectiveness of our
system with applications in non-photorealistic rendering and quad-
dominant remeshing.

As part of our system, we describe a mathematically sound rep-
resentation for N-RoSy’s that is based on higher-order symmetric
tensors. This link allows us to define algebraic operations as well
as analytic characteristics such as singularities, differentiability, and
continuity. Furthermore, we present a compact vector-based repre-
sentation of N-RoSy fields on mesh surfaces that makes it possible
to perform field smoothing using linear systems.

We also provide topological analysis of N-RoSy fields and efficient
algorithms with which singularities and separatrices can be identi-
fied.

In the future, we plan to investigate the use of 6-RoSy field de-
sign to obtain optimal triangulations from an input mesh. Figure 9
demonstrates this potential with a user-guided 6-RoSy field on the
dragon. Notice that the streamlines according to field, while not
aligned perfectly, intersect at angles that are multiples of π

6 . Adap-
tation of quadrangulation methods such as [Ray et al. 2006a; Tong
et al. 2006] has the potential of generating high-quality triangular
meshes.

In many applications, multiple, coexisting symmetries of differ-
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Figure 8: 4-RoSy field design was applied to quad-dominant
remeshing. The field in the top was obtained by performing
smoothing on a 4-RoSy field derived from the curvature tensor,
while the field in the bottom was obtained by performing a sequence
of topological editing operations on the same tensor field. Notice
that while both fields are smooth, the field in the bottom contains
singularities that situate in natural locations such as near the leg. In
contrast, the field in the top is overly smooth and does not follow
the curvature directions in many parts of the model.

ent N’s are of interest, such as pen-and-ink sketching and texture
synthesis. We plan to investigate a mathematical framework with
which such objects can be analyzed and designed.

Appendix: N-RoSy’s and N-th Order Tensors

In this appendix, we point out the link between N-RoSy’s and N-th
order covariant symmetric tensors, which justifies the way in which
the components of a representation vector transform under a change
of basis (Section 3).

Recall that when N = 1 and 2, an N-RoSy can be modeled as a
vector or a symmetric traceless matrix [Zhang et al. 2007], respec-
tively. When N ≥ 3, we turn to N-th order tensors and define an
injective map α from the set of two-dimensional N-RoSy’s into the
set of two-dimensional N-th order symmetric tensors. α allows al-
gebraic operations on N-RoSy’s to be defined in terms of corre-
sponding operations on N-th order tensors. Before describing α ,
we briefly review relevant facts about N-th order tensors. Given an
othonormal basis for R

2, an N-th order covariant tensor t = ti1...iN
(1 ≤ i1, ..., iN ≤ 2) is a multi-linear form

t(w1, ...,wN) = ti1...iN w
i1
1 ...w

iN
N (16)

where w j’s (1 ≤ j ≤ N) are two-dimensional vectors and w
ik
k

refers
to the ik-th component of wk. Here we are using the Einstein con-
vention in which the summation signs are omitted. t is symmetric
if ti1...iN = tip(1)...ip(N)

for any permutation p over the set {1, ...,N}.

Figure 9: A 6-RoSy field designed using our system. Notice that
the network of streamlines resembles a highly regular triangulation.

In the remainder of the discussion we will only focus on covariant
and symmetric tensors and therefore omit the words symmetric and
covariant for convenience.

Given an N-RoSy

s = {R

(

cos(θ + 2kπ
N )

sin(θ + 2kπ
N )

)

| 0 ≤ k ≤ N −1} (17)

we consider the following N-th order tensor

ti1...iN =











Rcos(Nθ) if i1 + i2 + ..+ iN ≡ 0 mod 4
Rsin(Nθ) if i1 + i2 + ..+ iN ≡ 1 mod 4

−Rcos(Nθ) if i1 + i2 + ..+ iN ≡ 2 mod 4
−Rsin(Nθ) if i1 + i2 + ..+ iN ≡ 3 mod 4

(18)
.

Given a vector w =

(

cosφ
sinφ

)

, it is straightforward to verify that

t(w, ...,w) = RcosN(θ −φ). Furthermore, it can be shown that t is
the only tensor that has this property. t(w, ...,w) achieves its max-

imum on the unit circle S1 when θ − φ ≡ 0 mod 2π
N . There are

N such vectors, which are exactly the member vectors of s. This
allows us to map s to t = α(s) as defined in Equation 18. When
N = 1, s is a vector and t = s is also a vector. When N = 2, t is the
traceless symmetric matrix whose major eigenvalue is R and major
eigenvectors are given by the member vectors of s.

Notice that tensors defined in Equation 18 form a two-dimensional
linear subspace of the set of N-th order tensors, which leads to the
following construction of a bijective map β from the subspace to a
two-dimensional vector space such that

β (ti1...iN ) =

(

t00...0

t10...0

)

=

(

RcosNθ
RsinNθ

)

(19)

The composite map γ = β ◦α has been used to map an N-RoSy to
its representation vector as described in Section 3. As a compact
representation of an N-th order tensor, the components of a repre-
sentation vector transform differently than a vector under a change
of basis.
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