
Visibility-driven Mesh Analysis and Visualization
through Graph Cuts

Kaichi Zhou, Eugene Zhang, Jiřı́ Bittner, and Peter Wonka

Abstract— In this paper we present an algorithm that operates on a triangular mesh and classifies each face of a triangle as either
inside or outside. We present three example applications of this core algorithm: normal orientation, inside removal, and layer-based
visualization. The distinguishing feature of our algorithm is its robustness even if a difficult input model that includes holes, coplanar
triangles, intersecting triangles, and lost connectivity is given. Our algorithm works with the original triangles of the input model and
uses sampling to construct a visibility graph that is then segmented using graph cut.

Index Terms—Interior/Exterior Classification, Normal Orientation, Layer Classification, Inside Removal, Graph Cut.

1 INTRODUCTION

We address the following problem: given a model as a potentially un-
structured set of triangles ti ∈ T where each triangle ti consists of two
faces ti,1 and ti,2. As output we want to compute a classification of all
triangle faces ti, j into either inside or outside. Such an approach has
several applications and we will demonstrate three in this paper: the
inside removal of architectural and mechanical models for faster visu-
alization, normal orientation and layer-based visualization of multiple
layers of geometry using transparency.

We believe that previous work does not use visibility to its full po-
tential so that classification errors are likely in more difficult models.
There are two existing approaches to using visibility for inside out-
side classification. 1) Rays are sampled from an outside bounding
volume to classify geometry as outside (e.g. [4, 16], see Fig. 1 left).
This approach has difficulties with cracks and with the fact that parts
of the outside surface might not be visible from an enclosing bound-
ing volume. 2) Rays are sampled from the outside to stab the whole
model. The inside-outside classification changes with each intersec-
tion (e.g. [16], see Fig. 1 middle). This approach has also some diffi-
culties with cracks, double sided triangles, self intersecting triangles,
and coplanar triangles. In contrast, we observe that any ray path can
be used to propagate inside-outside classifications, see Fig. 1 right.

Our solution is to use visibility analysis to establish connections
between entities that we call half-space nodes. A half-space node can
correspond to a single half-space point or a (possibly infinite) set of
half-space points. A half-space point is an oriented sample on a trian-
gle and consists of a point pi in R3 and hemisphere centered at pi. The
orientation of the hemisphere is decided by the normal of a triangle
face at pi. Visibility relationships between half space points are es-
tablished through sampling using ray casting. The details of our algo-
rithm include a solution on how and where to create half space nodes
and how to sample rays to establish visibility relations. The second
part of our approach is a classification using iterative graph cut. The
main contributions of our work are the following:

• We propose a model preprocessing algorithm that can classify

• Kaichi Zhou graduated from Arizona State University and is now with
NVIDIA, E-mail: kaichi.zhou@gmail.com.

• Eugene Zhang is with Oregon State University, E-mail:
zhange@eecs.oregonstate.edu

• Jiřı́ Bittner is with Czech Technical University in Prague, E-mail:
bittner@fel.cvut.cz

• Peter Wonka is with Arizona State University: E-mail:
pwonka@gmail.com

Manuscript received 31 March 2008; accepted 1 August 2008; posted online
19 October 2008; mailed on 13 October 2008.
For information on obtaining reprints of this article, please send
e-mailto:tvcg@computer.org.

triangle faces into inside or outside even if the input contains
coplanar polygons, self-intersections, two-sided triangles and
cracks.

• We are the first to propose semi-automatic extensions to inside
outside classification to increase robustness in case the automatic
method is unspecified or the errors in the model are above a user
defined tolerance.

1.1 Challenges
There are several geometric configurations that we want to consider in
this paper as explained in the following:

One sided and two sided triangles: A one sided triangle has one
side on the inside and one side on the outside while a two sided triangle
has both faces on the outside (or inside). The main difficulty is to
ensure that the algorithm can detect holes and does not classify triangle
faces as outside that are only visible through an unwanted crack or hole
in the model (see Fig. 2 for an example illustration).

Intersections and coplanar triangles: The algorithm should be
robust in the presence of self intersections and coplanar triangles (see
Fig. 3 left and right).

User input: It is unlikely that all models can be handled without
some user input. In many cases, such as with terrains the question
of what is inside and what is outside is actually a modeling problem
that requires user input (see Fig. 3 right). We want to make use of
minimal user input to clarify ambiguous configurations and to improve
robustness in difficult cases.

Inside-outside definitions: There are two fundamentally different
definitions of an inside-outside classification: view-based and object-
based. The view-based definition considers all triangle faces as out-
side that are seen along a straight line from a bounding region, e.g.
sphere, around the object. The object-based definition considers all
triangle faces as outside that can be seen along a poly-line from the
bounding region. The line or poly-line cannot intersect other triangles
or pass through cracks in the model. Please note that only the object-
based definition establishes an inherent property of the object, while
the view-based definition produces different results for different view-
ing regions. In this paper we focus on the object-based definition. The
view-based definition is a from-region visibility problem that could be
addressed with our previous work [21, 20] as a starting point.

1.2 Related Work
Surface based model repair: Surface based model repair algorithms
operate directly on the input mesh and fix model errors by local mod-
ifications to the mesh. A large class of methods fixes the model er-
rors by either stitching the boundaries of the patches together or filling
the holes by inserting additional geometry [3, 1, 9, 12]. Murali and
Funkhouser [15] construct a BSP tree using the input triangles and
then use linear programming in order to classify the cells of the BSP
either inside or outside, remove cracks and fill holes. However due

1667

 1077-2626/08/$25.00 © 2008 IEEE Published by the IEEE Computer Society

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2008

Manuscript received 31 March 2008; accepted 1 August 2008; posted online
19 October 2008; mailed on 13 October 2008.
For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

Fig. 1. Triangles (line segments) are shown in black, vertices as grey
spheres, an outside classification is shown in blue and an inside clas-
sification is shown in red. Left: Classification of outside geometry by
sampling visibility from a bounding sphere around the scene. Middle:
stabbing the object along straight lines and alternating outside inside
classification. Right: propagating inside and outside classification along
an arbitrary path.

Fig. 2. Triangles (line segments) are shown in black, vertices as grey
spheres, an outside classification is shown in blue and an inside classi-
fication is shown in red. Left: a typical example of a one sided object.
Middle: a cup where each triangle has two outside faces. Right: this is
a tricky example that could have multiple interpretations. We show the
interpretation as one sided object with a hole.

to the BSP and linear programming the application of this approach
to large models is costly and memory demanding. Our algorithm is
closely related and partially inspired by the paper of Borodin et al. [4].
This paper also proposes to use visibility sampling for mesh analysis,
but there are three issues that we want to improve upon: 1) The al-
gorithm is not able to cope with coplanar polygons and intersections.
2) the algorithm computes neither a view-based nor an object-based
inside-outside classification, but some mixed form. 3) The algorithm
does not have a mechanism to correct sampling errors due to the ray
tracer. This includes the omission of cosine-based sampling suggested
by Zhang and Turk [21].

Volumetric model repair: In recent years a significant attention
has been paid to techniques which repair a polygonal model by us-
ing an intermediate volumetric representation [16, 10, 2]. Nooruddin

Fig. 3. Left: intersecting lines segments (triangles). Middle: a simple
object showing three coplanar line segments (triangles). Right: A terrain
has no inherent orientation. The user can specify the classification of
two points in space to define inside and outside. Outside points are
shown in blue and inside points in red. The algorithm suggested in this
paper can correctly classify the triangles that are non-intersecting and
non-coplanar. On the intersecting and coplanar triangles there would be
a number of seed points (depending on the setting) that are classified
as inside or outside.

and Turk [16] convert the model into a volumetric grid. They perform
inside outside classification of the cells of the grid by using ray cast-
ing. The grid is processed using morphological operations. Finally, the
model is converted back to a polygonal representation. Ju [10] extends
this approach by using an octree instead of a regular grid. This method
uses a more efficient local approach for the inside outside classification
of the cells of the octree. For the conversion to the polygonal model
he suggests to use dual contouring which is able to better preserve
sharp features of the model. Bischoff et al. [2] proposed a method
which is able to robustly handle interpenetrating geometry or dangling
triangles. This method also uses octree based voxelization, which is
followed by hole filling using morphological operations and an exten-
sion of the dual contouring [11]. The common problem of volumetric
methods is that they perform low pass filtering of the input geometry.
Therefore they have problems with preserving sharp features and thin
structures of the model.

1.3 Overview
The pipeline of our algorithm consists of four stages (see below):

Preprocessing: In the preprocessing step we load a model as tri-
angle soup. In the basic version of the algorithm we mainly use three
preprocessing steps. We build a kd-tree, we mark triangles that in-
tersect other triangles, and we mark triangles that are coplanar with
other triangles. Alternatively, we also use three more sophisticated
preprocessing techniques that are optional. We can make use of con-
nectivity and geometry information to construct clusters of triangles,
we can compute exact triangle intersections, and we can remove copla-
nar triangles. The latter two computations are fairly difficult and not
as robust as the other parts of the pipeline. For example, triangle in-
tersections can often lead to many small additional triangles that are a
disadvantage for many applications. See section 2 for details.

Sampling: In the sampling stage we create half-space nodes on tri-
angle surfaces and shoot rays to sample visibility connections to other
half space nodes. The methodology combines ideas from visibility,
geometry, and global illumination to obtain a robust sampling strategy
for the creation of half space nodes and the generation of rays. See
section 3 for details.

Classification: The classification step analyzes the graph using a
max-flow, min-cut algorithm to classify half space nodes as either in-
side or outside. Additionally, we provide a user input to set some
global parameters of the classification, or to locally refine the compu-
tation in case of difficult geometric configurations. See section 4 for
details.

Application and Results: The algorithm can be used for normal
orientation, inside removal, or layer classification. We present a few
more details on how to fine tune the pipeline for these applications in
section 5 including a variety of results on selected example models.

2 PREPROCESSING

The input to our algorithm is a set of n0 triangles ti, with 1 ≤ i ≤ n0.
In this section we explain six preprocessing steps: 1) kd-tree construc-
tion, 2) intersection testing, 3) coplanar testing, 4) intersection retri-
angulation, 5) coplanar triangle removal, and 6) patch clustering. The
first three steps are required for all models and the second three are
optional.

Our main philosophy is to establish a conservative and robust model
processing algorithm. We found that the two optional preprocessing
steps intersection retriangulation and coplanar triangle removal give
undesirable results in many cases. The main focus of this paper is
therefore to establish robustness despite geometric errors and inaccu-
racies rather then to fix these problems. A general problem with inter-
section retriangulation is the long implementation time for a correct al-
gorithm and the many (often very thin) triangles that can be generated
in the process (see Fig. 4 for an example intersection retriangulation).
Coplanar triangle removal shares the same problems of intersection
retriangulation. Additionally, it is unclear how coplanar triangles can
be removed in textured models, because there are multiple textures or

1668 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2008

texture coordinates to choose from. As default we will assume that
only the required steps are performed and will note additional optional
preprocessing steps for each model.

Kd-tree construction: All triangles in the model are sorted into a
kd-tree to accelerate ray casting. The kd-tree construction and the ray
tracer are an improved version of multi-level ray tracing [17]. The kd-
tree construction takes under two minutes for the largest model in the
paper.

Intersection Test: The intersection test is performed for each tri-
angle ti ∈ T and outputs a flag intersi ∈ {true, f alse} that is true if
the triangle intersects another triangle and is f alse if the triangle does
not intersect another triangle. The algorithm has to be conservative,
i.e. two non-intersecting triangles can be incorrectly classify as inter-
secting but not the other way around. The reason for this conservative
strategy is that the subsequent sampling and classification steps more
carefully analyze intersecting triangles. Therefore, the first type of
misclassification does not lead to any problems. We proceed as fol-
lows. We first use the kd-tree to select a list of intersection candidate
triangles. We can find a set of candidate triangles CSeti by comput-
ing the bounding box Bi of triangle ti and then taking all triangles that
are stored with the leaf nodes of the kd-tree that intersect the bound-
ing box Bi. For each triangle t j ∈ CSeti we compute an intersection
using the algorithm proposed by Moeller [13]. Alternate intersection
routines are described in [14] chapter 13. We choose the first algo-
rithm, because we found it easier to modify to make it conservative.
The main idea of the conservative intersection tests is to introduce ε
thresholds. We omit a very detailed description because it would be
very lengthy due to many special cases and the ε intersection algorithm
is not a contribution of our paper. Some of the special cases arise due
to degenerate intersections and overcoming floating point limitations.
Please note that we do not consider triangles sharing a vertex or an
edge as intersecting. These cases are explicitly excluded in the imple-
mentation.

Coplanarity Test: The conservative coplanarity test for triangles is
performed for each triangle ti and outputs a flag cpli ∈ {true, f alse}
that is true if the triangle is coplanar to another triangle and is f alse
otherwise. The test is conservative because we use ε thresholds as
in the intersection computation. The algorithm proceeds as follows.
We reuse the candidate set CSeti to test each triangle t j ∈ CSeti. We
compute the angle α between the plane containing ti and the plane
containing t j with a normal vector dot product. If α indicates parallel
plane orientation we proceed to test the distance di j between the two
closets points on ti and t j. If the distance is within an ε threshold we
finally project ti into the plane of t j and use a two-dimensional version
of the triangle intersection test [13]. If the triangles intersect they are
both marked as coplanar.

Triangle Clustering: The idea of this stage is to cluster triangles
that can be classified together. The clustering algorithm assumes that
all connected triangles are part of orientable surface patches. The clus-
tering algorithm is a simple greedy algorithm that needs two main
parts: the clustering algorithm itself and a preprocessing algorithm
that marks each triangle edge with a flag ∈ true, f alse that indicates
if triangles that share this edge can be clustered. In the following we
first explain how to compute the edge flag and then give the algorithm
outline. The edge flag is set to true by default and then we set the
flag to f alse in the following cases: 1) the edge belongs to a triangle
with intersi = true or 2) cpli = true; 3) the edge is non-manifold, i.e.
it is shared by more then two triangles, and 4) the edge belongs to a
triangle that is too close to another non-adjacent triangle.

The clustering algorithm marks all triangles of the model as not
visited using a boolean flag per triangle. Iteratively, the first not visited
triangle is selected to start a new cluster. The cluster is expanded by
adding other triangles that share edges marked true using breath first
search. If there is only one triangle in a cluster we assign the cluster
id clusteri = −1 and otherwise we set the cluster id of all triangles in
the cluster using a counter to ensure unique cluster ids.

Intersection Re-triangulation: The idea of intersection re-
triangulation is to re-triangulate triangles so that no triangle is inter-
sected by another one. While the output of this algorithm is a very

helpful simplification of a general input, we believe that the actual use
of the algorithm is controversial, because it can create many additional
triangles and it is difficult to implement correctly. The triangle inter-
section algorithm for a triangle ti proceeds similar to the intersection
test and first computes intersection candidates and then triangle inter-
sections. For each triangle intersection we store the intersection lines
l j in a set LineSi. After all intersection lines are computed we retrian-
gulate ti using constrained Delauney triangulation [18]. More robust
triangulations can be computed with the CGAL library [6]. See Fig. 4
for an examples.

Fig. 4. The images on the left show the bird model before triangle split-
ting. The images on the right show the bird model after splitting. All
triangles considered for splitting are shown in red. Please note the high
number of thin polygons in the closeup view.

Coplanar Removal: The coplanar triangle removal uses the result
of the coplanarity test. Coplanar triangles are projected into one plane
and the resulting polygon is retriangulated.

Output of Preprocessing: At the end of preprocessing we ob-
tain a set of n triangles ti, with 1 ≤ i ≤ n. If steps four and five
are not performed n = n0. Additionally, each triangle i has a flag
cpli ∈ {true, f alse} to denote if the triangle has other coplanar tri-
angles and a flag intersi ∈ {true, f alse} to denote if the triangle is
intersecting other triangles. If triangle clustering is used we store a
cluster identifier clusteri with each triangle.

3 SAMPLING

Fig. 5. Three cases of half-space nodes. Left: a single half-space point.
Middle: the set of half-space points on one triangle face. Right: all
half-space points on a cluster of triangle faces.

The goal of the sampling stage is to generate a visibility graph
G(V,E) consisting of half-space nodes hsni ∈ V , virtual nodes ∈ V ,
and edges ∈ E that encode visibility connections between the nodes.

1669ZHOU ET AL: VISIBILITY-DRIVEN MESH ANALYSIS AND VISUALIZATION THROUGH GRAPH CUTS

We divide the process into two steps: geometry sampling for node
generation and visibility sampling. In principal the nodes in the graph
correspond to geometry. We want to classify the nodes into inside and
outside and then later transfer the node classification back to the ge-
ometry. These are then our two fundamental ideas on how to design
such a graph:

1. The goal for the node design is to create nodes that correspond
to geometry that can receive a consistent classification. This will
result in a solution where more nodes are placed in difficult parts
and fewer nodes are placed in easy parts of the model. For ex-
ample, intersecting and coplanar triangles are difficult, because
the visibility classification is expected to change within a trian-
gle and we cannot assume that we can classify the faces of such a
triangle consistently. On the other extreme, triangles within a tri-
angle cluster will have two sets of faces so that the classification
within each of the two sets is consistent.

2. The goal for edge design is to generate edge weights that measure
how strong the visibility between two nodes is. Therefore, we
propose to use a measure in ray space that corresponds to how
many visible rays exist between two nodes.

3.1 Geometry Sampling
We define a half-space point as a point in R3 and a set of viewing di-
rections on a hemisphere Ω. Typically, the half-space point is a sample
on a triangle and the hemisphere is defined by the normal vector of one
of the two triangle faces.

A half-space node corresponds to either a single half-space point
or a set of half-space points (see Fig. 5). We use different methods
to generate half-space nodes for triangle clusters and the coplanar and
intersected triangles:

Triangle Clusters: All the triangles belonging to a triangle cluster
give rise to two sets of triangle faces f s1 and f s2 that will have the
same inside-outside classification. Only two half space nodes are gen-
erated for a triangle cluster. One for all half space points on triangle
faces in f s1 and one for all half-space points on triangle faces in f s2.
Note that a single triangle is just a special case of triangle cluster.

Intersected and Coplanar Triangles: A predefined number of
sample points are distributed over each intersected triangle. Each point
contributes two half space nodes in the graph. We propose three sam-
pling schemes to distribute the points: 1) Uniformly sample the tri-
angle. 2) Uniformly sample the polygonal face, plus sample along the
polygon’s edges. 3) Compute all the intersection edges on the face (for
coplanar faces, first project all the coplanars onto the interested face’s
plane), triangulate the face and uniformly sample the sub-faces.

The sampling quality increases from the first method to the third,
but the time complexity also increases. In our experiments, we found
that the second scheme generates good results for most of the models.
To avoid potential numerical issues of ray casting, we need to detect
whether the selected sample point is within an epsilon proximity of
other triangles. For each of the other triangles intersected or coplanar
with the current triangle, the distance from the point to its plane is
computed and also the point is projected onto its plane to see if the
point really falls inside the triangle. The half space point is offset
along the normal of the furthest triangle that satisfies the proximity
test above. Fig. 6 illustrates the adjustment.

Fig. 6. Coplanar and intersected samples are adjusted to the surface of
the furthest triangle that satisfies the proximity test.

Virtual Nodes: The graph always contains at least two virtual
nodes, one of which represents the outside and the other represents

the inside. Later, we will compute a cut in the graph to compute two
disjunct sets of nodes. The set of nodes that contains the outside node
(inside node) will be classified as outside (inside).

The sampling stage first creates the half-space nodes and then
stochastically samples visibility between half-space nodes using ray
casting. During this process a number of half-space points is gener-
ated for each half-space node. The details will be described in the next
section.

3.2 Visibility Sampling
The constructed graph of halfspace nodes contains edges with weights.
The weight of an edge connecting two halfspace nodes should reflect
the amount of visibility between the corresponding patches. In the
next section we derive the weight assignment and then we describe
how the weights are established using ray casting.

3.2.1 Weight Assignment
We desire that the weight of connection of two patches in the scene
reflects the amount of their mutual visibility. Mutual visibility of two
patches has been studied intensively in the context of radiosity meth-
ods which aim to simulate illumination of diffuse environments. In
radiosity methods the visibility between patches drives the amount of
power exchanged between them.

Inspired by these methods, we define the weight of an edge connect-
ing two patches (half-space nodes) as the average amount of power
transferred between these patches. The power transfer from patch i to
patch j is:

Pi j = AiBiFi j (1)

where Ai is the area of patch i and Fi j is the form factor between
patches i and j. Assuming all patches have unit radiosity (Bi = 1) we
get Pi j = AiFi j . The form factor Fi j is given by the following equa-
tions [7]:

Fi j =
1

Ai

∫
Ai

∫
Aj

F(x,y)dA jdAi (2)

where x and y are points on patches Ai and A j respectively, dAi
and dA j are differential surface areas, and F(x,y) is the point-to-point
form factor defined as:

F(x,y) =
(Θxy �Nx)(−Θxy �Ny)

πr2
xy

V (x,y) (3)

where Θxy is a unit direction vector from x to y, Nx(Ny) is the patch
normal vector at x(y), rxy is the distance between x and y, and � is the
inner product. V (x,y) is the visibility function given as:

V (x,y) =
{

1 if a ray from point x hits point y
0 otherwise

(4)

From the definition of the form factor, we can see that AiFi j = A jFji
and thus Pi j = Pji.

The form factors can be computed using ray casting as follows: If
we originate a ray from a uniformly chosen location on patch i and
shoot into a cosine-biased direction (i.e. the probability of the direc-
tion depends on the cosine between the direction and the patch nor-
mal), the probability of such a ray lands on patch j is equal to the
form factor Fi j [7]. Thus we can estimate for sufficiently large number

of rays: Fi j ≈ F̃i j = ni j/ni where ni j is the number of rays shot from
patch i and landed on patch j and ni is the total number of rays shot

from patch i. From F̃i j and F̃ji we can compute estimates of power

exchange P̃i j and P̃ji. The weight of the link between patches i and j
is then defined as the average of the two power exchange estimates:

w(i, j) =
1

2
(P̃i j + P̃ji) =

1

2
(Ai

ni j

ni
+A j

n ji

n j
) (5)

The weight w(i, j) can also be interpreted as the measure of rays
which connect the two patches. In order to support this intuition we

1670 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2008

provide the following substitution: Assuming uniformly distributed

rays we know that ni ≈ n Ai
A ,n j ≈ n Aj

A , where n is the total number of
rays cast and A is the total area of patches. By substitution we can
rewrite Eq.5 as:

w(i, j) ≈ A
2

ni j +n ji

n
(6)

Thus the defined weight corresponds to the ratio of the number of
rays connecting the two patches with respect to all rays cast with a

constant scale factor A
2 .

Note that the area of a patch is the sum of the areas of all the tri-
angles belonging to the patch. If a half space node represents a single
half space point on a triangle the patch corresponds to a voronoi region
on the triangle (the details will be discussed in section 3.2.2). Since
the samples are mostly uniformly distributed on the triangles, it is rea-
sonable to assume that each such voronoi region has the same area,
which is the triangle’s area divided by the number of samples on the
triangle.

The rays hitting void from a half space node i contribute to the
connection between node i and the outside node. The geometrical
meaning of the outside node is the bounding sphere of the scene. The
weight is defined as:

wo(i) = Ai(1−∑
j

ni j

ni
) (7)

Note that this weight is not reciprocal, since we do not shoot rays
from the bounding sphere. Based on geometrical probability, the form
factor computation stays valid if we shoot rays from the bounding
sphere and count the number of hits landed on each node. Never-
theless, it is inefficient and unnecessary. To embody the inside node
in a geometric sense is problematic. One of the workarounds is that
the user assigns a region on the surface or a volume in space as inside.
Then we can shoot rays from such regions to build the connection be-
tween half space nodes and the inside node. Without users’ guidance,
we contribute one half space node’s outside weight to its opposite half
space node’s inside weight: wi(opp(i)) = wo(i) where opp() is an op-
erator to find out node i’s opposite half space node.

Fig. 7. A 2D illustration of visibility filtering for a cave model. Thicker line
segments represent triangle faces in 3D. Thinner blue lines represent
outside normals of the faces and red ones represent inside normals.
Left: An undesirable classification occurs because rays pass through
small cracks between faces. These rays are shown as dotted line. The
visibility propagated through the small cracks outweighs the visibility
propagated through the main entrance of the cave (shown as straight
line). Right: The weights are filtered so that the algorithm gives less
weight to smaller cracks resulting in the desired classification.

Due to the imperfection of the geometry, the sampling may incor-
porate some amount of errors (see Fig. 7). Thus we apply a cos filter
to dampen the error fraction. For each node i,

wmax(i) = max{w(i, j),wo(i),wi(i)},∀ j (8)

Our directed filter function is defined as:

f ilter(w(i, j)) =
1

2
(1+ cos(π −π

w(i, j)
wmax(i)

))w(i, j) (9)

3.2.2 Ray Casting
The start locations of the sampling rays are generated uniformly in
the region each half space node possesses. Specifically, for a clus-
ter half space node, one triangle of the cluster is selected according
to its area and the location is uniformly distributed on the triangle.
The directions are sampled on the corresponding hemisphere with a
cosine-distributed probability. If a sampling ray shot by node i hits a
triangle belonging to a cluster, then a connection is built between the
corresponding cluster node and node i.

Fig. 8. Left: Voronoi regions formed by single half space nodes in a
triangle. Right: A ray hit from Node B is snapped onto Node A, which is
not visible from Node B.

If the hit triangle is either an intersected one or a coplanar one, we
aim at estimating visibility in such a manner that a single half space
point represents a voronoi region on the triangle instead of a single
point (see Fig. 8). As we want to avoid complex computations we only
try to compute a fast estimate that results in robust visibility classifica-
tions. We therefore snap the ray to a half space node j on the triangle
closest to the hit point. Since we only originate rays from one location
of such node, which is the center of its voronoi region, the form factor
integral is biased. Due to the fact that Pi j = AiFi j = A jFji = Pji, we
reduce the variance by using Pji only as the weight between node i and

node j instead of
Pi j+Pji

2 , if node j is not a single half space point.
Another important special case with snapping occurs when visibil-

ity changes between the ray hit and the snapped half space point. In
order to discover this case we test reverse visibility by shooting a re-
verse ray from the node snapped on to the sampling ray’s origin. The
right of Fig. 8 shows a case where visibility changes in a voronoi re-
gion. Node B’s sampling ray hits a triangle and the hit is snapped onto
Node A, but a reverse ray from Node A to Node B is blocked by other
geometry in between. Therefore the ray hit from Node B to A is dis-
carded. Please note that while visibility is symmetric in general, in
this case visibility is not symmetric. This is because the starting point
of the reverse ray is not the end point of the original ray.

4 CLASSIFICATION

Fig. 9. The visibility graph built from the input geometry on the left.

This section describes how the visibility graph can be processed to
obtain an inside and outside classification of each node in the graph.
The algorithm is basically a graph clustering or segmentation algo-
rithm. There are several older but powerful algorithms, such as k-

1671ZHOU ET AL: VISIBILITY-DRIVEN MESH ANALYSIS AND VISUALIZATION THROUGH GRAPH CUTS

means, single-link, agglomerative, or Ward’s algorithm that could be
transferred to our problem. See Tan et al.’s book [19] for a review of
these techniques. While these algorithms can be fast, they are not guar-
anteed to produce optimal results. In contrast, many new techniques
rely on spectral matrix decompositions.

Our problem is given as follows. The sampling stage generates
a visibility graph G = 〈V,E〉 (see Fig. 9). An inside-outside clas-
sification of N half space nodes can be denoted by a binary vector
X = (x1,x2, . . . ,xN), where xi = 1 if node i is outside, otherwise xi = 0.
We define an energy function for the classification proportional to the
visibility connections that have to be cut:

E(X) = ∑
(i, j)∈E

wi jδi j (10)

where wi j is the weight between node i and j, and

δi j =
{

1 if xi 	= x j
0 if xi = x j

(11)

The minimization of this energy function defines an inside-outside
classification with minimal visibility errors. The optimal solution can
be computed by the algorithm of Boykov and Jolly [5]. This algorithm
was proposed in the context of image processing and it was designed
to work with graphs where each node has only a few incident edges.
Our experiments show that the algorithm still performs well for graphs
with denser (visibility) connections. This is partially due to the fact
that we do not shoot a very large numbers of rays to estimate visibil-
ity. Fig. 10 shows a visualization of an example graph. In complex
situations the algorithm does slow down and can take several minutes.
This classification algorithm can be computed once or iteratively de-
pending on the application. In the next section we will show several
example applications that we implemented and explain how they setup
the classification.

Fig. 10. Left: An example visibility graph. Nodes are shown in green
and red and graph-edges in black. Right: All graph-edges connected to
a selected node are highlighted in pink.

5 APPLICATIONS

Inside Removal: Inside removal of models can be computed by one
iteration of the sampling and classification step. All triangles that are
associated with an outside half space node are considered to be in layer
one. All other triangles can be removed. See Fig. 11 and 22 for an
example.

Normal Orientation: Normal orientation of a model is computed
by one iteration of the sampling and classification step. The user can
decide the front face vertex order, i.e. if triangles should be oriented
in clockwise or counterclockwise order. All triangle faces associated
with exactly one outside half-space node, or triangles with multiple
agreeing half space nodes are oriented according to the user setting.
Triangles associated with multiple half space nodes that indicate a con-
flicting inside-outside classification are typically duplicated and two
triangles with the two possible orientations are created. We found that
to be the most intuitive output of normal orientation for general models
(see Fig. 13). If the application requires one triangle face to be outside

Fig. 11. Left: The outside of the house model. The model was created
by stacking boxes, so that almost all triangle-edges are non-manifold,
and most faces are coplanar. Right: The interior geometry that was
removed.

Fig. 12. Left: the outer layer of the blgd2 model. Right: the inside
polygons that were removed.

and one triangle be face to be inside, i.e. one normal per triangle, we
can pick the orientation where the sum of edge weights to the outside
is bigger.

Fig. 13. Left: the bird model with front facing (outside) triangles in blue
and back facing (inside) triangles in red. Middle: reoriented normals.
Right: The model is difficult to process due to the thin (coplanar) struc-
tures shown in yellow.

Layer Computation and Visualization: Layer computation can
help to gain insight into the internal structure of a model. Layers can
be computed by multiple iterations of the classification step and an
edge reweighing step. The first iteration computes the first layer. Af-
ter the first iteration the edges connected to inside nodes associated
with triangles in the first layer are connected to the source (the out-
side). Then the classification step is repeated. The layer computation
can be used to assign different transparency values to different layers.
See Fig. 14 and Fig. 16 for examples where we render transparency
based on an Nvidia whitepaper [8]. While this application has been
suggested by previous authors our contribution is the improved defini-
tion and computation of inside and outside layers. See Fig. 15 for the
separate layers.

Interactive Editing and Mesh Analysis: The framework also in-
cludes the ability to interact with the visibility graph. A user can de-
fine additional nodes on the model or in free space and manually set
weights of edges and classifications of nodes. We do not use interac-

1672 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2008

Fig. 14. Left: The skull model with the first layer in blue and the second
layer in red. Right: layer visualization in the motor model.

Fig. 15. Three layers of the top of the motor model.

tive editing for the results in this paper, because that would skew the
comparison with other approaches.

6 RESULTS

We present the running times of our algorithm on a small set of mod-
els. The models were selected to include some variety of how difficult
the models are and how many sharp features they possess. For each
model we run one inside-outside classification for inside removal. We
list the number of polygons of the input model, the number of poly-
gons of the output, as well as the complete running time (See Table 1).
We also include an informal comparison with Ju’s PolyMender soft-
ware [10] available at his web page1. PolyMender needs to scan the
input models into a hierarchical grid. One parameter maxd allows the
user to control the maximal depth of the octree. In our experiments, we
tune the parameters for PolyMender to capture the details of different
models. Polymender generates an order of magnitude more triangles
for the models house, building 2, and mechanic 1. A main reason is
that coplanar faces seem to force a very detailed voxelization. Most of
the models are well reconstructed with maxd = 9. The bird skeleton
contains many detailed structures and requires maxd = 10. For simpler
models such as the Turbine and Skull we set maxd = 8. We use the ver-
sion dc-clean for all models except for the bird which uses dc. While
our algorithm cannot compete with Polymender’s hole filling function-
ality, we believe that the results underline that our proposed system can
complement volumetric methods well. We also list a breakdown of our
running times for the three major steps clustering, sampling, and graph
cut in Table 2. In the same table we list statistics about the graph and
memory consumption. The main parameters of our algorithm are the
number of random samples, the number of border samples, the number
of rays per node, the threshold for the intersection computation and the
threshold for the coplanarity computation. For these tests we made a
binary correct or not correct decision based on visual inspection. See
Table 3 and Table 4 for the results. We measured the influence of clus-
tering on three models (see Table 5). Even though we do not perform
clustering in the second column, we still have to run the intersection

1http://www.cse.wustl.edu/ taoju/code/polymender.htm

Fig. 16. Left: The turb model with the first layer in blue and second
layer in red. This model is an illustration of the difference of the view-
based and object-based inside-outside classification. Please note that
the interior pipe structure is correctly classified as outside because it is
reachable through several smaller pipes. Right: a closeup.

and coplanarity tests (I[s]). Note that the skull is an extreme case that
benefits a lot from clustering, as it has very large connected compo-
nents; the others are just normal cases where both connected mesh and
intersected triangles both exist. The third column simulates a triangle
soup case by randomly messing up selected triangles. The clustering
algorithm typically improves the overall running time because it re-
duces the number of nodes and edges in the visibility graph processed
by the graph cut algorithm.

Model Alg. Tri.In# Tri.Out# Time [s]
h
o
u
se VGC 24K 11K 89.1s

JU 24K 1.9M 14.97s

b
ir

d VGC 111K 92K 17.6s
JU 111K 1.1M 8.37s

b
ld

g
1 VGC 93K 85K 43.9s

JU 93K 791K 17.812s

b
ld

g
2 VGC 33K 22K 22.7s

JU 33K 897K 6.687s

m
ec

h
1 VGC 1.04K 1.03K 5.52s

JU 1.04K 861K 3.062s

m
ec

h
2 VGC 25K 23K 3.75s

JU 25K 742K 2.34s

tu
rb VGC 1.76M 1.76M 66.5s

JU 1.76M 843K 46.18s

sk
u
ll VGC 1.16M 1.16M 47.89s

JU 1.16M 1.61M 44.31s

m
o
to

r

VGS 140k 44k 74.14s
JU 140k 1.5M 17.016s

Table 1. The table lists the number of input triangles (Tri.In) and output
triangles (Tri.Out) and total computation time in seconds. We compare
our results (VGC: Visibility Graph Cut) against Ju’s PolyMender (version
1.7).

7 DISCUSSION

In this section we want to compare to previous work, identify contri-
butions and open problems that are of interest for future research.

Mesh Repair: Our algorithm performs several steps of a mesh re-
pair framework, but we do not currently address hole filling, a major
challenge that is implemented in some previous mesh repair systems,
e.g. [2, 10]. However, the problem of hole filling is not solved by pre-
vious work and it remains an inherently difficult topic. Many cases
require user input to be resolved. Our major avenue for future work is
to determine how the visibility graph can be used to let a user specify
hints for hole filling.

Inside Outside Classification: We believe that our algorithm sig-
nificantly improves the state of the art, because we make better use
of visibility information. Previous work, especially Borodin et al. [4]

1673ZHOU ET AL: VISIBILITY-DRIVEN MESH ANALYSIS AND VISUALIZATION THROUGH GRAPH CUTS

Model C[s] S[s] G[s] Rays Node Edge Mem

house 2.1 73 14 20M 1.2M 8.7M 316M
bird 7.3 9.1 1.2 3.5M 224K 1.2M 46M

bldg1 6.4 36 1.5 11M 691K 5.3M 183M
bldg2 4.8 16.7 1.2 6.9M 432K 1.9M 74M
mech1 0.1 5.3 0.1 2.4M 77K 825K 28M
mech2 0.7 2.1 0.95 1.2M 80K 156K 7M

turb 66 0.1 1ms 9.4K 590 739 40K
skull 46 1.4 0.06 55K 3.4K 1.5K 338K
motor 5.1 58 11 26M 1.6M 12.4M 443M

Table 2. The break-down of computation times for each model and
running times in seconds for clustering (C) , sampling (S), and graph
cut (G). Further we list the number of rays used in the sampling stage
(Rays), the number of nodes (Node) and edges (Edge) of the visibility
graph, and the memory consumption (Mem).

RS = 5, BS = 30, RperN = 8 16 32 48 64
house, time= 49s 89s 206s 327s 382s

RS = 5, RperN = 16, BS = 6 15 24 30 36
house, time= 23s 44s 68s 89s 121s

BS = 30, RperN = 16, RS = 0 5 10 15 20
house, time= 75s 89s 102s 121s 143s

RS = 10, BS = 0, RperN = 8 16 32 48 64
bird, time= 7s 17s 22s 32s 42s

RS = 10, RperN = 16, BS = 0 6 15 24 30
bird, time= 17s 35s 59s 108s 146s

BS = 0, RperN = 16, RS = 5 10 15 20 25
bird, time= 8s 17s 33s 52s 79s

Table 3. We evaluate the parameters number of random samples (RS),
number of border samples (BS), and the number of rays per node
(RperN) on two selected models. We always keep two parameters the
same and vary the other one. As result we report the running time. The
lowest running time that produces a correct result is highlighted in red.

and Murali et al. [15] make many assumptions about the model and
are therefore not robust to intersecting and coplanar triangles. On the
other hand volumetric methods [2, 10] can deal with a larger number
of inputs, but they are not able to classify the original geometry. As
a result a significant increase in triangles is likely for all models that
do not have a nice uniform triangulation. Furthermore, our experience
with the Polymender software [10] shows that there are some robust-
ness issues that would have to be resolved. We therefore argue that our
algorithm is the best available choice for inside-outside classification
and related applications.

8 CONCLUSION

We presented a robust visibility based geometry analysis algorithm
that takes a triangular model as input and computes an inside and out-
side classification of oriented triangle faces. We show how to use this
classification for three example applications: inside removal, normal
orientation, layer-based visualization. The core idea of out framework
is to propagate visibility using ray casting and to compute a classifi-
cation using graph cut. We believe that our algorithm is a significant

Model x-size y-size z-size I-thresh C-thresh

house 204 216 157 10−6 −10−2 10−5 −10−2

mech1 26 25 30 10−6 −10−3 10−5 −10−2

motor 5 21 20 10−6 −10−2 10−5 −10−2

Table 4. We list the setting for three models for the threshold parame-
ters that produce correct results: threshold for the intersection detection
(I-thresh) and threshold for the coplanar detection (C-thresh). The pa-
rameter range was determined by running a large number of tests with
different thresholds and subsequent visual inspection of the results.

Clustering No Clustering Triangle Soup
(C[s]/S[s]/G[s]) (I[s]/S[s]/G[s]) (S[s]/G[s])

bird 18 (7.3/9.1/1.2) 25 (3.5/18.7/3) 11 (10.1/1.1)
skull 47 (46/1.4/0.06) 194 (21.4/145/28) 161 (135.2/25.9)
motor 25 (3.5/20/1.5) 48 (2.3/43.2/2.5) 11 (10.1/0.5)

Table 5. Running times for clustering(C), sampling(S), intersection(I),
and graph cut(G)

technical improvement over previous techniques.

ACKNOWLEDGEMENTS

The authors acknowledge the contribution of all the reviewers and
financial support from NSF IIS-0612269, NSF CCF-0643822, NSF
CCF-0546881, and grant LC-06008 from the Czech Ministry of Ed-
ucation, Youth and Sports. We thank Will Schroeder, Ken Martin,
Bill Lorensen, Bruce Teeter, Terry Yoo, Mark Levoy and the Stanford
Graphics Group for the 3D models in this paper.

REFERENCES

[1] G. Barequet and M. Sharir. Filling gaps in the boundary of a polyhedron.

Computer Aided Geometric Design, 12(2):207–229, 1995.

[2] S. Bischoff, D. Pavic, and L. Kobbelt. Automatic restoration of polygon

models. ACM Transactions on Graphics, 24(4):1332–1352, Oct. 2005.

[3] J. H. Bøhn and M. J. Wozny. A topology-based approach for sell-closure.

In Geometric Modeling for Product Realization, volume B-8, pages 297–

319, 1992.

[4] P. Borodin, G. Zachmann, and R. Klein. Consistent normal orientation

for polygonal meshes. In Computer Graphics International, pages 18–25.

IEEE Computer Society, 2004.

[5] Y. Boykov and M.-P. Jolly. Interactive graph cuts for optimal boundary

and region segmentation of objects in n-d images. In ICCV, pages 105–

112, 2001.

[6] CGAL. Cgal: Computational geometry algorithms library. www.cgal.org,

2008.

[7] P. Dutre, K. Bala, and P. Bekaert. Advanced Global Illumination. AK

Peters, 2006.

[8] C. Everitt. Interactive order-independent transparency, 2001.

[9] A. Guéziec, G. Taubin, F. Lazarus, and W. Horn. Cutting and stitching:

Converting sets of polygons to manifold surfaces. IEEE Trans. Vis. Com-
put. Graph, 7(2):136–151, 2001.

[10] T. Ju. Robust repair of polygonal models. ACM Transactions on Graph-
ics, 23(3):888–895, Aug. 2004.

[11] T. Ju, F. Losasso, S. Schaefer, and J. D. Warren. Dual contouring of

hermite data. ACM Trans. Graph, 21(3):339–346, 2002.

[12] P. Liepa. Filling holes in meshes. In Symposium on Geometry Processing,

volume 43, pages 200–206, 2003.

[13] T. Möler. A fast triangle-triangle intersection test. Journal of Graphics
Tools, 2(2):25–30, 1997.

[14] T. Möller and E. Haines. Real-Time Rendering, Second Edition. A. K.

Peters Limited, 2002. ISBN 1568811829.

[15] T. M. Murali and T. A. Funkhouser. Consistent solid and boundary rep-

resentations from arbitrary polygonal data. In 1997 Symposium on Inter-
active 3D Graphics, pages 155–162. ACM SIGGRAPH, 1997.

[16] F. S. Nooruddin and G. Turk. Simplification and repair of polygonal

models using volumetric techniques. IEEE Transactions on Visualization
and Computer Graphics, 9(2):191–205, Apr./June 2003.

[17] A. Reshetov, A. Soupikov, and J. Hurley. Multi-level ray tracing algo-

rithm. ACM Trans. on Graphics, 24(3):1176–1185, 2005.

[18] Shewchuk. Triangle: Engineering a 2D quality mesh generator and de-

launay triangulator. In WACG: 1st Workshop on Applied Computational
Geometry: Towards Geometric Engineering, WACG, 1996.

[19] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining.

Addiso Wesley, 2006.

[20] P. Wonka, M. Wimmer, K. Zhou, S. Maierhofer, G. Hesina, and

A. Reshetov. Guided visibility sampling. ACM Trans. Graph., 25(3):494–

502, 2006.

[21] E. Zhang and G. Turk. Visibility-guided simplification. In IEEE Visual-
ization, 2002.

1674 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2008

