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Abstract. We define a formal model of spatio-temporal partitions which
can be used to model temporally changing maps. We investigate new ap-
plications and generalizations of operations that are well-known for static
spatial maps. We then define a small set of operations on spatio-temporal
partitions that are powerful enough to express all these tasks and more.
Spatio-temporal partitions combine the general notion of temporal ob-
jects and the powerful spatial partition abstraction into a new, highly
expressive spatio-temporal data modeling tool.

1 Introduction

The subject of this paper is the temporal evolution of maps. The metaphor of
a map has turned out to be a fundamental and ubiquitous spatial concept in
many spatially-oriented disciplines like geography and cartography as well as in
computer-assisted systems like geographical informations systems (GIS), spatial
database systems, and image database systems, but also simply for human’s
spatial orientation in everyday life. A map is a widely recognized geometric
structure that is capable of carrying a large amount of information and that can
be well displayed in visual form.

The central elements of maps are so-called partitions whose importance is
already reflected by the fact that the notion “map” is frequently used as a syn-
onym for “partition”. The mathematical understanding of a partition differs
slightly (but decisively) from its spatial interpretation. In [6], we have motivated
and formally defined the notion of spatial partition. Spatial partitions are pro-
posed as a generic data type that can be used to model arbitrary maps and to
support spatial analysis tasks. Three fundamental, powerful operations on par-
titions have been identified that allow one to express and even to generalize all
known application-specific operations on maps. Examples of spatial partitions
are the subdivision of the world map into countries, classification of rural areas
according to their agricultural use, areas of different degrees of air pollution,
distribution of ethnic groups, areas with different spoken languages, etc.
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A spatial partition is a subdivision of the plane into pairwise disjoint regions
where regions are separated from each other by boundaries and where each re-
gion is associated with an attribute having simple or even complex structure.
That is, a region (possibly composed of several components) with an attribute
incorporates all points of a spatial partition having this attribute. A spatial
partition implicitly models topological relationships between the participating
regions which can be regarded as integrity constraints. First, it expresses neigh-
borhood relationships for different regions that have common boundaries. This
property is immediately visible on a map. A second related aspect is that differ-
ent regions of a partition are always disjoint (if we neglect common boundaries)
so that a visual representation of a partition has a very simple structure and is
easy to grasp. Both topological properties of spatial partitions will be denoted
as partition constraints.

As a purely geometric structure, a map yields only a static description of
spatial entities and required constraints between them. Recently, strong research
efforts have been made in spatial and temporal data modeling to integrate both
directions into a common research branch, called spatio-temporal modeling, and
to construct spatio-temporal databases. The central aim is to observe and to
model evolutions of spatial phenomena over time. Spatio-temporal data models
for single, self-contained entities like mowving points or evolving regions have
already been studied in [4,5]. But so far, data models for spatial partitions
changing over time have not been considered.

The main objectives of this paper are twofold. First, we give some examples
of interesting application scenarios for spatial partitions evolving over time and
illustrate their characteristic features. Using a three-dimensional (3D) view, we
will see that temporally changing spatial partitions can be well visualized by
three-dimensional spatial partitions where each temporally changing region de-
velops into a volume. Partition constraints adapted to the 3D case are maintained
by the volumes. Additionally, application-specific operations on two-dimensional
partitions can be “lifted” to the spatio-temporal case. The interesting aspect here
is that these operations can be even further generalized. We will demonstrate
this by examples.

Second, we study the temporal development of spatial partitions thoroughly
and give a formal semantics to them and to their operations. This leads us to
so-called spatio-temporal partitions, that is, to collections of regions satisfying
the partition constraints for each time of their lifespan and maintaining these
constraints over time. Temporal changes of spatial partitions can occur either
continuously (for example, distribution of air pollution or temperature zones) or
in discrete and stepwise constant steps (for example, reunification of West and
East Germany, splitting of Yugoslavia). If we imagine a spatio-temporal parti-
tion and a time axis perpendicular to the Euclidean plane, for each time slice
parallel to the zy-axis, we obtain a stationary, two-dimensional spatial parti-
tion which changes over time due to altering shapes, sizes, or attribute values
of regions. This imagination corresponds to the temporal object view already de-
scribed in [8]; it is based on the observation that everything that changes over



time can be considered as a function over time. In the context here, spatio-
temporal partitions can be viewed as functions from time to a two-dimensional
spatial partition.

The remainder of the paper is structured as follows. Section 2 recalls related
work with respect to spatial partitions and spatio-temporal objects. Section 3
informally describes the structure of and operations on spatio-temporal parti-
tions from an application point of view. In Section 4 our formal model of spa-
tial partitions is briefly reviewed which serves as the foundation for a formal
model of spatio-temporal partitions which is then given in Section 5. Addition-
ally, some more operations are introduced emphasizing the temporal aspect of
spatio-temporal partitions. Section 6 draws some conclusions.

2 Related Work

In this section we will briefly review related work on spatial partitions and on
spatio-temporal data modeling as far as it is relevant for this paper. We are not
aware of any work on the combination of both research aspects.

2.1 Spatial Partitions

Spatial partitions or maps have been identified as a basic spatial concept to
organize and conceptualize our perception and understanding of space. They
correspond to humans’ cognitive experience and knowledge of areal phenomena
in the real world. If we consider the same space with respect to two different
thematic or cognitive aspects (for example, districts and cereals) modeled as two
partitions, their overlay is a partition again.

Maps arising from classifying space according to some aspect are frequently
called thematic maps or categorical coverages [10,21]. But these concepts mainly
focus on partitions of attribute values alone — spatial operations are completely
ignored. In particular, boundaries are not considered which play an important
role in connection with geometric intersection.

In geographic applications and systems spatial partitions are regarded as a
fundamental and user-friendly data modeling tool offering a powerful basis for
coping with spatial analysis and cartographical tasks [1,9, 10, 14, 20, 21]. Distinct
features over the same space can be combined and evaluated under different
requirements. Partition-based spatial analysis functions include operations like
overlay, generalization, and reclassification. They all produce a new partition as
a result.

From a data type perspective there have been some unsatisfactory proposals
in the past to model partitions. In [12] a spatial data type area is suggested to
model the partition constraints. Within the framework of an extended relational
data model the set of polygons occurring in a relation as a column of an attribute
of type area has to fulfill the integrity constraint that all polygons are adjacent
or disjoint to each other. Unfortunately, the maintenance of this property is not
supported by the data model, rather it 1s up to the user’s responsibility. A generic



data type for partitions, called tessellation, is informally introduced in [14] as
a specialized type for sets of polygons; this type can be parametrized with an
attribute of a yet unspecified type. In [13] so-called restriction types have been
proposed. This concept allows one to restrict the general type for regions to
subtypes whose values all satisfy a specific topological predicate (like disjoint)
and which nevertheless inherit the properties and operations of the more general
type for regions.

A rigorous and thorough formal definition of spatial partitions and of appli-
cation-specific operations defined on them is given in [6]. The basic idea is that
a spatial partition is a mapping from the Euclidean space IR? to some label type,
that is, regions of a partition are assigned single labels (see Section 4.1). Adjacent
regions have different labels in their interior, and a boundary is assigned the pair
of labels of both adjacent regions.

In [6] all application-specific operations have been reduced to the three fun-
damental and powerful operations intersection, relabel, and refine (see Section
4.2). Intersecting two spatial partitions means to compute the geometric inter-
section of all regions and to produce a new spatial partition; each resulting region
is labeled with the pair of labels of the original two intersecting regions, and the
values on the boundaries are derived from these. Relabeling a spatial partition
has the effect of changing the labels of its regions. This can happen by simply
renaming the label of each region. Or, in particular, distinct labels of two or
more regions are mapped to the same new label. If some of these regions are
adjacent in the partition, the border between them disappears, and the regions
are fused in the result partition. Relabeling has then a coarsening effect. Refining
a partition means to look with a finer granularity on regions and to reveal and
to enumerate the connected components of regions.

All of the following application-specific operations are covered by these three
operations:

— Qwverlay. This most important application operation on maps [1,9,13,12,
14-17,20] allows to lay two partitions with different attribute categories on
top of each other and to combine them through geometric intersection into a
new partition of disjoint and adjacent regions. The attributes from the input
partitions are then either distributed to each region of the result partition
or appropriately mapped to a new attribute. The underlying basic operation
1s obviously intersection.

— Reclassify [1,14] retains the geometric structure of the spatial partition and
transforms all or some partition attributes to new or modified attributes. It
is a special case of relabeling.

— Fusion [13-17] is a kind of grouping operation with subsequent geometric
union. It merges neighbored regions of a partition with respect to partially
identical attributes and is also a special case of relabeling.

— Cover [17] forms the geometric union of all regions of a partition and yields
a result partition consisting of one region. Since cover is a special case of
fuston, it can again be realized by relabeling.

— Clipping [17] computes the intersection of a partition and a given rectangular
window. As a special case of overlay, it can be expressed by intersection. We



have generalized this operation and allow general so-called “unit partitions”
as clipping windows [6].

— Difference [14] takes two spatial partitions defined over the same attribute
domain and computes the geometric difference of their point sets. All the
regions of the first partition are maintained in the result partition except
for those parts that have the same attributes in both partitions. We have
generalized this operation in several ways; it can be reduced to a combination
of intersecting and relabeling [6].

— Superimposition [17] allows to superimpose the regions of a partition onto
another partition and to cover and erase parts of the other partition. It 1s a
special case of intersection.

— Window [17] retrieves those complete regions of a spatial partition whose
intersection with a given window is not empty. Its definition, which was
generalized in [6], is based on all three fundamental operations. In particular,
this 1s the only operation that requires the partition operation refine.

2.2 Spatio-Temporal Objects

So far, only a few data models for spatio-temporal data have been proposed.
They all focus on describing the temporal development of single, self-contained
spatial objects but do not take into account collections of evolving spatial objects
possibly satisfying some constraints over time. Either spatial data models [22]
or temporal data models [11,2] have been extended to become spatio-temporal.
The main drawback of all these approaches is that they are incapable of modeling
continuous changes of spatial objects over time.

Our approach to dealing with spatio-temporal data supports an integrated
view of space and time and incorporates the treatment of continuous spatial
changes. Tt is based on the concept of spatio-temporal data types [4,5]. These
data types are designed as abstract data types whose values can be integrated
as complex entities into databases and whose definition and integration into
databases is independent of a particular DBMS data model.

A temporal version of an object of type « is given by a function from time to
a. Spatio-temporal objects like moving points or evolving regions are regarded
as special instances of temporal objects where « is a spatial data type like
point or region. A moving point describes a point changing its location in the
Euclidean plane over time. An evolving region is a temporally changing region
that can move and/or grow/shrink. It can even disappear or reappear, and its
components can either split or merge.

A straightforward and very instructive view of spatio-temporal objects is to
conceptualize and visualize their temporal evolution as purely geometric, three-
dimensional objects, that is, the time axis is regarded as a third geometric
dimension. An evolving region is then represented as a volume in 3D space
(with z-monotonic surfaces), and a moving point is then visualized as a (z-
monotonic) 3D curve. Any intersection parallel to the zy-plane yields a spatial
object, that 1s, a region or a point. These two views, the temporal object view
and the three-dimensional object view, together with the concept of 2D spatial



partitions described in Section 2.1 will serve as the main design guidelines for
modeling spatio-temporal partitions.

Note that in the same way as spatial partitions cannot be modeled adequately
with a type of spatial regions, evolving regions are insufficient to capture the
inherent constraints of spatio-temporal partitions.

3 Applications of Spatio-Temporal Partitions

Spatio-temporal partitions or “temporal maps” have a wide range of interesting
applications. In this section we will have a look at some of these applications and
demonstrate the essence and power of spatio-temporal partitions and operations
defined on them. Section 3.1 introduces selected applications for temporal maps
and uses them to explain the structure of spatio-temporal partitions. Section
3.2 briefly deals with a possible visualization of spatio-temporal partitions in
user interfaces. Finally, Section 3.3 considers applications that combine spatio-
temporal partitions through operations.

3.1 Structure of Spatio-Temporal Partitions

The following examples comprise time-dependent spatial mapping and analy-
sis tasks as they are relevant for cartography, GIS, and other spatially-related
application areas. Their actual power is later revealed when two partitions are
combined appropriately (see Section 3.3).

From an application point of view, we can generally distinguish two categories
of temporal maps. The first category incorporates applications whose temporal
changes are discrete. For example, consider the temporal development of any
hierarchical decomposition of space into administrative or cadastral units like
the world map into countries or districts into land parcels. Another application
is the classification of rural areas according to their agricultural use (like the
cultivation of cereals) over time. A further example is a chronology of ruling
parties in countries.

A characteristic feature of applications of this first category is that the num-
ber of discrete temporal changes is finite and that there is no change between
any two subsequent temporal change points, that 1s, the development is stepwise
constant which is a special form of (semi-)continuity. For each time between
two temporal change points we expect and obtain a unique and correct spatial
partition.

The open issue now is what happens at temporal change points with their
abrupt transition from one spatial partition to another. If we consider the time
point when West and East Germany were reunified, did the spatial partition
before or after the reunification belong to this time point? Since we cannot
come to an objective decision but only know that not both spatial partitions
can simultaneously belong to the temporal change point, we have to decide
arbitrarily and to assign one of both spatial partitions to it. This, in particular,
maintains the functional character of our temporal object view. We have chosen



to ascribe the temporally later spatial partition to a temporal change point.
Mathematically this means that we permit a finite set of time points where the
temporal function is not continuous.

The examples reveal that after a temporal change point the continuity of
the temporal function proceeds for some time interval up to the next tempo-
ral change point; there are no “thin, isolated slices” containing single spatial
partitions at temporal change points. Consider the result of the reunification of
West and East Germany which after that event has lasted up to now. Hence, we
have to tighten our requirement in the sense that mathematically the temporal
function has to be (upper) semicontinuous at each time. Intuitively, this means
that the temporal function has to be continuous from the upper side.

The second category includes applications whose temporal changes are con-
tinuous or smooth. Consider the temporal evolution of climatic phenomena like
temperature zones or high/low pressure areas, areas of air pollution with dis-
tinct degrees of intensity, or developments of forest fires in space and time. They
all show a very dynamic and attribute-varying behavior over time. Application
examples which have by far slower temporal changes are the increasing spread
of ethnic or religious groups, the decreasing extent of mineral resources like oil
fields during the course of time due to exploitation, or the subdivision of space
into areas with different sets of spoken languages over time.

So far, we have intuitively described the temporal object view of spatio-
temporal partitions. An alternative imagination of spatio-temporal partitions
is given by the three-dimensional object view. The idea is to regard the time
axis as a third geometric dimension, the z-axis, and to represent the temporal
evolution of regions of a spatial partition as solid 3D volumes. This leads to
three-dimensional partitions where any two volumes are either disjoint, or they
are adjacent and have common boundary parts. The predicates “disjoint” and
“adjacent” denote topological relationships in three-dimensional space. We will
denote these 3D volumes as partition volumes.

An interesting observation is that partition volumes cannot be shaped ar-
bitrarily. They must reflect the functional character of spatio-temporal parti-
tions. That implies that the boundaries with respect to the z-axis are somewhat
“strictly monotonic”. A suitable metaphor illustrating this feature is a honey-
comb. The partition volumes correspond to the cells, and borders correspond to
the cell walls.

3.2 Visualization of Spatio-Temporal Partitions

The three-dimensional object view suggests an obvious method to visualize
spatio-temporal partitions, namely by three-dimensional pictures. In particu-
lar, 1t views spatio-temporal partitions from a global perspective since one can
completely see the whole evolution of a spatial partition. Nevertheless, it seems
that 3D pictures are too static and that they are only adequate for simple spatio-
temporal partitions with a small number of regions and little changes.

An alternative which can be especially used to grasp complex application
scenarios like weather reports are methods of virtual reality like cyber gloves
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which allow to migrate through space and time. Another technique is to record
snapshots in temporal order like on a film and to play the film. This is already
used, for example, in weather forecasting where the development of temperature
zones is displayed in a film. The disadvantage is that the user has no control of
how the film is played.

An improvement of the snapshot approach is to admit user interaction when
the film 1s displayed. A user interface could, for example, contain a time slider
which allows to exert influence on the time interval, on the speed, and on the
temporal direction of display and which gives an immediate feedback with re-
spect to space and time.

A more sophisticated strategy could take a layered approach. The idea is to
visualize two or more snapshots of the same scenario at different time points
in parallel. For that purpose, the representations of these snapshots have to be
slightly bent in the same way and to be positioned one on top of the other in
temporal order. The spatial distance between two subsequent snapshot layers
should visualize their temporal distance. This strategy allows to simultaneously
compare the development of a spatial partition at different times. Each snapshot
can be either controlled individually by its own time slider or altogether with the
others to maintain selected temporal distances between subsequent snapshots.

time /Y

3.3 Operations on Spatio-Temporal Partitions

In this section we focus on the transfer of the two basic spatial partition op-
erations intersection and relabel to the spatio-temporal case and additionally
introduce some new operations that are more directed to the time dimension.
All operations are discussed informally and illustrated with query examples. A
spatio-temporal refine poses problems, as we will see later, and is thus omitted.
Moreover, in [6] refine was mainly employed to define the window operation.

Overlay. Similar to the spatial case, temporal overlays are based on a spatio-
temporal intersection operation and turn out to be the most important opera-
tions on spatio-temporal partitions. They can be used to analyze the temporal
evolution of two (or more) different attribute categories.



For example, consider a temporal map indicating the extent of mineral re-
sources like oil fields or coal deposits and another temporal map showing the
country map over time. Then an overlay of both temporal maps can, for in-
stance, reveal the countries that had or still have the richest mineral resources,
it can show the grade of decline of mineral deposits in the different countries,
and 1t can expose the countries which most exploited their mineral resources.

Another application refers to social analysis and assumes temporal maps
about average income, about the countries of the world, and about ethnic groups.
If we overlay these three temporal maps (by two intersections), we can, for
instance, recognize which ethnic groups in which countries belong to the richest
or poorest social strata and whether the same ethnic groups have the same social
status in different countries.

A further example for overlay supports weather forecasting and gale warning.
Suppose that we are given three temporal maps, one about temperature distri-
butions, one about high/low pressure areas, and one about spatial and temporal
occurrences of storms and hurricanes. An overlay of these three temporal maps
gives information about the influence of temperature and air pressure on the
formation of hurricanes.

Clipping. An interesting special case of intersection is the clipping operation.
We transfer the 2D operation to the spatio-temporal case but admit not only
constant spatio-temporal unit partitions as “clipping volumes” but also general,
that is, time-varying, ones. An application is a temporal map about the devel-
opment of diseases. As a clipping window we use a temporal map of urban areas
developing in space over time. The task is to analyze whether there is a con-
nection between the increase or decrease of urban space and the development of
certain diseases. Hence, all areas of disease outside of urban regions are excluded
from consideration. The clipping works as a spatio-temporal filter. Another ex-
ample is a temporal map about animal species that predominantly populate
certain areas. As a clipping window we use a temporal map of forests and ask
for the development of animal species in growing and shrinking forests.

Reclassification. As an application of a spatio-temporal relabel operation we
take a temporal map marking all countries of the world with their population
numbers. This allows to pose a ranking of countries with regard to their pop-
ulation number for each time and especially over time. A query can now ask
for the proportion of each country’s population on the world population over
time, a task that can be performed by temporal relabeling. This corresponds to
a reclassification of attribute categories over time without changing geometry.

Fusion. Assume that a temporal map of districts with their land use is given.
The task is to identify regions with the same land use over time. At each time
neighboring districts with the same land use are replaced by a single region, that
is, their common boundary line is erased. We obtain a temporal fusion operator
which is based on relabeling.



Static and Dynamic Relabeling. In the two previous examples the relabeling
function did not change over time, that is, it was constant. We call this static
relabeling. But we can generalize even this and look at applications requiring
temporally changing relabeling functions. It can often be used if the semantics
of attribute classifications alters over time. An example of dynamic relabeling
is the classification of income to show poor and rich areas over time. Due to
the changing value of money, due to inflation, and due to social changes, the
understanding of wealthy and poorness varies over time. Hence, we need different
and appropriate relabeling functions that are applied to distinct time intervals.

Dynamic relabeling can also be used for temperature maps. Imagine we have
two relabeling functions, the first function mapping different temperature zones
to distinct warm colors (orange, red, yellow, etc.) and a second function mapping
temperatures less than five degrees to dark blue and the other temperatures to
light blue. A visualization of temperature maps could now use the first relabeling
(presentation) function for daytime and the second relabeling function for the
night.

Domain. The two operations intersection and relabel are motivated by spatial
aspects. In order to also emphasize temporal aspects, we add a few more opera-
tions addressing the time dimension. The operation dom determines the domain
of a temporal map, that is, all times where the map does not yield the completely
undefined partition. An example is a temporal map of earthquakes and volcanic
eruptions in the world as they are interesting for seismological investigations.
Applying the operation dom on this map returns the time periods of earthquake
and volcanic activity in the world.

Temporal restriction. The operation restrict realizes a function restriction
on spatio-temporal partitions and computes a new partition. As parameters it
obtains a temporal map and a set of (right half-open) time intervals describing
the time periods of interest. Imagine that we have a temporal map of birth
rates, and we are only interested in the birth rates between 1989 and 1991 and
between 1999 and 2001 (“millennium baby”). Then we can exclude all the other
time periods and compare the change of birth rates in these two time intervals.

Temporal selection. The operation select is also a very powerful operation. Tt
allows to scan spatio-temporal partitions over time and to check for each time
whether a specified predicate is fulfilled or not. Consider a map showing the
spread of fires. We could be interested in when and where the spread of fires
occupied an area larger than 300 km?. The operation select takes the temporal
map and an appropriate predicate as arguments and computes the resulting
temporal map (whose domain is, in general, reduced). Other applications are
when and in which districts the birth rates exceeded the death rates, or when
and in which countries socialist/conservative parties ruled.
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Temporal aggregation. The operation aggregate collects all labels of a point
over time and combines them with the aid of a binary function into one label.
The result is a two-dimensional spatial partition. If, for example, the population
numbers, the birth rates, the death rates, the population density, the average
income, etc. of the countries in the world are available, we can aggregate over
them and compute the maximum or minimum value each country ever had for
one of these attributes.

Temporal projection. A special kind of aggregation is realized by the project
operation which computes the projection of a spatio-temporal partition onto the
Euclidean space and which yields a spatial partition. For each point in space,
all labels, except for the undefined label denoting the outside, are collected over
time. That 1s, if a point has always had the same single label over its lifetime,
this single label will appear in the resulting partition and indicate a place that
has never changed. On the other hand, points of the resulting partition with a
collection of labels describe places where changes occurred.

Another application is the projection of a temporal map showing which coun-
tries were ruled by which parties. The result reveals those countries that were
always ruled by the same party and those countries that had to accept changes of
ruling parties. A further example is the projection of a temporal map illustrating
the water levels of lakes onto the Euclidean plane. The result shows those parts
of lakes that have always, sometimes, and never been covered with water.

4 A Formal Model of Spatial Partitions

In this section we briefly repeat some definitions of our model for two-dimensional
spatial partitions. First, we provide a precise definition for the type of two-
dimensional partitions in Section 4.1 since the snapshot of a spatio-temporal
partition at a certain point in time (that is, the application of a spatio-temporal
partition to a time point) yields a two-dimensional partition. After that we
define the operations on two-dimensional partitions in Section 4.2. These opera-
tions are used in Section 5.2 to define operations on spatio-temporal partitions.
Three-dimensional spatial partitions can be defined as a generalization of two-
dimensional ones; they provide a helpful model to understand spatio-temporal
partitions, and they can actually serve as a specification for an implementa-
tion of spatio-temporal partitions. Exhibiting the precise relationships between
spatio-temporal partitions and 3D partitions will be a topic of future research.
Before we start giving mathematical definitions for partitions, we shortly
summarize the employed notation. The application of a function f: A — B to
a set of values S C A is defined as f(S) := {f(z) | « € S} C B. If we are sure
that f(S) yields a singleton set, we write f'(S) to denote this single element
(instead of the singleton set), that is, f(S) = {y} = f'(S) = y. (F'(9) is
undefined if | f(S)| # 1.) Similarly, for doubly-nested singleton sets we use f* to
extract elements, that is, f(S) = {{y}} = f"(S) = y. The inverse function
f~t: B — 24 of f is defined by f~1(y) := {z € S | f(z) = y}. Note that,
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in general, f~' is a partial function and that f~' applied to a set yields a set
of sets. The range of a function f : A — B is defined as rng(f) = f(A). We
also introduce a notation for power sets containing sets of constrained size: for
> € {> > =} and k € N we define S** := {s € S| |s|>k}.

Let (X,T) be a topological space with topology 7' C 2%, and let S C X.!
The interior of S is defined as the union of all open sets that are contained in
S and is denoted by Int .S, and the closure of S is defined as the intersection
of all closed sets that contain S and is denoted by S. The ezxterior of S is
given by Ext S := Int(X — S), and the boundary (or frontier) of S is defined as
FrS:=SNX —S. An open set is called regular if A = Int A. Regular open sets
are closed under intersection. A topological space we need in this paper is IR%.

A partition of a set S can be viewed as a total function f: S — I into an
index set 7. f induces an equivalence relationship =; on S that is defined by
=5y <= f(z) = f(y). The equivalence classes S/=; are called blocks. The
block S; that corresponds to an index i is given by S; := f~!(i), and the whole
partition {S; | i € I} (= S/=¢) is also given by f~'(I) if f is surjective.

4.1 Two-Dimensional Spatial Partitions

A spatial partition is not just defined as a function f : IR? — I for two reasons:
first, in most applications f cannot be assumed to be total, and second, f cannot
be uniquely defined on borders between adjacent subsets of IR?. Moreover, it is
desirable from an application point of view to require blocks (modeling regions
of a common label) to be regular open sets [19].

Therefore, we have defined spatial partitions in several steps [6]: first, a spatial
mapping of type A is a total function 7 : IR? — 24. We require the existence of
an undefined element 1 4 € A, which is used to represent undefined labels, that
is, the “exterior” or “outside” of a partition is the block b C IR? with 7' (p)=1La
for all p € b. The power set range type is used to model labels on region borders:
a region of 7 is a block that is mapped to a singleton set whereas a border of
m is a block that is mapped to a subset of A containing two or more elements.
Then the wnterior of m is defined as the union of 7n’s regions, and the boundary
of 7 is defined as the union of n’s borders.

Definition 1. Let 7 be a spatial mapping of type A.

(i) p(m) := 7= Y(rng(m)=1) (regions)
(i) w(m) == 7= (rng(m)>1) (borders)
(iii) o(m) = UrEp(W) r (interior)
(iv) B(m) == UbEw(ﬂ') b (boundary)

Finally, a spatial partition of type A is a spatial mapping of type A whose regions
are regular open sets and whose borders are labeled with the union of labels of
all adjacent regions:

! Recall that in a topological space the following three axioms hold [3]: (i) U,V €
T = UnVel (ii))SCT = UpyeslVU €7, and (iii) z € T, @ € T'. The
elements of T" are called open sets, their complements in X are called closed sets,
and the elements of X are called points.
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Definition 2. A spatial partition of type A is a spatial mapping 7 of type A
with:
() Vrep(m) :r=1Int7
(i) Vb € w(m) : 7' (b) = {7"(r) | r € p(m) N b C 7}
The type of all partitions of type A is denoted by [A].

The reader might wonder why in the above definition (and in some of the fol-
lowing) we have used 7'(h) on the left hand side and 7" (r) on the right hand
side in (ii). This is explained in the following remark to which we will refer quite
a few times later:

Remark 1

Consider a block of a partition m, for example, a region r or a border b.
For each point p that is contained in r or in b, w(p) yields as a label a set of
values. For p € r, this is a singleton set, say {a; }, and for p € b, this is a set
{ai,as, ...} of two or more elements. Now when we apply 7 to the whole
set 7 (or b), we obtain the set of all labels for all points. By definition these
are all equal, so the results of 7(r) and 7(b) are {{a1}} and {{a1, as,...}},
respectively. Thus, if we want to denote the common label of all points of
a block, this is given by 7'(r) = {a;} or 7'(b) = {ai, as, ...}, respectively.
Likewise, 7' (r) = ay.

Hence, 7'(b) denotes the common label, a set {a1, as, ...}, of border block b, and
7" (r) gives the label a; of each touching region.

In the following we will sometimes need the notion of a constant partition
which is a partition that yields one and the same label for all points:

7 = Ap:IR%.z

As a special case, the undefined partition of type A is given by m,,. Note
that the lambda-notation Az:S.e(z) is just a shorthand for the set expression
{(z,e(z)) | « € S} (which actually represents a function).

4.2 Operations on 2D-Partitions

We have defined three basic operations on spatial partitions: intersection, relabel,
and refine. The intersection of two partitions m; and w3 of types A and B,
respectively, is again a spatial partition (of type A x B) where each interior
point p is mapped to the pair of values ('} (p), 75(p)), and all border points are
mapped to the set of labels of all adjacent regions (as required by the second
part of the definition of partition). Formally, we can define the intersection of two
partitions m : [A] and w5 : [B] in several steps: first, we compute the regions of
the resulting partition. This can be done by simple set intersection since regions
are, by definition, regular open sets and since N is closed on regular open sets:

pa(mi,m) = {rnr’ | rep(m)Ar €p(m)}
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Second, the union of all these regions gives the interior of the resulting partition:

tn(m, me) 1= U r

r€pn(mi,m2)

Now the spatial mapping restricted to the interior can be just obtained by map-
ping each interior point p € I := 1q (71, m2) to the pair of labels given by 71 and
g, respectively:

p = Ap L {(my(p), my(p))}

Third, the boundary labels can be derived from the labels of all adjacent regions.
Let R := pa(mi, ™), I := ta(m,m), and F := R? — I. Then we have:

intersection : [A] x [B] = [A x B]
intersection(my, ma) = mr UAp: F{n}(r) | r € RAp €T}

To understand the use of 7" in the above definition, recall Remark 1: since we
have to place pairs of labels in the result set and since 7(r) = {{(a1,a2)}}, we
obtain (a1, as) by application of 7.

The fact that intersection indeed yields a spatial partition is captured by the
following lemma:

Lemma 1. If m : [A] and 72 : [B], then intersection(m, ma) : [A X B]. O

The proof can be found in [6].

Relabeling a partition « of type A by a function f : A — B is defined as
f o m, that is, in the resulting partition of type B each point p, interior as well
as boundary, is mapped to f(7(p)):

relabel : [A] x (A = B) — [B]
relabel(m, f) := Ap:IR*. f(7(p))

The fact that relabel is well-defined and always yields a spatial partition can be
proved in several steps culminating in

Lemma 2. If 7 :[A] and f: A — B, then relabel(r, f) : [B]. O

Again, the proof is given in [6].

Finally, the refinement of a partition means the identification of connected
components. This is achieved by attaching consecutive numbers to the compo-
nents. We omit the formal definition here (see [6] for details) since we are not
going to define spatio-temporal refinement anyhow.

5 Spatio-Temporal Partitions

In the following we have to work with different kinds of partitions. We therefore
add the subscripts 2D and ST to disambiguate notations. For example, m,,
denotes a two-dimensional partition, and [A].,. denotes the set of all spatio-
temporal partitions of type A. When no subscript is given, we assume by default
spatio-temporal partitions, that is, 7 is a shorthand for 7.
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5.1 The Type of Spatio-Temporal Partitions

In order to define temporally changing partitions we need a type for time. Since
we are dealing with continuously changing information, we use time = IR as a
model of time.

Next we define a spatio-temporal partition as a function of two-dimensional
spatial partitions over time. A spatio-temporal mapping of type A is a total func-
tion 7., : time — [A],,. Spatio-temporal mappings are too general to be used
as a partition model since they can have an undesired structure: consider, for
example, two different two-dimensional partitions 7, and 7/  and the following
spatio-temporal mapping:

b otherwise
2D

Tsr (t) = {TrzD if ¢ is rational

Here m, describes a completely discontinuous, rather pathological, change of
partitions; we would like to rule out such spatio-temporal mappings as spatio-
temporal partitions.

What we require is a kind of (semi-)continuity of spatio-temporal mappings.
More precisely, we regard only upper semicontinuous spatial mappings as spatio-
temporal partitions. To formally define continuity we employ a difference mea-
sure for 2D spatial partitions. A measure of “nearness” or “equality” is given by
the size of the total area that is labeled equally in both partitions (that is, the cor-
responding set of points). We can now define an operator ¢ : [4],, x [4],, = IR
that computes the size of the regions that are labeled differently.

§(m,7') = / dz dy
{peR2|n(p)#n’(p)}
Using § we can define the notion of upper semicontinuity of a spatial mapping.

Definition 3. Let 7 be a spatio-temporal mapping and t € time. 7 is upper
semicontinuous at t if lim._q §(mw(¢), m(t + €)) = 0. Moreover, 7 is upper semi-
continuous (everywhere) if it is upper semicontinuous at each ¢ € time.

Now we accept as spatio-temporal partitions only upper semicontinuous spatio-
temporal mappings.

Definition 4. A spatio-temporal partition of type A is an upper semicontinuous
spatio-temporal mapping of type A.

The type of spatio-temporal partitions with labels of type A is denoted by [A]..

5.2 Basic Operations on Spatio-Temporal Partitions

Next we define the two partition operations intersection and relabel. We omit a
definition of spatio-temporal refine, since it leads to a somewhat unpleasant be-
havior of the numbering of blocks. For example, a spatial partition 7, = 7. (%)
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obtained by a refined spatio-temporal partition 7., contains, in general, non-
consecutive numberings of labels. Moreover, we need refine mainly for com-
pleteness reasons (that is, to be able to define the application-specific operation
“window” | see [6]). Instead, we are considering some operations that take the
time dimension more explicitly into account, namely, operations for temporal
selection and for temporal projection/aggregation.

Since spatio-temporal partitions are defined as temporal functions of 2D par-
titions, we can simply reduce the definitions to the two-dimensional case. For
example, for intersection we obtain:

intersectiong,, : [Alop X [Bley = [A X Blgy
intersection,,, (m, ') := M :time.intersection,, (w(t), 7' (t))

We have to prove that this definition indeed yields a spatio-temporal partition
as a result.

Lemma 3. If m :[A],, and 7' : [B],,, then intersectiong, (7, ') : [A x Blop.

Proof. Let mr = intersection,, (7, ©'). First, it is obvious from the definition that
71 is a spatio-temporal mapping (of type A x B). It remains to be shown that =y
is upper semicontinuous, which means to show that lim._,q d(7r(t), 77 (t+¢€)) = 0.
We call the points that are labeled differently by 71 () and 7w (t+¢) the difference
region for 7 (on the interval [t,7 + €¢]). We next show that a difference region
for 7y is always covered by the difference regions for 7 and for #'.

Consider an arbitrary point p € IR?, a time value ¢ € time, and an € > 0. By
definition of d, p is in the difference region for w7 if 77 (¢)(p) # 7r(t + €)(p). By
the definition of intersection,, we know my(t) = intersection,, (7 (t), 7' (t)), and
thus we have:

mr(t)(p) # mr(t+e)(p) =
intersection,,, (w(t), 7' (t))(p) # intersection,, (7(t + ¢€), 7' (t + €))(p)

Now the definition of intersection,,, depends on whether p is an interior or a
boundary point. We can ignore boundary points, since they do not contribute
to the value of the integral in d. (This is because the area (2D) integral of lines
(1D) is always 0.) Since p can be an interior point of 7r(¢) only if it is an interior
point of both m(¢) and 7’(¢), we need to consider the definition of intersection,
only for interior points. Therefore, we can substitute the definition for interior
points into the above condition:

m(t)(p) # it +€)(p) = (7(t)(p), 7' ()(p) # (7(t + €)(p), 7'(t + €)(p))

Next we observe that the inequality on the right hand side holds if either of the
pairs’ components are not equal, that 1s,

m(t)(p) Z 7t +€)(p) < w(t)(p) £ 7t +e)(p) V' (t)(p) # ='(t + €)(p)

Now this is nothing but the condition that p is either contained in the difference
region for 7 or for 7.
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We can conclude that if the difference region for 7y is covered by the difference
regions for m and for 7/, the value of lim._q §(77(¢), 71 (¢ + €)) is bounded by

lim é(m(t), n(t + €)) + 251(1) §(m'(t), 7' (t +¢€))

e—=0

Since both terms are 0, we also know that lim._,q d(77(t), 7r(t + €)) = 0. |

Next we define the relabeling operation. A first attempt is to simply “lift” the
two-dimensional function as follows.

relabel,, : [Alsy x (A —= B) = [Bloy
relabel,. (7, f) := A:time.relabel, (7(t), f))

Note that the relabeling function f must be total. We can generalize this defini-
tion considerably by allowing a temporally changing relabeling function. Thus,
we could try the slightly changed definition shown below:?

relabel,,. : [A].p X (time > A = B) = [Bl.,
relabel,, (7, f) := At:time.relabel,, (7(t), (1))

Unfortunately, with this definition, we can construct spatio-temporal mappings
that are not spatio-temporal partitions. As a simple example consider the “uni-
versal partition” m, (= )\t:tz'me.)\p:IR2.11) that maps every point at every time to
a € A:={a,b, Ls}. We relabel 7, with the function f : time -+ A — A that is
defined by:

b ift=tg
a otherwise

s = {
so that relabel(m,, f) yields a spatio-temporal mapping 7° which is defined by:

b ift=tg
a otherwise

=) = {

Now it is obvious that #° is not upper semicontinuous at tg and is thus not
a spatio-temporal partition. Therefore, the above definition for relabel is too
general.

Fortunately, by adding a simple condition we can ensure that relabel again
yields spatio-temporal partitions: we require f to be what we call upper semi-
constant, that is, we demand V¢ € time: 3e > 0: Y0 < d < e: f(t +9) = f(¢).
This means that after each change, f must be constant for some short period
of time. (This rules out dynamic changes of relabeling function that would, in
principle, also be possible. However, to define the more general version we need
a quite complex topological continuity definition for function spaces requiring
A and B to be topological spaces, too, which is not needed otherwise. In sum-
mary, it seems that there are not very many highly important applications for
the general case so that the complex definition does not seem to be justified.)

2 Note that the function type constructor associates to the right, that is, X — Y —
Z=X-=>Y = 7).
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5.3 More Operations on Spatio-Temporal Partitions

Beyond the “classical” partition operations there are some more operations that
address the time dimension more explicitly. First of all, we can determine the
domain of a spatio-temporal partition m which is defined as the set of all times
t when m(t) does not yield the undefined 2D partition.

dom ., : [A]g, — 20me
doms ( ) = {t € tzme| T( ) _f/_ﬂ-J-A}

Related to dom 1s the operation restrict that restricts the domain of a spatio-
temporal partition to a subset of time. For the same reasons as for relabel we
cannot allow arbitrary subsets of tizme. Instead we require the set be given by
right half-open intervals. For a totally ordered set S, right half-open intervals
are defined as:

[s,t[;:={zeS|s<z<t}

The set of all these intervals is then defined by [S] := {[s,#[| s, € S}. In practice
we need sets of intervals that do not overlap (to describe subsets of time):

(Sy={re2l|vI,jeT: InJ+0 = I=J}

The set of values contained in an interval set S is denoted by US := [J,cs 5.
Now we can define the restrict operation precisely.

sr X (time) — [A]
T) = Mtime. {w(t) ift e uT

w1, otherwise

restrict : [A] o

restrict(m,

To prove that restrict indeed yields spatio-temporal partitions as results we
exploit the fact that restrict can also be defined via relabel: let “id” denote the
identity function, that is, id(z) = . We have:

Lemma 4.
ey _Jid ift € UT
Let T : (time) and fr := AziA. L, otherwise Then
restrict(mw, T') = relabel(r, fr) |

Since fr is upper semiconstant by its definition, we obtain as a corollary of
Lemma 4:

Corollary 1. If m: [A]l,, and T : (time), then restrict(m,T) : [A]sy- O

The notion of restriction of spatio-temporal partitions can be also viewed from a
different perspective: we can restrict a partition to those times at which a pred-
icate on the corresponding spatial partition is true. This is a kind of “temporal
selection” which could be formally defined by:
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select : [A] [Al,p, — B) — [Alsr
t:time. { m(t) if P(r())

71, otherwise

r % (
select(m, P) := A

Unfortunately, without any restriction on the kind of partition predicates used as
arguments this definition does not, in general, yield spatio-temporal partitions as
a result. As an example consider a spatio-temporal partition 7 that describes a
constantly shrinking square labeled by a (this can be well imagined as a pyramid)
and a predicate P that asks for the size of the region labeled a to be exactly z.
Assuming that the square is initially greater and at the end smaller than z, an
expression select(w, P) yields a spatial mapping (much like the one described for
relabel) that gives only at one time ¢ a spatial partition other than 7 , (namely
a square of size z). Thus, select(m, P) is not upper semicontinuous at ¢ and is
therefore not a spatio-temporal partition.

How can we correct the definition? It seems to be extremely difficult to
characterize the class of predicates that guarantee the above definition to deliver
proper spatio-temporal partitions. Fortunately, we can take a different route:
first, we determine the set of time intervals on which P is true. This is done by
finding the set of time points at which P holds and then regularizing this set by
restricting it to half-open intervals. The time set regularization is performed by
the function reg (note that VI, J € (time) : I > J <= UI D UJ):

reg : 21 — (time)
reg(T) .= max{] € (time) |UI C T}

Then we can define select simply via restrict on this regular interval set.

select : [A]y % ([ALp — B) = [A].,
select(m, P) := restrict(w, reg({t € time | P(7(t))}))

With this definition we again get the proof that select computes spatio-temporal
partitions for free.

Corollary 2. If n: [A]l,, and P :[A],, = B, then select(w, P) : [A]s,- O

Finally, we consider how to form aggregations of partitions over time. From a
different point of view, a partition 7 : [A]., can be also regarded as a function
¢ : IR? - time — A, that is, ¢ gives for each point p € IR? a time-dependent
label function &,.* Aggregation now means to combine all the values delivered
by &, into a single label of type, say B, so that aggregation of a spatio-temporal
partition yields a two-dimensional partition of type B.

We shall not give here a completely generic definition since infinite aggre-
gations (over an infinite set of time points) lead to a quite complex definition
because of several requirements on the label type. Therefore, we instead restrict
to aggregating functions f of type A x A — A that are commutative. Com-
mutativity allows to process the labels in any order. Therefore, we can simply

® Formally, ¢ = Ap:IR? At:time.w(t)(p).
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collect the set of all labels at a point p and aggregate them by f. For this we
use the notation agg(f, S) to denote the aggregation of a finite, non-empty set
by a binary function:

agg(f,{a}) =a
agg(f,({a} U S)) = f(a, agg(f,5))

Now we can define aggregation as follows:

aggregate : [Alep x (A X A = A) = [A]
aggregate(r, f) := ApIR*.agg(f, Use {r(t)(p) | tetime}S)

2D

Functions that can be used to get interesting aggregations are, for example,
max or min. As a special case of aggregation (that actually omits aggregation
altogether) we define the function project that simply collects all (defined) values
for a point:

project : [A] ., — [24],,
project(r) := A\p:IRE{x(t)(p) | t € time} — { L4}

This function exhibits very nicely a correspondence between spatio-temporal
partitions and vagueness: assume we consider the growing/shrinking of lakes,
forests, etc. over a certain period of time given by a corresponding partition
Tep. By computing project(w,,) we obtain a two-dimensional spatial partition
in which regions labeled with singleton sets like {{a}} give regions that have not
changed during the considered time interval, whereas labels {{a}, {b}, {a,b}}
indicate regions that do have changed (from {a} to {b}). In the terminology of
[7] the former regions correspond to the kernel and the latter to the boundary
of a vague region.

6 Conclusions

We have investigated dynamically changing maps; in particular, we have iden-
tified and generalized operations that are of practical interest. Moreover, by
formally defining spatio-temporal partitions as a generalization of spatial parti-
tions we have provided a theoretical foundation for temporally changing maps
and their operations. Thus, spatio-temporal partitions can serve as a formal
backbone to dynamic maps as does the model of spatial partitions for static
maps.
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