Pattern Guards and Transformational Patterns

Martin Erwig
Oregon State University
erwig@cs.orst.edu

Simon Peyton Jones
Microsoft Research Ltd, Cambridge
simonpj@microsoft.com

Abstract

We propose three extensions to patterns and pattern matching in Haskell. The first, pattern guards, allows the guards of a guarded equation to match patterns and bind variables, as well as to test boolean conditions. For this we introduce a natural generalisation of guard expressions to guard qualifiers.

A frequently-occurring special case is that a function should be applied to a matched value, and the result of this is to be matched against another pattern. For this we introduce a syntactic abbreviation, transformational patterns, that is particularly useful when dealing with views.

These proposals can be implemented with very modest syntactic and implementation cost. They are upward compatible with Haskell; all existing programs will continue to work.

We also offer a third, much more speculative proposal, which provides the transformational-pattern construct with additional power to explicitly catch pattern match failure.

We demonstrate the usefulness of the proposed extension by several examples, in particular, we compare our proposal with views, and we also discuss the use of the new patterns in combination with equational reasoning.

1 Introduction

Pattern matching is a well-appreciated feature of languages like ML or Haskell; it greatly simplifies the task of inspecting values of structured data types and facilitates succinct function definitions that are easy to understand. In its basic form, pattern matching tries to identify a certain structure of a value to be processed by a function. This structure is specified by a pattern, and if it can be recovered in a value, corresponding parts of the value are usually bound to variables. These bindings are exploited on the right-hand side of the definition. There are numerous proposals for extending the capabilities of patterns and pattern matching; in particular, the problems with pattern matching on abstract data types have stimulated a lot of research [19, 16, 3, 12, 4, 6, 11]. Other aspects have also been subject to extensions and generalisations of pattern matching [8, 1, 9, 7, 17].

All these approaches differ in what they can be used for, in their syntax, and in their properties, which makes it almost impossible to use two or more different approaches at the same time. Moreover, among all these different approaches there is no clear winner, although so-called views seem to be the most prominent and favourite extension.

Therefore, a consolidation of pattern matching at a more fundamental level deserves attention. An extension should be simple enough so that its use is not prohibited by a complex syntax, and it should be powerful enough to express most of the existing approaches.

In this paper we present a proposal for an elementary extension of patterns and pattern matching that naturally extends Haskell's current pattern matching capabilities. The design is influenced by the following goals:

- *Conservative Extension.* Programs that do not use the new feature should not need to be changed and should have unchanged semantics.

- *Simplicity.* We shall not introduce (yet another) more or less complex sub-language for specifying new kinds of patterns, for introducing pattern definitions, and so on. Instead, a minor extension to the syntax with a simple semantics should be aimed at.

- *Expressiveness.* It should be possible to express pattern matching on abstract data types. In particular, views [19, 3, 4, 11], and two kinds of active patterns [12, 6] should be covered.

- *Efficient and Simple Implementation.* The use of the new patterns should not be penalised by longer running times. Moreover, only minimal changes to an existing language should be needed. This facilitates the easy integration of the new concept into existing language implementations and supports a broad evaluation of the concept.

The remainder of this paper is structured as follows: we motivate the need for more powerful pattern matching in Section 2 and present our proposal in Sections 3 and 4. Syntax and semantics are defined in Section 5, and the implementation is discussed in Section 6. A detailed comparison with views is performed in Section 7. In Section 8 we then discuss the use of the new patterns with equational reasoning. A further extension of the expressiveness of our proposal is described in Section 9. Related work is discussed in Section 10, and finally, conclusions are given in Section 11.
2 The need for more powerful pattern matching

In the current version of Haskell pattern matching is not just a straight, one-step process because guards can be used to constrain further the selection of function equations. However, no (additional) bindings can be produced in this second step. This is a somewhat non-orthogonal design, and the extension we propose essentially generalises this aspect.

Consider the following Haskell function definition.

```haskell
filter p [] = []
filter p (y:ys) | p y = y : filter p ys
| otherwise = filter p ys
```

The decision of which right-hand side to choose is made in

In these two stages, only the pattern-matching stage can bind variables, but only the guards can call functions. It is well known that this design gives rise to a direct conflict between pattern-matching and abstraction, as we now discuss.

2.1 Abstract data types

Consider an abstract data type of sequences, which offers O(1) access to both ends of the sequence (see, for example, [10]).

```haskell
nil :: Seq a
lcons :: a -> Seq a -> Seq a
lview :: Seq a -> Maybe (a,Seq a)
rcons :: Seq a -> a -> Seq a
rview :: Seq a -> Maybe (Seq a,a)
```

Since sequences are realised as an abstract data type, their representation is not known, and this prohibits the use of pattern matching. The functions lview and rview provide two views of the sequence, one as a left-oriented list and the other as a right-oriented list, and thus reveal to some degree a representation of sequences (that can be different, though, from their actual implementation). This means that pattern matching against this representation is now principally possible. However, it generally leads to less clearer definitions.

For example, a function to filter such a sequence would have to use a case expression to scrutinise the result of, say, lview.

```haskell
filtSeq :: (a->Bool) -> Seq a -> Seq a
filtSeq p xs = case (lview xs) of
  Nothing -> nil
  Just (y,ys) | p y -> lcons y (filtSeq p ys)
  | otherwise -> filtSeq p ys
```

This is much less satisfactory than the list version of filter, which used pattern-matching directly. Actually, it is possible to write filtSeq in a more equational way:

```haskell
filtSeq :: (a->Bool) -> Seq a -> Seq a
filtSeq p xs |
  isJust lv & p y = lcons y (filtSeq p ys)
  isJust lv = filtSeq p ys
  otherwise = nil
where
  lv = lview xs
  Just (y,ys) = lv
```

The auxiliary function isJust is taken from the standard library Maybe:

```haskell
isJust :: Maybe a -> Bool
isJust (Just x) = True
isJust Nothing = False
```

The idea here is that the guard isJust lv checks that the lview returns a Just value, while the (lazily matched) pattern Just (y,ys) is only matched if y or ys is demanded. So now filtSeq is more "equational", but it is hardly clearer than before. A well-known approach to reconcile pattern matching and abstract data types is the views proposal; we will consider views in detail in Section 7.

2.2 Matching that involves several arguments

As another example, suppose we have an abstract data type of finite maps, with a lookup operation:

```haskell
lookup :: FiniteMap -> Int -> Maybe Int
```

The lookup returns Nothing if the supplied key is not in the domain of the mapping, and (Just v) otherwise, where v is the value that the key maps to. Now consider the following definition:

```haskell
clunky env var1 var2 | ok1 & ok2 = val1 + val2
  | otherwise = var1 + var2
where
  m1 = lookup env var1
  m2 = lookup env var2
  ok1 = isJust m1
  ok2 = isJust m2
  Just val1 = m1
  Just val2 = m2
```

This is certainly legal Haskell, but it is a tremendously verbose and un-obvious way to achieve the desired effect. Is it any better using case expressions?

This much as with filtSeq, the guard ok1 & ok2 checks that both lookups succeed, using isJust to convert the maybe types to booleans. The (lazily matched) Just patterns extract the values from the results of the lookups, and bind the returned values to val1 and val2, respectively. If either lookup fails, then clunky takes the otherwise case and returns the sum of its arguments.

```haskell
```

This is certainly legal Haskell, but it is a tremendously verbose and un-obvious way to achieve the desired effect. Is it any better using case expressions?
clunky env var1 var1 =
case lookup env var1 of
 Nothing -> fail
 Just val1 ->
 case lookup env var2 of
 Nothing -> fail
 Just val2 -> val1 + val2
where
 fail = var1 + var2

This is a bit shorter, but harder better. Worse, if this was
just one equation of clunky, with others that follow, then
the thing would not work at all. That is, suppose we have

clunky' env (var1:var2:vars) | ok1 && ok2
 where
 m1 = lookup env var1
 m2 = lookup env var2
 help (Just v1) (Just v2) vars = v1 + v2
 help _ _ [var1] = ... some stuff
 help _ _ [] = ... more stuff

Now, if either of the lookups fail, we want to fail through to
the second and third equations for clunky'. If we write the
definition in the form of a case expression, we are forced to
make the latter two equations for clunky' into a separate
definition and call it in the right-hand side of fail. This
is precisely why Haskell provides guards at all, rather than
relaying on if-then-else expressions: if the guard fails, we
fail through to the next equation, whereas we cannot do that
with a conditional.

What is frustrating about this is that the solution is so tan-
tailisingly near at hand! What we want to do is to pattern-
match on the result of the lookup. We can do it like this:

clunky' env vars0(var1:var2:..) = help (lookup env var1) (lookup env var2) vars
where
 help (Just v1) (Just v2) vars = v1 + v2
 help _ _ [var1] = ... some stuff
 help _ _ [] = ... more stuff

Now we do get three equations, one for each right-hand side,
but it is still clunky. In a big set of equations it becomes
hard to remember what each Just pattern corresponds to.
Worse, we cannot use one lookup in the next. For example,
suppose our function was like this:

clunky'' env var1 var2 | ok1 && ok2 = val2
 otherwise = var1 + var2
where
 m1 = lookup env var1
 m2 = lookup env (var2 + val1)
 ok1 = isJust m1
 ok2 = isJust m2
 Just val1 = m1
 Just val2 = m2

Notice that the second lookup uses val1, the result of the
first lookup. To express this with a help function requires
a second helper function nested inside the first. Dire stuff.

2.3 Summary

In this section we shown that Haskell’s pattern-matching
capabilities are unsatisfactory in certain situations. The first
equation relates to the well-known tension between pattern-
matching and abstraction. The clunky example, however,
was a little different — there, the matching involved two
arguments (env and var1), and did not arise directly from
data abstraction.

There is no fundamental issue of expressiveness: we can
rewrite any set of pattern-matching, guarded equations as
case expressions. Indeed, that is precisely what the compiler
does when compiling equations! So should we worry at all?
Yes, we should. The reason that Haskell provides guarded
equations is because they allow us to write down the cases
we want to consider, one at a time, mostly independently
of each other — the “equational style”. This structure is
hidden in the case version. In the case of clunky, two of the
right-hand sides are really the same (fail).

Furthermore, nested case expressions scale badly: the whole
expression tends to become more and more indented. In
contrast, the equational (albeit verbose) definition, using
isJust have the merit that they scale nicely to accommo-
date multiple equations. So we seek a way to accommodate
the equational style despite a degree of abstraction.

3 A proposal: pattern guards

Our initial proposal is simple:

Instead of being a boolean expression, a guard is a
list of qualifiers, exactly as in a list comprehension.

That is, the only syntax change is to replace exp by quals in
the syntax of guarded equations.

Here is how we would write clunky:

clunky env var1 var1
 | Just val1 <- lookup env var1
 | Just val2 <- lookup env var2
 | val1 = val2
 ... other equations for clunky

The semantics should be clear enough. The qualifiers are
matched in order. For a <- qualifier, which we call a pattern
guard, the right-hand side is evaluated and matched against
the pattern on the left. If the match fails, then the whole
guard fails, and the next equation is tried. If it succeeds,
then the appropriate binding(s) are made, and the next qual-
erifier is matched, in the augmented environment. Unlike list
comprehension, however, the type of the expression to the
right of the <- is the same as the type of the pattern to its
left. The bindings introduced by pattern guards scope over
all the remaining guard qualifiers, and over the right-hand
side of the equation. If there is a where clause, then its
bindings scope over all the guards, just as in Haskell at
present.

Just as with list comprehensions, boolean expressions can
be freely mixed with the pattern guards. For example:
f x | [y] < x
 , y > 3
 , Just z <- h y
 = ...

Haskell’s current guards therefore emerge as a special case, in which the qualifier list has just one element, a boolean expression.

Just as with list comprehensions, a let qualiﬁer can introduce a binding. It is also possible to do this with pattern guards with a simple variable pattern a <- exp. However a let qualiﬁer is a little more powerful, because it can introduce a recursive or mutually-recursive binding. It is not clear whether this power is particularly useful, but it seems more uniform to have exactly the same syntax as list comprehensions.

One could argue that the notation <- is misleading, suggesting the idea of drawn from as in a list comprehension. But it is very nice to reuse precisely the list-comprehension syntax. Furthermore, the only viable alternative is =, and that would lead to parsing diﬃculties, because we rely on the = to herald the arrival of the right-hand side of the equation. Consider f x | y = h x = 3.

Using pattern guards for filters exposes a small deﬁciency:

```
filter :: (a->Bool) -> [a] -> [a]
filter p xs
   | Just (y,ys) <- lview xs, p y = lcons y (filter p ys)
   | Just (y,ys) <- lview xs   = filter p ys
   | otherwise = nil
```

There is the annoying repeated call to lview xs (which can be shared by putting it in a where clause), plus the annoying repeated pattern match (which cannot). Maybe one would like some kind of nested guards, thus:

```
filter :: (a->Bool) -> [a] -> [a]
filter p xs
   | Just (y,ys) <- lview xs
       | p y       = lcons y (filter p ys)
       | otherwise = filter p ys
   | otherwise = nil
```

Such an extension would make perfect sense, and would not be hard to implement, but its power-to-weight ratio is signiﬁcantly lower than for our main proposal: it is less often useful (less power), and requires more new syntax (greater weight).

It is also possible to write filters using an auxiliary function filters' :

```
filter :: (a->Bool) -> [a] -> [a]
filter p = filters' p . lview

filters' :: (a->Bool) -> Maybe (a,[a]) -> [a]
filters' p Nothing              = nil
filters' p (Just (y,ys)) =
   if p y then lcons y (filters p ys)
   else filters p ys
```

However, this introduces an indirection into the deﬁnition and the “solution” that is offered by this approach to the problem of pattern matching with abstract data types is simply to avoid it.

4 A further proposal: transformational patterns

Pattern guards allow the programmer to call an arbitrary function and pattern-match on the result. In the important special case addressed by views, these calls take a very stylised form, and this motivates us to propose some special syntax, transformational patterns, in support.

Here is how we might write filters using a transformational pattern:

```
filters :: (a->Bool) -> Seq a -> Seq a
filters p (Just (y,ys))!lview
    | p y = lcons y (filters p ys)
    | otherwise = filters p ys
filters p Nothing!lview = nil
```

The transformational pattern (Just (y,ys))!lview means informally “apply lview and match against Just (y,ys)”. The expression to the right of the "!" is called pattern action. Transformational patterns are simply syntactic sugar for an equivalent form using pattern guards, but they are notationally a little more concise. Furthermore, they are quite like views: “match Just (y,ys) against the lview view of the argument”.

Since the function in a transformational pattern can refer to any variables that are in scope in, or bound by, the where clause, we can write clunky as:

```
clunky env (Just val1)!lookup env
     (Just val2)!lookup env = val1 + val2
... other equations for clunky
```

This gives transformational patterns just a little more power than views, at the cost of a somewhat ad hoc flavour. To summarise, transformational patterns help to keep function equations single-lined, which greatly enhances readability and understanding of function declarations containing several equations. Moreover, transformational patterns are particularly useful when simulating views, see Section 7, and with equational reasoning, see Section 8.

5 Syntax and semantics

Based on the Haskell 98 Report [14], we need two small changes to the syntax to integrate pattern guards and transformational patterns: first, a guard is not just any more given by an expression but by a list of qualiﬁers, and an atomic pattern can be a pattern extended by an expression:

```
val    -> | qual1, ..., qualn, Pattern Guard
pat    -> ...
   | pat | exp              Transformational Pattern
```

However, this introduces an indirection into the definition and the “solution” that is offered by this approach to the problem of pattern matching with abstract data types is simply to avoid it.
We define the semantics of pattern guards and transformational patterns by a series of equations that relate them to "ordinary" case expressions of Haskell.

We start with the reduction of pattern guards to nested case expressions. For this, we first unfold multiple guards in matches to nested case expressions. This is done to keep the further translation manageable because guards themselves can be lists of qualifiers. Hence, we replace rule (c) by

(c') case v of { p | g1 -> e1 ... | gn -> en } where { decls };
 _ -> e'

= case e' of { y ->
 case v of { p ->
 let decls in
 case () of { }
 | g1 -> e1;
 _ -> ... case () of { }
 | gn -> en;
 _ -> y }
 _ -> y }

where y is a completely new variable

The construction case () of () -> ... indicates that these case expressions do not pattern matching, but are just used to look at the guards.

Next we expand a list of qualifiers of each guard into a nested case expression.

(s) case () of { q1, ..., qn -> e; _ -> e' }

= case e' of { y ->
 case () of {
 () | q1 -> ... case () of { }
 | qn -> e;
 _ -> y };
 _ -> y }

where y is a completely new variable

The next three equations explain how qualifiers are resolved:
(t) boolean guards are transformed into conditionals, (u) a local declaration can be just moved into the body, and (v) generators are again transformed into case expressions where the generating expression is scrutinised and matched against the binding pattern.

(t) case () of { () | co -> e; _ -> e' }

= if co then e else e'

(u) case () of { () | let decls -> e; _ -> e' }

= let decls in e

(v) case () of { () | (p0 <- co) -> e; _ -> e' }

= case co of { p0 -> e; _ -> e' }

It remains to reduce transformational patterns to pattern guards. This is done by the following equation:

(w) case v of { p|f -> e; _ -> e' }

= case v of { x | (p <- f x) -> e; _ -> e' }

where x is a completely new variable

6 Implementation

The standard technology used by compilers for generating efficient matching trees from sets of equations can be adapted straightforwardly to accommodate pattern guards and transformational patterns. Currently, pattern guards are fully implemented in GHC, and transformational patterns are not yet implemented.

The efficiency issue is a little more pressing than with pure pattern matching, because the access functions, called in the transformational pattern or the pattern guard, may be arbitrarily expensive. For example, consider

data AbsInt = Pos Int | Neg Int

absInt :: Int -> AbsInt
absInt n = if n>0 then Pos n else Neg (-n)

f :: Int -> Int
f (Pos n)!absInt = n+1
f (Neg n)!absInt = -(n+1)

This is reasonably concise. But how many times is absInt called? In this case, it is pretty clear that it need only be called once. But what about this:

g ((Pos a)!absInt : as) [] = ...
g [] ((Pos b)!absInt : bs) = ...
g ((Neg a)!absInt : as) ((Neg b)!absInt : bs) = ...
g _ _

Now it gets harder to tell! In general, it may be necessary to know the pattern-matching compilation algorithm used by the compiler in order to reason precisely about how many times absInt will be called. Nevertheless, it is not difficult to expand a pattern-matching algorithm by knowledge about transformational patterns so that in cases like above (when only a function and not a complex expression is used as a pattern action) one can ensure a translation into nested case expressions so that at each argument position each pattern action is invoked only once.

Without any changes to the pattern-matching algorithm, pattern guards allow us to express the sharing explicitly in some cases:

f n | Pos n' <- abs_n = n'+1
 | Neg n' <- abs_n = -(n'+1)
 where
 abs_n = absInt n

Here the common definition abs_n makes clear that there should only be one call to absInt. But a where clause cannot always be used. For example, consider the following silly function g using the AbsInt view (for an explanation of views, see the next section):

view AbsInt of Int = Pos Int | Neg Int

where absInt = ... as above ...

r (Pos (Pos n)) = n+1
r (Pos (Neg n)) = -(n+1) -- A bit silly
Now we have to write
\[
\begin{align*}
g \ n \ &\mid \ Pos \ n1 \ \leftarrow \ \text{abs} \ n \ , \ Pos \ n2 \ \leftarrow \ \text{abs} \ \text{Int} \ n1 \ = \ n2+1 \\
&\mid \ Pos \ n1 \ \leftarrow \ \text{abs} \ n \\
&\qquad \text{Neg} \ n2 \ \leftarrow \ \text{abs} \ \text{Int} \ n1 \ = \ -(n2+1) \\
&\text{where} \\
&\{ \text{abs} \ n \ = \ \text{abs} \ \text{Int} \ n \}
\end{align*}
\]
We can share the first call to \text{abs} \ \text{Int} \ but \ not \ the \ second \ because \ \text{n1} \ \text{is not in the scope of the where clause. Instead we have to rely on (a) knowledge of the pattern-} \\
\text{compilation algorithm, and (b) common-subexpression elimination, to justify our hopes that there will be only two calls to abs} \ \text{Int.}

Again, in transformational-pattern form, the shared computations seem easier to spot and can be ensured by an extension of the pattern matching algorithm:
\[
g \ (Pos \ (Pos \ n))! \text{abs} \ \text{Int}! \text{abs} \ \text{Int} = n+1 \\
g \ (Pos \ (\text{Neg} \ n))! \text{abs} \ \text{Int}! \text{abs} \ \text{Int} = -(n+1)
\]

7 A comparison with views
As we have already discussed, pattern guards and transformational patterns can be seen as addressing a similar goal to that of views, namely reconciling pattern matching with data abstraction. Views were proposed by Wadler ages ago [19], and are the subject of a concrete proposal for a Haskell language extension [4].

Consider, for example, the cartesian representation of complex numbers with a polar view.

```
data Complex = Cart Float Float
view Polar of Complex = Polar Float Float
where
  polar (Cart r i) =
    Polar (sqrt(r*r+i*i)) (atan2 r i)
pole = Polar
```

With this view, function definitions can be written using the polar representation in patterns relying on the automatic application of the view transformation \text{polar}. This means that it is possible to assume a particular representation of abstract data types in function definitions without exposing or even knowing the representation used in the implementation. Note that in addition to the view transformation \text{polar} we also need a function \text{pole} to construct values of the view type.

Without views we define the view type as an ordinary data type and the view transformation as a function.

```
data Polar = Polar Float Float
polar (Cart r i) = Polar (sqrt(r*r+i*i)) (atan2 r i)
```

Now it is natural to ask whether views subsume pattern guards or vice versa. The answer is "neither".

7.1 Do views subsume pattern guards?
The views proposal [4] points out that you can use views to simulate (some) guards and, as we saw above, views have similar purpose and functionality to at least some applications of pattern guards.

However, views give a view on a single value, whereas guards allow arbitrary function calls to combine in-scope values. For example, \text{clunky} matches (just \text{val1}) against (lookup \text{env} \ \text{var1}). We do not want a view of \text{env} nor of \text{var1} but rather of their combination by lookup. Views simply do not help with \text{clunky}.

Views are capable of dealing with the data abstraction issue of course. However, each conditional selector would require its own view, complete with its own view type. This can seem rather heavyweight. For example, our Haskell compiler, GHC, has an abstract data type called \text{Type}. The \text{Type} module offers the function

```
getFunTyMaybe :: Type \to\ Maybe (Type, Type)
```

This function is a mixture of a predicate ("is this a function type") and a view ("the argument and result type are these"). To use views we would have to say:

```
view FunType of Type = FunType Type Type
  | \text{Not}\text{FunType}
where
  funType (Fun \text{arg} \text{res}) = FunType \text{arg} \text{res}
  funType other_type = \text{Not}\text{FunType}
```

This seems a bit heavyweight (three new names instead of one) compared with re-using the existing \text{Maybe} type. Not only does this reuse save defining new types, but it allows the existing library of functions on \text{Maybe} types to be applied directly to the result of \text{getFunTyMaybe}.

Sometimes it is quite unclear whether a function should be regarded as a "view" or not. For example, GHC has another function on \text{Type}:

```
tyvars0f :: Type \to\ [TyVar]
```

that returns the free type variables of a type. One could regard this as specifying a "view" of a type as the free variables of the type:

```
view TyVars0f of Type = TyVars0f [TyVar]
where
  tyVars0f ty = ...
```

Now we could write

```
f :: Type \to\ Int
f (TyVars0f tyvars) = length tyvars
```

instead of

```
f :: Type \to\ Int
f ty = length (tyvars0f ty)
```

6
But the "view" has not made the program any simpler; indeed one could claim the reverse.

Our point is this: there is a continuum between functions that one might regard as "views" of a type and other functions that are predicates, or selectors, or property extractors. Extending the language with views undesirably forces the programmer to choose whether a particular function is best regarded as a view or not. Pattern guards do not force such a choice. Instead, the same access function (for example, getFatTyMaybe) can be used in ordinary expressions or pattern guards.

7.2 Do pattern guards subsume views?

Views allow the treatment of an abstract data type as a concrete data type as far as pattern matching is concerned. In particular, the same notation can be used for pattern matching on abstract and on concrete data types. In contrast, with transformational patterns we have to extend the patterns by pattern actions.

Although views are notationally only a little more concise than transformational patterns, one could argue that the small notational difference presents a usage barrier, and therefore views might be better suited to promote data abstraction while retaining pattern matching.

Now with regard to the Polar example, with views we can simply use a Polar constructor in a pattern knowing that the view transformation is applied automatically, whereas with transformational patterns we have to call the polar function explicitly.

Thus we might prefer to write (using views)

\[
\text{multC \ (Polar \ r1 \ t1) \ (Polar \ r2 \ t2)}
\]

rather than (using transformational patterns)

\[
\text{multC \ (Polar \ r1 \ i1)!polar \ (Polar \ r2 \ i2)!polar}
\]

One might argue, though, that the latter accurately indicates that there may be some work involved in matching against a view, compared to ordinary pattern matching. With transformational patterns we can also safely use the Polar constructor (see also Section 8).

7.3 Summary

We believe that the pattern-guard and transformational-pattern proposal

- is much simpler to specify and implement than views;
- gets some expressiveness that is simply inaccessible to views;
- successfully reconciles pattern matching with data abstraction, albeit with a slightly less compact notation than views;
- is less heavyweight to use when defining many information extraction functions over an ADT;
- does not conceal where computation takes place.

8 Equational reasoning with transformational patterns

Problems in reasoning with Miranda laws and views arise because a constructor of a lawful type or view can be used both within a pattern and as an expression. In particular, the use in an expression is problematic. Suppose, for example, we have a constructor Half :: Int -> Half of a view type Half that is defined to divide its argument by 2.

\[
\text{view \ Half \ of \ Int} = \text{Half \ Int}
\]

where \(\text{half i} = \text{Half} \ (i \ \text{'div' \ 2}) \)

When we now define a function

\[
f :: \text{Half} \rightarrow \text{Int}
\]

\[
f (\text{Half i}) = i+1
\]

we could try to reason, by replacing equals for equals, that \(f \ (\text{Half 8}) = 9 \), which, however, is not true because \(f \ (\text{Half 8}) = 8 \) due to the computational part of \(f \).

The solution proposed by Burton and Cameron [3] is to forbid the use of view constructors, such as \text{Half}, in expressions. This works well, but one always has to be aware of the status of a constructor and whether it is a view constructor or not.

With transformational patterns we would have to define a plain data type together with a function performing the desired computation of the constructor \text{Half}.

\[
\text{data \ Half} = \text{Half \ Int}
\]

\[
\text{half i} = \text{Half} \ (i \ \text{'div' \ 2})
\]

Now when we use \text{Half} in equations, nothing harmful can happen because all computation is made explicit. For example, it is valid to conclude \(f \ (\text{Half 8}) = 9 \) since \text{Half} is just a data type constructor performing no computation on its argument at all. This is because the above definition for \(f \) essentially does not use the view in its original sense. To make use of the view computations we have to give a different definition for \(f \):

\[
f :: \text{Half} \rightarrow \text{Int}
\]

\[
f (\text{Half i})!\text{half} = i+1
\]

But now it is evident that we just cannot use an equation like \(f \ (\text{Half 8})!\text{half} = 9 \) because \((\text{Half 8})!\text{half} \) is not an expression. Hence, the additional requirement made by Burton and Cameron is implicitly given in our approach just by the syntax of transformational patterns.

On the other hand, it is possible to use transformational patterns in equational reasoning. To explain this it is helpful to

7
recall how patterns are used, for example, in the transformation of an expression \(f \ e \). This happens in two steps: first, the structure of \(e \) is examined (this is often obvious because \(e \) is an application of a constructor or it is given in a precondition of the current transformation, for example, something like \(e = x \times x \)). Then the equation for \(f \) that matches the structure of \(e \) is determined, say \(f (x \times x) = e' \), and \(f \ e \) is substituted by \(e' \).

Now transformational patterns fit into this scheme as follows. Suppose \(f \) contains an equation \(f \ p \ c \ e = e' \). Then when you can make the assumption \(p = c \ e \) in a proof, you can replace the expression \(f \ e \) by \(e' \). Of course, as with other patterns, one has to choose the first possible match to get a sound transformation.

We illustrate this by a small example. Suppose we have the definition of a function \(\text{sort} \) that extracts a minimum from a list.

\[
\text{sort} :: \text{Ord} \ a \Rightarrow [a] \rightarrow ([a])
\]

\[
\text{sort} \ (x, r) \backslash \text{min'} = (x : \text{sort} \ r)
\]

Now we would like to prove the correctness of \(\text{sort} \). Using the prelude function \text{all} we can define a predicate for sorted lists as follows.

\[
\text{sorted} \ [] = \text{True}
\]

\[
\text{sorted} \ (x : xs) = \text{all} \ (x \leq) \ xs \land \text{sorted} \ xs
\]

Suppose we already know the following property of \(\text{min'} \).

Lemma 1 \(\text{min'} \ 1 = (x, xs) \Rightarrow \text{all} \ (x \leq) \ xs = \text{True} \)

Then we can easily prove:

Lemma 2 \(\text{sorted} \ (\text{sort} \ 1) = \text{True} \)

Proof. We perform a case analysis on the list argument: if \(1 = [], \) we have

\[
\text{sorted} \ (\text{sort} \ []) = \text{sorted} [] = \text{True}
\]

If \(1 \neq [], \) we have \(\text{min'} \ 1 = (x, r), \) and we can select the second equation for \(\text{sort} \):

\[
\text{sorted} \ (\text{sort} \ 1) = \text{sorted} \ (x : \text{sort} \ r) = \text{all} \ (x \leq) \ r \land \text{sorted} \ r
\]

Now by induction \(\text{sorted} \ r \) can assumed to be true, and \(\text{all} \ (x \leq) \ r \) is true due to Lemma 1.

9 Pattern match failure as a first-class entity?

In Haskell, pattern match failure is considered a local event that has to be dealt with in one and the same case expression or (if not dealt with) results in an (unrecoverable) error.

An alternative, more general view is that a failing pattern match raises an exception, say, \text{Fail}, that can be caught in the same or in another case expression. Such a treatment of pattern match failure could be nicely exploited by transformational patterns: a pattern matching failure in a pattern action can be caught to be able to reach the next function equation. In this section we sketch a possible extension along these lines. We regard this section as much more speculative than the rest of the paper.

As a first example we give a definition for the view-version of the function \text{power} [19].

\[
\text{power} :: \text{Int} \rightarrow \text{Int} \rightarrow \text{Int}
\]

\[
\text{power} \ x 0 = 1
\]

\[
\text{power} \ x (n+1) = \text{power} \ (x \times x) \ n
\]

The two functions \text{asOdd} and \text{asEven} both have their argument but match only for odd and even numbers:

\[
\text{asOdd} \ n \mid n \mod 2 = 1 = n \div 2
\]

\[
\text{asEven} \ n \mid n \mod 2 = 0 = n \div 2
\]

With these partial definitions, the application of, say, \text{asOdd} to an even number, is defined to yield a program error that propagates through to the top level, but with the extended \text{Fail} semantics the pattern match failure raised in \text{asOdd} is caught in \text{power} and causes the third equation to be tried.

As a further example we show how transformational patterns make it possible to use pattern matching successfully on graphs. Graph algorithms traditionally consider graphs as monolithic blocks, and this view is reflected in their clumsy definitions. As an alternative we have proposed an inductive view of graphs that makes recursive definitions of graph algorithms feasible [5]: a graph is either empty, or it is constructed by adding a node together with edges from/to its predecessors/successors. Let \text{Node} be the type of node values, and let \text{Graph} be the type of unlabelled graphs. A \text{node context} is a node together with a list of successors (third tuple component) and a list of predecessors (first component):

\[
\text{type Context} = ([\text{Node}], \text{Node}, [\text{Node}])
\]

Then we can define an empty graph constant and a function for successively adding node contexts:

\[
\text{empty} :: \text{Graph}
\]

\[
\text{embed} :: (\text{Context}, \text{Graph}) \rightarrow \text{Graph}
\]

Note that \text{embed} yields a runtime error if either the node to be inserted is already present in the graph or if any of the predecessor or successor nodes does not exist in the graph. We also have a function \text{match} that locates the context of a particular node in a graph.\footnote{\text{match} is defined so that for all nodes \(v \) contained in \(g \) the following law holds: \text{embed} (\text{match} \ v \ g) = g.}

\[
\text{match} :: \text{Node} \rightarrow \text{Graph} \rightarrow ([\text{Context}, \text{Graph}])
\]
Now with a function \texttt{suc} that simply projects onto the third component of a context we can give a highly concise definition of depth-first search:

\[
\begin{align*}
\text{dfs} &: [\text{Node}] \rightarrow \text{Graph} \rightarrow [\text{Node}] \\
\text{dfs} &\quad [] \quad = [] \\
\text{dfs} \quad (v;v's) \quad (c,g)! (\text{match} \; v) \; = \; v:\text{dfs} \; (\text{suc} \; c++v's) \; g \\
\text{dfs} \quad (_;v's) \; g \quad = \; \text{dfs} \; \text{vs} \; g
\end{align*}
\]

The arguments of \texttt{dfs} are a list of nodes to be visited and the graph to be searched, and the result is a list of nodes in depth-first order. Note that we do not need a data structure for remembering the nodes that we have already seen — by repeatedly removing contexts from the graph we rather “forget” (in the graph) the nodes that have been visited so far. If we then try to revisit a node, this leads in match to a match failure, causing \texttt{dfs} to try the third equation, which simply ignores the current node.

9.1 Semantics

Note that catching pattern matching failure is not possible with transformational patterns when they are just reduced to pattern guards. Therefore, we have to provide an independent semantics definition. One possible way to go is to define pattern matching within a Haskell version that accounts for exceptions. A proposal for exceptions was made in [13], giving a precise semantics together with an efficient implementation. Pattern match failure could be defined in that context to raise a \texttt{Fail} exception, and pattern matching had to catch \texttt{Fail} exceptions to select function equations.

In that proposal catching exceptions leads, in general, to non-determinism. To see this, consider the expression \texttt{e1 + e2}, and assume that \texttt{e1} and \texttt{e2} result in two different exceptions. Now what should be the result of \texttt{e1 + e2}? If we avoid to fix the evaluation order, all we can do is to either define + to make a non-deterministic choice or to return the set of all exceptions raised anywhere within \texttt{e1} and \texttt{e2}. The last proposal was made in [13]. Even when dealing with exception sets, checking for a particular exception re-introduces non-determinism. However, in a framework where \texttt{Fail} is the only exception one could also think of just checking whether an exception has occurred at all or not. This eliminates non-determinism to a large degree, but it might still be the case that one and the same program could diverge or not depending on, for example, the platform or the larger context in which it was compiled. Again, consider expressions like \texttt{bot + Fail}.

Another possibility is to define the more general behaviour of transformational patterns within the current Haskell framework. The problem we face here is that a pattern-match failure within the pattern action must not yield \texttt{⊥} since this cannot be caught in the \texttt{case} expression containing the transformational pattern. We can cope with this by performing a source-code transformation \texttt{e'__M} of pattern actions to wrap all possible results with \texttt{Just}, and add a default case that returns \texttt{Nothing}. Then we perform pattern matching against \texttt{Nothing} in the \texttt{case} rule dealing with transformational patterns. The corresponding \texttt{case} equation is easy to give:

\[
\begin{align*}
(w') & \quad \text{case} \; v \; \text{of} \; \{ \; p!f \rightarrow e; \; _ \rightarrow e' \; \} \\
& \quad = \; \text{case} \; e' \; \text{of} \; \{ \; y \rightarrow \; \}
\end{align*}
\]

\[
\begin{align*}
\text{Nothing} & \rightarrow y; \\
\text{Just} \; x & \rightarrow \text{case} \; x \; \text{of} \; \{ \; p \rightarrow e; \; _ \rightarrow y \; \})
\end{align*}
\]

where \texttt{x} and \texttt{y} are completely new variables.

It remains to be shown how pattern actions can be lifted into the \texttt{Maybe} type. We give a definition that follows the structure of expressions. Since only case expressions are a source of possible pattern match failure, wrapping \texttt{Just} and adding \texttt{Nothing} happens just there. In all other cases, lifting is just recursively passed through (or ignored). In particular, constants, constructors, and variables remain unchanged. For application, abstraction, and case expressions we obtain:

\[
\begin{align*}
(e1 \; e2)^M & = e1^M \; e2^M \\
(\lambda x.e)^M & = \lambda x.e^M \\
(\text{case} \; e \; \text{of} \; \{ p1 \rightarrow e1 \})^M & = \text{case} \; e \; \text{of} \; \{ p1 \rightarrow \text{Just} \; e1 \}; \\
& \quad \rightarrow \text{Nothing}\}
\end{align*}
\]

The problem with this approach is that it does not work well with separate compilation, in particular, with precompiled libraries: in general, we do not have access to the definition of a function that is used in a pattern action and that lives in a separately compiled module. In that case the above scheme breaks down because we do not know the function’s source code and we therefore cannot apply the source code transformation.

9.2 Summary

In this section we have sketched a more speculative development of the pattern-matching idea. We regard it as debatable whether the additional power of these extended transformational patterns is worth the cost in terms of semantic complications, or loss of separate compilation. However, first-class pattern-matching failure would very much obviate the need for pattern guards because \texttt{Fail} can be used to “step back” into a function’s pattern matching process. Our earlier proposals, of pattern guards and transformational patterns, described in Sections 3 and 4, do not involve any such semantic or compilation complications.

10 Related work

One of the first extensions to pattern matching was the lawful types of Miranda [18, 16]: in this approach the programmer is allowed to add equations to a data type definition that act as rewrite rules to transform data type values into a canonical representation. The approach has two main problems: first, in many applications different representations are needed to use data types and pattern matching conveniently (see, for example, the polar vs. cartesian representation of complex values [3, 12] or differently rooted trees to represent sets [6]), and Miranda laws prevent this. Second, laws cause problems with equational reasoning [16].

The most prominent and most widely accepted extension to pattern matching seems to be the \texttt{view} mechanism which
was first proposed by Phil Wadler [19] and that was later
adapted by several others [3, 4, 11]. With views one can have
as many different representations of a data type as needed.
For each such representation, called view, two functions in
and out must be defined that map from the (main) data type
into the view type and vice versa. Views do not suffer from
the first restriction of Minuma laws, but the view transfor-
mations must be inverses of each other, and this sometimes
either leads to partial definitions or causes problems with
equational reasoning due to ambiguities.

The reasoning problems were first solved by Burton and
Cameron [3] who restrict the use of view constructors only
to patterns. Hence, the out function is not needed anymore,
and the in function need not be injective. This has been
adopted by all view proposals that were made since then.

Okasaki [11] has defined the view concept (the proposal of
[4]) for Standard ML. He pays special attention to the inter-
action of view transformations with stateful computations
that are possible in ML.

We have demonstrated that views can be easily simulated
by transformational patterns.

In [12] active destructors were introduced that allow the
definition and use of patterns, called active patterns,
that might perform computations to produce bindings:
\texttt{c p match q where x = e} defines an active destructor \texttt{c p}
that can be used as a pattern in place of \texttt{q}. During the
matching process \texttt{e} is evaluated using bindings produced by
\texttt{q} and producing new bindings in \texttt{r} that can finally be used
by \texttt{p}. Active destructors extend the capabilities of views,
but they require even more syntactic overhead. In partic-
ular, a new notation is needed for the typing of patterns.
Active destructors can, to some degree, perform compu-
tations like pattern guards and transformational patterns, but
they cannot access other variables bound in the same func-
tion equation, which we consider a highly useful feature.\footnote{Active destructors allow a very limited and rather ad-hoc way of passing additional parameters into pattern functions; this is described in [12] only for Haskell-specific arithmetic \texttt{n + k}-patterns and requires yet another extension to the typing notation.}

Active destructors can also be simulated by pattern guards
and transformational patterns. For example, define a func-
tion \texttt{c q = e} and use the transformational pattern \texttt{p/c} in
place of the active destructor \texttt{c p}.

The \texttt{p as f} construction introduced in [2] is also similar
to transformational patterns: a pattern matching function
\texttt{f} can be converted into a pattern \texttt{p} so that it can be com-
posed with other patterns. This is used to express pattern
matching on union types.

The goal of the active patterns introduced in [6]\footnote{The work of [12] and [6] was performed independently leading to the homonym.} was to enable the matching of specific representations of data type values. Whereas views always map a value in one view type
to a canonical representation, active patterns allow the se-
lection of an arbitrary one. The idea is that specialised
constructors can recognise data type values before they are
matched. This reorganisation is intended to yield a represen-
tation that suits the current function definition best. With
regard to these preprocessing capabilities, active patterns
are similar to transformational patterns and also to active
destructors. However, active patterns are more general than
active destructors because their computing functions have
access to other bindings of the pattern, and active patterns
are less general than active destructors and than pattern
guards and transformational patterns because the argument
and result type must be the same.

Just as views and laws and the other approaches mentioned
so far were motivated by combining pattern matching and
ADTs, there are some other, more limited, approaches that
are also driven by specific applications: contact patterns [9]
give direct access to arbitrary deeply nested sub-parts of
terms; they are very similar to other free transforming lan-
guages (for example, [8, 15]). In particular, they only work
for algebraic, free data types, and computations on matched
values are not possible. The abstract value constructors pre-
seated in [1] provide a facility to abbreviate terms and al-
low the use of these abbreviations as expressions as well as
with patterns. Again, no computations are possible on
the matched values. In contrast, pattern abstractions [7] do
allow a very limited form of computation; the aim is to gen-
eralise pattern matching only as far as static analyses, such
as checking overlapping patterns or exhaustiveness, are still
decidable.

A different route to pattern matching is taken by Tulsen
[17], who considers patterns as functions of type \(a \rightarrow \text{Maybe} b\). This allows the treatment of patterns as first-class ob-
jects; in particular, it is possible to write pattern combin-
nators. Although the semantics of patterns can be simpli-
fied considerably by that approach, the use of patterns in
the language is rather clumsy even after the introduction of
some syntactic sugar through so-called pattern binders.

Let us finally compare the described extensions with our pro-
posal from a general point of view. Whereas it is quite easy
and straightforward to use a pattern guard or a transforma-
tional pattern in a function definition (just put it there!),
the use of an active destructor (or of a view, or of any other
proposal) requires the definition of such a pattern at some
other place before it can be used. In many cases this is pro-
hibitive either because adding an additional declaration is
not justified by, say, only one application or because it is
just faster or shorter not to use that concept. For example,
the definition of the function \texttt{last} based on a reverse view
of lists (see [19]) requires some effort to define the view type
and the view transformations, whereas it can be immedi-
ately written using pattern guards:

\[
\texttt{last xs | (x::) \leftarrow reverse xs = x}
\]

or with transformational patterns:

\[
\texttt{last (x::)}!\texttt{reverse} = x
\]

The situation here is comparable to that of function
definitions vs. anonymous functions (that is, lambda-
abstractions): sometimes it is useful to have anonymous
functions, although it is syntactically nicer to apply a de-
defined function.

A further aspect is that pattern definitions can be used only
for pattern matching, whereas a function used in a pattern
guard or as a pattern action can also be used in expressions.

Another difference we already stressed is that our proposal
makes it explicit where computations take place in patterns.
whereas this information is hidden by views or active de-
structors. As far as programming with ADTs is concerned,
biting might be in most cases appropriate, however, in some
cases it might be more convenient to have explicit informa-
tion about computations instead of defining, learning and
remembering many different views.

11 Conclusions

We have introduced pattern guards and transformational
patterns that offer the possibility of preprocessing values
before they are matched against patterns. Our proposal
covers and even generalises previous approaches to pattern
matching on abstract data types. This extension allows a
useful class of programs to be written much more elegantly
than with the current version of Haskell.

The required extensions to existing languages are minimal.
This applies both to the syntax and to the implementation,
which makes the introduction into Haskell very easy. In
fact, pattern guards are already fully implemented in GHC
(transformational patterns are not yet implemented). The
syntax is not as neat as for views, but rather makes the com-
putations that happen explicit. We have argued that this
can be an advantage in using the patterns, understanding
programs, and in equational reasoning.

Our proposal is attractive also from a more general language
design point of view because in formulating recursive func-
tion definitions one always has to make two design decisions:
(i) which arguments are needed in which form for the recur-
sive function application(s) on the right-hand side, and (ii)
how can the parameters from the left-hand side be brought
into the required form. With traditional patterns, these two
closely related design decisions are separated by moving (ii)
into a (possibly distant) where block. With transformational
patterns both activities have been brought closer together;
this facilitates the programmer to focus the view on the es-
sential parts of recursive definitions.

Fähndrich and Boyland [7] call their pattern matching ex-
tension pattern abstractions. Their approach (and all the
others) require the naming of pattern abstractions. Since
this is not needed in our approach, pattern guards and
transformational patterns can be viewed as complementing
the landscape of pattern matching extensions by anonymous
pattern abstractions.

Acknowledgements

We thank Chris Okasaki and the anonymous reviewers for
their helpful comments.

References

structors. In ACM Workshop on ML and its Applica-

[2] P. Buneman and B. Pierce. Union Types for Semi-
structured Data. Technical Report MS-CIS-99-09, Unive-

[3] F. W. Burton and R. D. Cameron. Pattern Match-
ing with Abstract Data Types. Journal of Functional

[4] F. W. Burton, E. Meijer, P. Sansom, S. Thompson,
and P. Wadler. Views: An Extension to Haskell Pattern
Matching. http://haskell.org/development/views.html,
1996.

[5] M. Erwig. Inductive Graphs and Functional Graph Al-
gorithms. Journal of Functional Programming. To ap-
pear.

[6] M. Erwig. Active Patterns. In 8th Int. Workshop on
Implementation of Functional Languages, LNCS 1268,

Pattern Abstractions. In 2nd ACM Int. Conf. on Func-

[8] R. Heckmann. A Functional Language for the Specifi-
cation of Complex Tree Transformations. In European

Workshop on Implementation of Functional Languages,

Queues and Deques. Journal of Functional Program-

Look at Pattern Matching in Abstract Data Types. In
1st ACM Int. Conf. on Functional Programming, pages
110–121, 1996.

In ACM Conf. on Programming Languages Design and

Programming Language Haskell 98. 1999.

[15] C. Quinlan. Compilation of Non-Linear, Second Or-
der Patterns on S-Expressions. In 2nd Int. Symp. on
Programming Language Implementation and Logic Pro-

[16] S. Thompson. Lawful Functions and Program Verifi-
cation in Miranda. Science of Computer Programming,

on Practical Aspects of Declarative Languages, LNCS

[18] D. A. Turner. Miranda: A Non-strict Functional Lan-
guage with Polymorphic Types. In Conf. on Functional
Programming and Computer Architecture, LNCS 201,
pages 1–16, 1983.

Cohabit with Data Abstraction. In 14th ACM Symp.
on Principles of Programming Languages pages 307–