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Abstract: The finite-element software framework OpenSees is extended with parameter updating and response sensitivity capabilities to
support client applications such as reliability, optimization, and system identification. Using software design patterns, member properties,
applied loadings, and nodal coordinates can be identified and repeatedly updated in order to create customized finite-element model
updating applications. Parameters are identified using a Chain of Responsibility software pattern, where objects in the finite-element
model forward a parameterization request to component objects until the request is handled. All messages to identify and update
parameters are passed through a Facade that decouples client applications from the finite-element domain of OpenSees. To support
response sensitivity analysis, the Strategy design pattern facilitates multiple approaches to evaluate gradients of the structural response,
whereas the Visitor pattern ensures that objects in the finite-element domain make the proper contributions to the equations that govern the
response sensitivity. Examples demonstrate the software design and the steps taken by representative finite-element model updating and
response sensitivity applications.
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Introduction

Emergent structural assessment methodologies have placed an in-
creased emphasis on applications that update the material, load,
and geometric parameters of a finite-element model in order to
characterize uncertain structural response. For example, a struc-
tural reliability analysis repeatedly updates realizations of the un-
certain model parameters in order to find the most probable
failure point �Liu and Der Kiureghian 1991�. In damage detection
and system identification applications, model parameters evolve
as a function of observed system characteristics �Soh and Dong
2001; Ozcelik et al. 2008�.

Model updating applications can use any finite-element code
as a “black box” to evaluate a performance function by repeatedly
creating an input file for each realization of the parameters,
running the finite-element analysis, and parsing the output file
for the desired response quantities. Gradients of the performance
function are obtained by finite differences, where the finite-
element analysis is repeated with perturbed parameter values.
For most sensitivity-based model updating applications, the pre-
ferred approach to obtain the response sensitivities is the direct
differentiation method ��DDM�, Kleiber et al. 1997�, where the
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governing equations are differentiated analytically and imple-
mented as part of the core finite-element code. This approach is
significantly more efficient and accurate than finite difference
schemes, at the one-time cost of deriving and implementing the
analytical derivatives of the response. Zhang and Der Kiureghian
�1993� derived the DDM response sensitivity equations for both
static and dynamic structural analysis problems, as well as for
the J2 plasticity constitutive model �Simo and Hughes 1998�.
Since then, a number of contributions have been made to the
development of DDM equations for various finite-element for-
mulations and constitutive models �Roth and Grigoriu 2001;
Conte et al. 2003; Franchin 2004; Scott et al. 2004; Haukaas and
Der Kiureghian 2005�.

To incorporate DDM equations in a nonlinear finite-element
analysis, Zhang and Der Kiureghian �1997� extended the proce-
dural code FEAP �Taylor 2004� with DDM capabilities, whereas
Roth and Grigoriu �2001� did the same for the DIANA software
�TNO Building and Construction Research 2003�. Silva and Bit-
tencourt �2000� developed an object-oriented code for shape op-
timization of linear-elastic finite-element models and Gil and
Bugeda �2001� implemented finite-element sensitivity analyses
for nonlinear material models using an object-oriented approach.
However, the development of DDM response sensitivity modules
in OpenSees represents one of the first attempts to characterize all
major sources of uncertainty in a nonlinear finite-element analysis
using an object-oriented approach �Haukaas and Der Kiureghian
2007�.

Identifying the parameters that define a structural model is a
key component to extending finite-element software with model
updating and DDM response sensitivity capabilities. For proce-
dural implementations, parameter updating is efficient as the pa-
rameters are typically stored in global data structures or common
blocks. However, this approach can lead to unintended results

when shared global data are modified and it requires a thorough
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understanding of how the common data structures are imple-
mented. In an object-oriented approach, objects encapsulate
parameters such that clients do not need to know all implemen-
tation details. Typically, a large number of objects are created
during a finite-element analysis, thus extensive logic may be re-
quired in order to determine which object encapsulates a desired
parameter.

Data encapsulation is one of the primary benefits to taking an
object-oriented approach in engineering software development
�Fenves 1990; Lee and Arora 1991; Baugh and Rehak 1992�.
Several object-oriented designs for the finite-element analysis of
structural systems have been developed �Forde et al. 1990; Miller
1991; Mackie 1992; Zimmermann et al. 1992; Rucki and Miller
1996; Archer et al. 1999; McKenna and Fenves 2000; Modak and
Sotelino 2002; Mackerle 2004�. These and other designs have
focused on object-oriented approaches to forming and solving the
equations that govern a finite-element analysis; however, object-
oriented approaches to update model parameters and to compute
DDM response sensitivity have not been addressed to the same
extent in the literature.

This paper describes an object-oriented framework that has
been implemented in OpenSees to support finite-element model
updating and response sensitivity analysis. Software design
patterns ensure the framework is extensible such that it can ac-
commodate a wide range of model updating applications and
that objects in a finite-element model make the correct contribu-
tions to the equations that govern DDM response sensitivity.
Although the implementation platform is OpenSees, the de-
sign patterns and class relationships presented in this paper are
applicable to any object-oriented finite-element analysis frame-
work. The paper begins with an overview of the OpenSees
software framework. A “top-down” approach to identify and
update parameters using software design patterns is pre-

Fig. 1. High-level classes of the OpenSees soft
sented next, followed by the extension of OpenSees to incor-
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porate DDM response sensitivity analysis. Representative ex-
amples demonstrate the parameter updating and response sensi-
tivity capabilities along with their extension to a sensitivity-based
damage detection analysis of a reinforced concrete shear wall
structure.

Overview of the OpenSees Software Framework

OpenSees, the Open System for Earthquake Engineering Simula-
tion, is an object-oriented software framework developed for the
computational simulation of structural and geotechnical systems
�McKenna et al. 2000�. Most modules in the OpenSees frame-
work are implemented in C++ using an open-source development
process. A variety of state-of-the-art finite-element formulations
and numerical methods have been implemented. Most users of
OpenSees build finite-element models using the fully program-
mable string-based scripting language Tcl �Ousterhout 1994;
Welch 2000�, which offers more flexibility in pre- and postpro-
cessing analysis results than fixed-format text files. As the com-
putational platform for NEES, the Network for Earthquake
Engineering Simulation, OpenSees has been extended with mod-
ules for hybrid simulation �Schellenberg and Mahin 2006�. The
framework also supports distributed and parallel computing
�McKenna and Fenves 2000; Peng and Law 2004�.

The high level classes of OpenSees are loosely coupled in
order to support a wide range of applications. As shown in Fig. 1,
a Domain aggregates DomainComponent objects that represent
the nodes, elements, constraints, and load patterns of a finite-
element model �McKenna et al. 1997�. An instance of the Mod-
elBuilder class populates the Domain based on user input and an
Analysis object advances the Domain to a new state based on the

ramework and notation used for class diagrams
ware f
type of analysis and the loads applied to the system.
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Software Design Patterns

Specific implementations of the classes shown in Fig. 1 derive
their behavior by composition of other classes in the OpenSees
framework. For example, most implementations of the Element
class use instances of the Material class as interchangeable algo-
rithms to determine the constitutive response of a finite element.
This is a common relationship, or pattern, that has appeared in
virtually all object-oriented software designs for finite-element
analysis. Gamma et al. �1995� catalog this “Strategy” pattern
along with many other generic descriptions of communicating
objects that can make a software system more flexible and main-
tainable. The axiom of design patterns is to favor object compo-
sition over class inheritance as a mechanism for code reuse.
OpenSees makes extensive use of software design patterns to
solve the governing equations of a nonlinear structural analysis
�McKenna 1997� and to implement a wide range of finite-element
models �Scott et al. 2008�. Other applications of design patterns
in civil engineering include the development of computational
tools for life-cycle assessment of buildings �Ries and Mahdavi
2001� and knowledge systems to promote sustainable construc-
tion �Wetherill et al. 2007�.

Although the use of design patterns has made OpenSees more
modular and flexible, it has resulted in a large number of small
classes related by complex inheritance hierarchies and multiple
levels of indirection. As a result, there may be several levels of
indirection to follow in order to update parameters and to as-
semble DDM response sensitivity equations for a finite-element
model built in OpenSees. This makes it difficult for a client ap-
plication to use OpenSees as the computational engine for
sensitivity-based finite-element model updating applications. The
software framework for parameterization presented herein miti-
gates this difficulty by using the following design patterns:
• “Facade” to provide an entry point for all model updating

client applications to access parameters of the finite-element
model.

• “Chain of responsibility” to identify the objects that encapsu-
late model parameters by forwarding identification requests on
to component objects.

• “Strategy” to use interchangeable algorithms in the computa-
tion of structural response sensitivity.

• “Visitor” to ensure element and material objects compute the
correct contribution to DDM response sensitivity equations for
each parameter in the finite-element model.

Full details of each above-listed design pattern are given by

Fig. 2. Client applications and OpenSees finite-element analysis cl
controlled by access to Parameter class
Gamma et al. �1995� and their contributions to the development
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of the parameterization framework for sensitivity-based model
updating applications are described in the following sections.

Parameterization of the OpenSees Software
Framework

There are two fundamental approaches to parameterizing a soft-
ware framework for finite-element analysis. In the “top-down”
approach, objects encapsulate the parameters that define their be-
havior and new parameter values are pushed down through the
framework only when instructed to do so by a model updating
application. This is as opposed to the “bottom-up” approach,
where objects encapsulate pointers to auxiliary objects that a
model updating application updates when necessary. A significant
drawback to the bottom-up approach is that it requires objects to
check for changes to parameter values at every state determina-
tion during an analysis. This overhead can be mitigated by vio-
lating encapsulation, e.g., with “friend” classes in C++; however,
the following presentation is based on a top-down approach as it
preserves encapsulation.

Parameter Class as a Facade

Direct access to the classes of OpenSees that encapsulate model
parameters can lead to the situation shown in Fig. 2�a� where
there are multiple pointers from client applications in to the finite-
element domain. Client application must understand the interface
of every class in the finite-element subsystem that encapsulates
model parameters. This tight coupling can make it difficult to
adapt client applications to changes in the finite-element classes,
e.g., when existing classes are split into multiple classes due to
the application of design patterns. The Facade design pattern
�Gamma et al. 1995� provides client applications a default view of
the finite-element domain and alleviates the need to understand
every class relationship therein. As shown in Fig. 2�b�, the Pa-
rameter class acts as a facade, or entry point, for client applica-
tions to access the finite-element domain of OpenSees.

The Parameter class is shown in Fig. 3 along with the methods
that a client application uses to identify and update parameters in
the finite-element domain. Each instance of the Parameter class
maintains a list of integer keys and pointers to ParameterizedOb-
ject, which is a base class for all objects in the finite-element
domain that encapsulate model parameters. A client application
constructs a Parameter using a list of DomainComponents and a

�a� direct access to analysis classes; �b� access to analysis classes
asses:
string that indicates which parameter is to be identified. Each
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implementation of ParameterizedObject is responsible for associ-
ating this string with the integer key stored by a Parameter object.
This association is established by implementations of the
identifyParameter� � method, which is described in the following
section. When a client application invokes the update� � method
on a Parameter object, it propagates the new parameter value to
all instances of the ParameterizedObject class in its list by invok-
ing the updateParameter� � method, as shown in the implementa-
tion pseudocode of Fig. 3.

Identification of Parameters Using a Chain
of Responsibility

Each instance of the ParameterizedObject class is responsible for
determining if the string passed to the identifyParameter� �
method represents one of its encapsulated parameters. If this is
the case, the ParameterizedObject invokes a callback method on
the Parameter using an integer key and a pointer to itself �“this”
in C++�. If the ParameterizedObject cannot make the association,
it either forwards the parameterization request on to its compo-
nent objects or it terminates the search. This approach, based on
the Chain of Responsibility design pattern �Gamma et al. 1995�,
gives more than one object in the finite-element domain a chance
to identify a parameter as a client application does not know a
priori which class encapsulates the desired data.

The implementation of the identifyParameter� � and
updateParameter� � methods for a material nonlinear truss finite
element is shown in Fig. 4. The InelasticTruss class employs the
Strategy pattern to obtain its constitutive response from one of
many implementations of the Material class. The InelasticTruss
class encapsulates the cross-sectional area, A, of the element,
whereas the parameters that define the constitutive response are
encapsulated by, e.g., the BilinearMaterial class. When an in-
stance of the InelasticTruss class receives a request to identify a
parameter, it first checks if the character string corresponds to the
cross-sectional area. If so, the InelasticTruss invokes the callback
function, Parameter::addObject� �, with an integer key and a

Fig. 3. Class diagram showing the interaction of the Parameter class
pointer to itself; otherwise, it passes the request on to the Bilin-
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earMaterial class, where the process is repeated for its encapsu-
lated parameters. The Parameter stores these �key, pointer� pairs
in order to invoke the updateParameter� � method on the appro-
priate object when it receives a request to do so from a client
application.

Commentary on the Parameterization Approach

The advantages of this approach to identifying and updating pa-
rameters are:
• The identification of parameters follows existing links in the

framework. New links do not need to be established in order to
parameterize a finite-element model.

• Each ParameterizedObject encapsulates the association be-
tween integer keys and parameters, thus keys can be dupli-
cated horizontally �through composition relationships� and
vertically �through inheritance relationships� in OpenSees. The
Parameter class only needs to store, not interpret, the key
values.

• Updates are efficient as the Parameter class stores a pointer to
each ParameterizedObject. The links in the Chain of Respon-
sibility do not need to be followed in order to update a
parameter.
Despite these advantages, the following drawbacks are noted

for this approach to the parameterization of a finite-element
model:
• Reuse of existing code in other contexts can lead to noniden-

tification of parameters due to mismatch of identifying strings
with encapsulated data. For example, when the BilinearMate-
rial class is used for moment-curvature response of a beam
cross section rather than stress–strain response of a truss ele-
ment, the string “sigmaY” becomes a nonintuitive way to
identify the section yield moment as a parameter. Such prob-
lems can be overcome by modifying implementations of the
identifyParameter� � method to associate multiple strings with
encapsulated data.

• Finite-element models must be defined in “normal form”

he DomainComponent and ParameterizedObject classes of OpenSees
with t
with a minimum number of parameters in order to avoid
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data inconsistency of derived parameters. For example, com-
puting and storing the hardening stiffness, Eh=�E, in the
constructor of BilinearMaterial can lead to an inconsistent
state determination if Eh is not recalculated after a call to
updateParameter� � modifies either E or �.

Example Parameter Updating Application

A Monte Carlo analysis of a nonlinear truss structure demon-
strates the parameter updating functionality. The truss shown
in Fig. 5 is defined using the node, element, uniaxialMa-
terial, and other commands added to the Tcl interpreter for
building models in OpenSees �Mazzoni et al. 2006�. These com-
mands are composed into a Tcl script, trussModel.tcl.

To demonstrate the framework for parameterization and model
updating, the parameter and updateParameter commands
are also added to the Tcl interpreter. These commands invoke the
identifyParameter� � and updateParameter� � methods on objects
defined for the truss analysis. The sequence of Tcl commands
shown in Fig. 6 acts as a client application that performs a Monte
Carlo analysis of the truss using three normally distributed ran-
dom variables. The first parameter is associated with the cross-
sectional area of Element 1, the second parameter maps to the
yield stress of Elements 1 and 3, and the third represents the

Fig. 4. Class diagram for the InelasticTruss elem
horizontal load applied at Node 4. A diagram of the relevant ob-
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jects created at run time is shown in Fig. 7. The parameters are
updated 100 times with a load-controlled static pushover analysis
performed in ten load steps for each realization of the uncertain
parameters. The results of the Monte Carlo analysis are shown in
Fig. 6.

Response Sensitivity Computations in OpenSees

In addition to stand-alone finite-element model updating applica-
tions, the framework is designed to support sensitivity-based
model updating applications, where the gradient of the finite-
element response must be computed in order to find an optimal
solution. There are two approaches to evaluate the gradient of the
structural response: the finite difference method �FDM� and the
aforementioned DDM. Although the DDM is more efficient and
accurate than the FDM, it can be difficult to implement for finite-
element models with complex state determination algorithms. As
a result, some finite-element analysis software packages use a
mixture of the two methods, whereby the “high-level” governing
equations are differentiated directly whereas finite differences are
employed on the “low-level” constitutive equations �ABAQUS,
Inc. 2006�. The parameterization framework in OpenSees accom-

wing methods to identify and update parameters
ent sho
modates all three approaches by using the appropriate software
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design patterns. The extension of the finite-element analysis mod-
ules of OpenSees for sensitivity computations is outlined for
static problems, noting that the extension to dynamic problems is
straightforward.

For the case of static equilibrium where there is balance be-
tween the applied nodal load vector, P f, and the vector of static
resisting forces, Pr, the sensitivity of the nodal displacement vec-
tor U with respect to a single model parameter � is obtained by
solving the linear system of equations

�U

��
= K−1� �P f

��
− � �Pr

��
�

U
� �1�

ember properties, applied loading, and analysis type

Fig. 7. Object diagram of three member truss model showing the
links between Parameter objects and FE objects established at run
time
Fig. 5. Three member truss with Tcl script that defines the m
Fig. 6. Monte Carlo analysis of truss load-displacement response for
100 sets of parameter realizations derived from random values of
normally distributed cross-sectional area of Member 1, yield stress of
Members 1 and 3, and horizontal load at Node 4
MBER/OCTOBER 2008



where K�tangent stiffness matrix of the structure at the con-
verged equilibrium state; �P f /���derivative of the applied load
vector; and �Pr /���U�derivative of the resisting force vector
under the condition of fixed nodal displacements. The derivation
of Eq. �1� and its extension to the case of dynamic equilibrium are
found in the aforementioned references, and those cited therein,
on the DDM.

The efficiency of the DDM approach lies in the form of
Eq. �1�, where the factorization of the tangent stiffness matrix can
be reused for multiple right-hand side vectors, one for each
parameter in the finite-element model. The majority of computa-
tional effort for the DDM is devoted to the assembly of the right-
hand side vector. Whereas the vector �P f /�� is nonzero for only
those parameters that represent the applied loads, the vector
�Pr /���U must be assembled from element contributions in the
same manner as the resisting force vector itself.

Classes for DDM Response Sensitivity

To assemble and solve the system of response sensitivity
equations �Eq. �1��, two classes shown in Fig. 8 interface directly
with the core finite-element assembly and solution modules of
OpenSees. For each parameter in the finite-element model, the
SensitivityAlgorithm class solves Eq. �1� after requesting an
instance of the SensitivityIntegrator class to form the right-hand
side vector. The SensitivityAlgorithm uses an instance of the
LinearSOE class �McKenna 1997�, which encapsulates the factor-
ization of the tangent stiffness matrix K, in order to solve Eq. �1�.
The assembly of the right-hand side vector depends on the inte-
gration method used in the finite-element analysis, where separate
implementations of SensitivityIntegrator are provided for static
analysis and various time integration methods for dynamic analy-
sis, e.g., Newmark �1959�. The interaction between the two re-
sponse sensitivity classes and the finite-element framework is
detailed herein.

After convergence of the finite-element solution for a given
time step in the OpenSees analysis, a sequence of operations is
orchestrated between the SensitivityAlgorithm and the appropri-
ate implementation of the SensitivityIntegrator class in order to

Fig. 8. Class diagram showing the use of the Sensitiv
compute the DDM response sensitivity, as shown in Fig. 8.
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1. The SensitivityAlgorithm requests the Integrator of the ordi-
nary finite-element solution to form the tangent stiffness ma-
trix at the solution point, which is required for Eq. �1�.
Unless a Newton–Raphson solution strategy was employed
in the finite-element analysis, the last matrix assembled by
the Integrator may not reflect the tangent stiffness at the con-
verged state.

2. For each parameter in the finite-element model, the follow-
ing steps are taken by the SensitivityAlgorithm to compute
the corresponding response sensitivity in a path-dependent
finite-element analysis:

• Ask the SensitivityIntegrator to form the right-hand side
vector of Eq. �1� for the current parameter. The Sensitivi-
tyIntegrator assembles this vector from contributions of the
element and load objects in the OpenSees domain accord-
ing to the type of time integration method employed in
the finite-element analysis. This step implements the first
phase of the two-phase process described by Zhang and
Der Kiureghian �1993�.

• Ask the LinearSOE, which encapsulates the factorization of
the tangent stiffness matrix, to solve the system of simulta-
neous equations for the response sensitivity, �U /��, asso-
ciated with the current parameter.

• Pass the nodal response sensitivity to the SensitivityInte-
grator such that it can iterate over all element objects in the
finite-element model and allow them to use the solution to
update their history variables for path-dependent behavior
and prepare for the next time step in the analysis. This step
completes the two-phase process for path-dependent sensi-
tivity computations.

The one-to-many relationship between a SensitivityAlgorithm
and implementations of the SensitivityIntegrator class exemplifies
the Strategy design pattern �Gamma et al. 1995�.

Response Sensitivity Calculations Using the Visitor
Pattern

An important part of the software framework for sensitivity com-
putations is the use of the Parameter class to ensure that the

grator class as a Strategy by the SensitivityAlgorithm
ityInte
correct contributions to the right-hand side of Eq. �1� are com-
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puted. To this end, as shown in Fig. 8, the SensitivityAlgorithm
passes the current Parameter object through each method call to
the SensitivityIntegrator. There are two important design advan-
tages to allowing a Parameter to visit each object that contributes
to the right-hand side vector:
1. Each object can invoke the callback method

Parameter::getKey� � in order to determine if it encapsu-
lates the passed parameter, and thus compute the correct
contribution to the DDM sensitivity equations. If the Param-
eterizedObject is in the �key, pointer� list for the Parameter,
this method returns the key; otherwise it returns 0 and the
finite-element �FE� object can proceed with DDM computa-
tions accordingly. In a path-dependent analysis it is possible
for a FE object to return a nonzero sensitivity for all model
parameters, not just those it encapsulates �Haukaas and Der
Kiureghian 2005�.

2. A default implementation to compute response sensitivity by
finite differences is provided in the base class for element
and material models. The forward finite difference calcula-
tion is carried out as shown in Fig. 9. This approach enables
finite difference calculations to be carried out for element
and material models with complex state determination algo-
rithms whereas the DDM is employed for the higher level
response equations.

This approach to invoking callback methods during the response

Fig. 9. Class diagram for the InelasticTruss showi
sensitivity calculations mirrors the Visitor design pattern �Gamma
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et al. 1995�. The implementation pseudocode in Fig. 9 de-
monstrates how a Parameter visits each object in order to as-
semble the correct contribution to the DDM response sensitivity
equations.

Example Response Sensitivity Application

A parameter sensitivity analysis of the nonlinear truss structure
shown in Fig. 5 demonstrates the response sensitivity framework.
For this example, the truss analysis is deterministic and the gra-
dient of the nodal displacement is computed with respect to the
three parameters �cross-sectional area of Member 1, yield stress
of Members 1 and 3, and horizontal load at Node 4�. The analysis
is carried out via a Tcl script in order to show the steps taken by
a sensitivity-based model updating application. The compute-
Gradients command is added to the Tcl interpreter and when
issued it invokes the response sensitivity computations described
in the previous section.

The parameter sensitivity analysis is carried out using the Tcl
commands shown in Fig. 10. The DDM response sensitivity is
computed at each of the ten load steps in the pushover analysis. A
first-order approximation is made to assess the effect of changes
in the parameter values on the load-displacement response of the

thods to compute DDM resisting force sensitivity
ng me
truss
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�U =
�U

��
�� �2�

where �U /���DDM response sensitivity computed with respect
to each model parameter �= �A ,�y , Px�. The change in each pa-
rameter, ��, is assumed to be �10% of its mean value assigned
in trussModel.tcl. Sensitivity with respect to each parameter is
shown in Fig. 10, where it is noted that the truss response is most
sensitive to relative changes in the applied loading. As expected,
there is zero sensitivity to the material yield stress prior to reach-
ing the elastic limit, at which point there is a discrete jump in the
DDM results �Conte et al. 2003�.

Damage Detection Application

A full-scale seven-story reinforced concrete building slice tested

Fig. 10. Parametric sensitivity analysis of three member truss model
showing response and first-order change in response using DDM
response sensitivity and �10% changes in: �a� cross-sectional area of
Member 1; �b� yield stress of Members 1 and 3; and �c� horizontal
load at Node 4
on the UCSD-NEES shake table �Ozcelik et al. 2008� demon-
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strates the application of the parameterization framework to a
damage detection analysis. An elevation view of the test structure
is shown Fig. 11 and structural details can be found at http://
nees.ucsd.edu/7Story.html. A finite-element model updating strat-
egy is applied where the objective function is a combination of
residuals in natural frequency, mode shape components, and
pseudomodal flexibility matrix components. The elastic modulus
of each structural component is used as a modal parameter, giving
a total of seven parameters to be identified using ambient vibra-
tion data. Four-noded shell finite elements model the web wall
�Structural Components C1–C7�. As shown in Fig. 11, Compo-
nent C5 is discretized into four shell elements, and a single in-
stance of the Parameter class maps to the elastic modulus, E, at
each of the 16 integration points.

Measured �initial� values of the elastic modulus for each struc-
tural component �C1–C7� of the shear wall building are listed in
Table 1. After subjecting the building to ambient vibration on the
shake table, the finite-element model is updated to reflect the
recorded dynamic response. Updated values of the elastic modu-
lus for Components C1–C7 are shown in Table 1, and serve as
reference values for the subsequent damage identification analysis
of the building for successively higher levels of shake table exci-
tation. He et al. �2006� provide further details of the numerical
results of the damage detection analysis.

Concluding Remarks

An object-oriented design to support model updating and re-
sponse sensitivity applications in the OpenSees finite-element

Table 1. Initial and Updated Values of Elastic Modulus of Structural
Components in the UCSD-NEES Reinforced Concrete Shear Wall
Building �He et al. 2006�

Structural
component

Initial value
�GPa�

Reference value
�GPa�

C1 24.47 19.83

C2 26.00 24.13

C3 34.84 36.90

C4 30.20 39.26

C5 28.90 33.95

C6 32.14 16.15

C7 33.54 16.77

Fig. 11. Reinforced concrete shear wall building and parametrization
of Structural Component C5 for the purposes of damage detection
CIVIL ENGINEERING © ASCE / SEPTEMBER/OCTOBER 2008 / 289



framework has been developed. Parameters are identified and
updated using a top-down approach aided by the Facade and
Chain of Responsibility design patterns. Analytical DDM
response sensitivity computations are implemented using the
Strategy and Visitor patterns. Example applications written in the
Tcl scripting language demonstrate the framework for model
updating and DDM response sensitivity. The framework is able
to support a wide array of future extensions that use OpenSees
as a computational engine for reliability, optimization, and
damage detection. These extensions include, but are not limited
to, high-fidelity reliability analysis to automatically reduce
model error and the incorporation of multihazard, nonlinear
finite-element reliability analysis in structural health monitoring
applications.
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