Connectors
Connecting Employers and Students
Jonathan Elder, elderjo@onid.orst.edu
Rebecca Johnson, johnsore@onid.orst.edu
Mentor: Mike Bailey, mjb@cs.oregonstate.edu

The goal of this project is to keep some of the fresh Computer Science graduates of OSU in the local area. Local software companies need to connect with good people, and we can provide that connection.

We have provided a web-based solution to fill this need and to connect the local software companies with some employable graduates. There will also be a short set of interest questions that the student can answer, this will allow an automated match for some similar interests between the student and the software companies. When an interest match occurs, the student's resume will automatically be sent to the employer so that a meeting or interview can be arranged.

We found that a combination of MySQL (an open source database program) and PHP (an internet scripting language) combined with a web-server would be the best way to handle the needed tasks. We realized that keeping everything in "modular" format would help to keep everything easy for future updates and maintenance.

Introduction
Project Description
Results
Conclusions

Surf's Up!
Scott Whitacre, whitacrs@engr.orst.edu
Dmitry Purkhale, purkhald@onid.orst.edu
Mentor: Dr. Bailey, mjb@cs.oregonstate.edu

Using JOGL, we created a 3-D model of a tsunami shelter. It has 7 adjustable parameters so that the general shape may be adjusted and tested against a computer model of a tsunami wave. The result of the model's performance is then displayed to the user. The initial model has been developed using regular OGL and C++ and was later extended for use over network via JOGL.

Our results were perfect and we could have not asked for anything better. We were lifted up carried around for hours on the shoulders of our fellow classmates.

Introduction
Project Description
Results
Conclusions

November 28, 2005
Forestry Data Management
Helping Make Researchers More Efficient

Sensors are installed in the Experimental Forest which record data continuously, resulting in large streams of raw data. Currently, researchers must manually check this data for errors and convert to a standard format for statistical analysis.

Introduction

The Forestry Department needs an efficient, automated method to manage raw data recorded at the Experimental Forest and organize it into a consistent format for archiving and easy retrieval.

Project Description

Through the use of Java and MySQL, we were able to design an automated system to parse incoming raw data, remove data deemed erroneous, and store it in a database for future statistical analysis by these researchers.

Results

More on this as our project nears completion...

Conclusions

Fuzzy Bunny Bulletin Board
A Democratically Operated Forum

Today's forums are useful, but can be difficult to find specific information on. It is our aim to create an efficient, content-concise forum, run by its users.

Introduction

Fuzzy Bunny Bulletin Board (or FBBB for short) will be a fully functional web-based forum built from the ground up, with the added feature of decentralized administration.

Rather than having the responsibility of moderation on a few individuals, it will be distributed accordingly to the forum's members based on their contributions to, and involvement in the forum.

Project Summary

Happens automatically

Power given to regular (frequent) users

Power given to those who use it

Power given to answer providers

Power revoked from vandals / abusers

Power Distribution

FBBB is a thing that does stuff better than some other people who have sites that do stuff.

Conclusions

November, 2005
Introduction

A recent advance in video games has been the use of procedural techniques to automate the creation of unique objects in a short amount of time. Procedural Vehicle Generator is a project designed to undertake the task of procedurally generating vehicles to be used in games. We have created this software that will be able to produce a vast array of unique cars. The idea is to take the load off of artists and provide a vast array of unique vehicles and place that load on the software we are creating.

- Create the paths of the car they want.
- Twisting centers
- Add detail through subdivision
- Create environments & other objects
- Create textures and material properties
- Automated process

Conclusion

With our software, gamers will be stunned by the fantastical variety of vehicles we generate. Imagine gamers saying "Wow, how did they create so many truly looking vehicles?"

LIMITED NUMBER OF VEHICLES CREATED ACCORDING TO A VARIETY OF PARAMETERS. This software is truly a time-saving.
Introduction

SmartForms provides business users to create and manage web-based interactive applications with minimal support from IT.

Process

The purpose of this project is to develop and document a model demonstrating the use of rule technology for automating mortgage application and processing.

Results

Successfully gathered user requirements and prepared the Customer Requirement Specification.

Conclusions

We had a great experience working with Fair Isaac and had this excellent opportunity to learn a powerful technology like SmartForms.
Remote Olympic Commentator System

Bringing the Olympics to You

Our group shares the love of sports. It is not often that we have had the chance to combine athletics with computer science. So we were excited at the opportunity to work on a system for the largest sporting event in the world, The Olympic Games.

Cody Wise, wisec@onid.orst.edu
Joel Ranck, ranckj@onid.orst.edu
Mentor: Carlos Jensen, ciensen@eecs.oregonstate.edu

While most broadcasters do have an impressive knowledge of sports, they rely on a Commentary Information System (CIS) that makes these facts and figures available to them.

CIS will be available outside of the stadium where the Olympics are being held for the first time.

Our team will be designing software that will take the CIS stream and attach it to a user interface.

This would allow smaller broadcast teams to be able to broadcast to their viewers.

Results will be added here.

November 28, 2005

Conclusion will go here.

Introduction

Project Description

Results

Visual Data

Conclusions

School of EECS

Emergency Response Simulator

A crude prototype of an Emergency Response Simulator has already been designed by Coelo Company of Design. Our goal is to take the simulator a step further by finishing the development and turning this into a powerful, easy to use product that will greatly assist the Corvallis Fire Department.

Christopher Dale, dale@engr.oregonstate.edu
Michael Goin, goinmi@engr.oregonstate.edu
Dan Whiting, whitingd@engr.oregonstate.edu
Mentor: Carl Niedner, cdn@coelo.com

We found that...

• Our software works flawlessly.

November 29, 2005

We realized that...

*Software design is hard, but rewarding work!

Introduction

Project Description

Results

Conclusions

School of EECS
Introduction

With the recent relocation of the School of EECS to Kelley Engineer Center, the receptionist finds it hard to keep track of faculty members. The current system of using a third-party instant messaging program does not work.

Project Description

The main feature of this project will allow the receptionist to notify faculty members that there are visitors waiting to see them, as well as allow the receptionist to see the status of the faculty members. Also, to help improve efficacy, a statistical analysis will be done on each faculty member's time through the use of the system.

Results

- C++ best language for development
- Database Design took less time than planned
- Interfaces easy to develop
- Need to stick to the time schedule
- Project moving forward

Conclusions

More on this when we have something to conclude. For now we will just fill this box with random information.
Kuon Go
Enhancement of an ancient Chinese Board Game
Mentor: Aaron Smith (AaronS@PIPEWORKS.com)
Pipeworks, Inc.
CS 461/462 11/20/2005

Introduction
Go is an ancient Chinese board game that is played by two players. The purpose of the game is to capture the most territory by blocking off sections of the board and surrounding the opponents pieces to remove them from the board. Kuon Go will take the original game and hopefully improve upon it.

Project Description
Our version of Go will have the same basic rules as the original game but with additional features to enhance the game play. Our group will be responsible for the basic game play and the AI. Developing the AI will be the core of the project. There are currently no good solutions for a Go AI but we expect to make up for that with the real time play. The project is prototype, so the features listed here will be expanded upon by Pipeworks for the final version. The purpose of the prototype is to show publishers and hopefully get the game published.

Results
- 2 Players, human or AI
- 2D Graphics
- Real time play
- Different piece shapes and sizes
- Customizable game boards
- Optional classic Go game play
- Multiple AI difficulties
- Multiple AI personalities
- Energy level based on board control helps determine next piece
- Multiple, optional win conditions

Conclusions
In the end we believe this reconstruction of Go will result in a fun and original game. The most difficult portion of this project is to create an efficient, effective and customizable AI.

Group Members
Tim Markle: marklet@onid.orst.edu
Zac Sandine: sandinez@onid.orst.edu
Adam Young: youngad@onid.orst.edu

Centralized Web Workspace
World Wide Word-processing
Michael Tichenor, ladrasek@yahoo.com
Rob Steiner, rob@steinnet.com

Introduction
Since current computing trends show an overall shift from distributed to centralized software organization, why not word-processing? Users all over the world can benefit from an online workspace.

Project Description
Utilizing current web technologies, the Centralized Web Workspace will allow people around the world to create, edit and store their written documents online. An online workspace allows users to edit and print their documents from any Internet enabled workstation. A secure platform assures users their work is safe and private.

Results
Coming soon...

Conclusions
Coming soon...
Hoop Jam Tournament Scheduler

Corvallis 3-on-3 Basketball

Team Members: Marcus Fisher, fishmarc@onid.orst.edu
 Pete Garman, garmanpe@onid.orst.edu
 Sponsor: Biff Traber, biff.traber@comcast.net

Introduction

This project schedules all teams by divisions for the annual Hoop Jam 3-on-3 basketball tournament.

Project Description

The scheduler is divided into two stages: the first day round robin matches, then the final day bracket tournament.

Results

This project has been a great experience in professional relationships, teamwork, and database application.

Conclusions

We found that establishing strong professional relationships and team bonds is an important key to the success of any software project.

Price Prediction for Ebay Auctions

We Keep Money In Your Wallet

Team: Fly on the Wall

Bean Rea rea@engr.orst.edu
Keith Nye nye@engr.orst.edu
Mentor: Weng-Keen Wong
wong@eeecs.oregonstate.edu

Our project aims to predict the price of three classes of Volume: Low, Medium (Probably Will Change), High. From items placed onto an auction service such as Ebay. Using relevant data from the auctions we will predict the price of a similar item listed for auction. These results will be validated using a variety of statistical methods / metrics such as classification accuracy, 0-1 loss, mean squared error, and ROC curves.

Introduction

Previous research in the field of auction price prediction has been done by Rayid Ghani. This project seeks to expand on that. To do this, our mentor requires data (via an auction crawler / parser) and at least 2 machine learning algorithms to predict prices. (Probably Will Change)

Project Description

Our project aims to predict the price of three classes of Volume: Low, Medium, High. From items placed onto an auction service such as Ebay. Using relevant data from the auctions we will predict the price of a similar item listed for auction. These results will be validated using a variety of statistical methods / metrics such as classification accuracy, 0-1 loss, mean squared error, and ROC curves.

Results

We found that …

Conclusions

Success: We Can Predict The FUTURE
Goals: Spread This To Other Fields.
 -Real Estate
 -Fantasy Sports

Graphs, charts, imagery

Graphs, charts, imagery

Graphs, charts, imagery

Graphs, charts, imagery
Painterly Rendering

Transforming Reality

Dan Keenan (keenan@onid.orst.edu)
Bryan Beck (beckb@onid.orst.edu)
Mentor: Eugene Zhang (zhang@ee/cs.orst.edu)

Introduction:
This project was undertaken to further our knowledge about graphical design and implementation. Our goal is to successfully create a program that renders digital images and videos as painted mediums.

Project Description:
- What we did: based upon a prior method for rendering images to paintings, we improved upon the process and incorporated video transformations as well.
- How did we do it: Using OpenGL and MPC we built a user friendly program that allows the client to transform their images into paintings.
- Why we did it this way: To provide the most accessible and efficient method for converting images to high quality rendered paintings.

Results:
The program successfully renders images in an artistic fashion that complies with the specifications of the user. The project allows for easy manipulation of various artistic styles as well as custom settings to accommodate for a variety of results.

Conclusion:
We realized that mimicking artistic styles is more of an art than a science as it was difficult for a single algorithm to achieve accuracy in representing a wide range of artistic styles.

References:
Image and Video Based Painterly Animation:
http://www.cc.gatech.edu/ipl/projects/artstyling