Instructor: Dr. Thinh Nguyen
Credits: 4
Meeting Time: TR: 8-9:50 AM
Location: Owen 103
Office Hour: TR: 1-2 PM
Website: http://web.engr.oregonstate.edu/~thinhq/teaching/ece465/fall05/fall05.html

Course Description:

This course covers the basic concepts of networking layers and their functionalities. These include network architectures, routing algorithms, and link and transport protocols.

Prerequisites:

By course: ECE 375, CS 261, or instruction’s permission.
By topic: Basic knowledge of computer organization, programming skills.

Course Learning Objectives:

Both graduate/undergraduate students must demonstrate the ability to:

1. Analyze the optimum segment size which leads to minimum delay in sending a large data file.
 (ABET Outcomes: a, c, k)
2. Analyze the latency of sending an object as a function of RTT window size (static and dynamic).
 (ABET Outcomes: a, c, k)
3. Analyze the distance vector algorithm. (ABET Outcomes: b, c, j, k)
4. Analyze the link-state algorithm. (ABET Outcomes: a, j)
5. Analyze the Carrier Sense Multiple Access with Collision Detection (CSMA/CD).
 (ABET Outcomes: b, c, j, k)
6. Design a triple duplicate ACKs. (ABET Outcomes: b, c, j, k).

Graduate student must demonstrate the ability to:

1. Design and implement a sophisticated, reliable transport protocol. (ABET Outcomes: b, c, j, k).

Topics:

- Introduction to computer networks and the Internet
- Basic probability theory
- Application layer
 - http
• FTP
• SMTP
• DNS
• P2P
 o Socket programming

• Transport Layer
 o Principles of reliable transport
 o UDP
 o TCP
 o Congestion control

• Network Layer and Routing
 o Routing principles
 o IP
 o Routing in the Internet

• Link Layer and Local Area Networks
 o Error detection and correction
 o Multiple access protocols and LANs
 o LAN address and ARP
 o Ethernet
 o IEEE 802.11 LANs (Wireless)

• Physical Layer
 o Router design overview
 o Optical communication overview

Grading:

Assignments (written and programming assignments) 40%
Midterm 1 15%
Midterm 2 15%
Final 30%