Lecture 5: Introduction to Entropy Coding

Thinh Nguyen
Oregon State University
Codes

Definitions:

- **Alphabet**: is a collection of symbols.
- **Letters (symbols)**: is an element of an alphabet.
- **Coding**: the assignment of binary sequences to elements of an alphabet.
- **Code**: A set of binary sequences.
- **Codewords**: Individual members of the set of binary sequences.
Examples of Binary Codes

- English alphabets:
 - 26 uppercase and 26 lowercase letters and punctuation marks.
 - ASCII code for the letter “a” is 1000011
 - ASCII code for the letter “A” is 1000001
 - ASCII code for the letter “,” is 0011010

Note: all the letters (symbols) in this case use the same number of bits (7). These are called fixed length codes.
Examples of Binary Codes

- English alphabets:
 - 26 uppercase and 26 lowercase letters and punctuation marks.
 - ASCII code for the letter “a” is 1000011
 - ASCII code for the letter “A” is 1000001
 - ASCII code for the letter “,” is 0011010

Note: all the letters (symbols) in this case use the same number of bits (7). These are called fixed length codes.

The average number of bits per symbol (letter) is called the rate of the code.
Code Rate

- Average length of the code is important in compression.

- Suppose our source alphabet consists of four letters $a_1, a_2, a_3,$ and a_4 with probabilities $P(a_1) = 0.5$, $P(a_2) = 0.25$, and $P(a_3) = P(a_4) = 0.125$.

- The average length of the code is given by

$$l = \sum_{i=1}^{4} P(a_i) n(a_i)$$

- $n(a_i)$ is the number of bits in the codeword for letter a_i.
Uniquely Decodable Codes

<table>
<thead>
<tr>
<th>Letters</th>
<th>Probability</th>
<th>Code 1</th>
<th>Code 2</th>
<th>Code 3</th>
<th>Code 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>a₁</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a₂</td>
<td>0.25</td>
<td>0</td>
<td>1</td>
<td>10</td>
<td>01</td>
</tr>
<tr>
<td>a₃</td>
<td>0.125</td>
<td>1</td>
<td>00</td>
<td>110</td>
<td>011</td>
</tr>
<tr>
<td>a₄</td>
<td>0.125</td>
<td>10</td>
<td>11</td>
<td>111</td>
<td>0111</td>
</tr>
<tr>
<td>Average Length</td>
<td>1.125</td>
<td>1.25</td>
<td>1.75</td>
<td>1.875</td>
<td></td>
</tr>
</tbody>
</table>

Code 1: not unique $a₁$ and $a₂$ have the same codeword

Code 2: not uniquely decodable: 100 could mean $a₂a₃$ or $a₂a₁a₁$

Codes 3 and 4: uniquely decodable: What are the rules?

Code 3 is called **instantaneous** code since the decoder knows the codeword the moment a code is complete.
How do we know a uniquely decodable code?

- Consider two codewords: 011 and 011101
 - Prefix: 011
 - Dangling suffix: 101

- Algorithm:
 1. Construct a list of all the codewords.
 2. Examine all pairs of codewords to see if any codeword is a prefix of another codeword. If there exists such a pair, add the dangling suffix to the list unless there is one already.
 3. Continue this procedure using the larger list until:
 1. Either a dangling suffix is a codeword -> not uniquely decodable.
 2. There are no more unique dangling suffixes -> uniquely decodable.
Examples of Unique Decodability

- Consider \{0,01,11\}
 - Dangling suffix is 1 from 0 and 01
 - New list: \{0,01,11,1\}
 - Dangling suffix is 1 (from 0 and 01, and also 1 and 11), and is already included in previous iteration.
 - Since the dangling suffix is not a codeword, \{0,01,11\} is uniquely decodable.
Examples of Unique Decodability

Consider \{0,01,10\}

- Dangling suffix is 1 from 0 and 01
- New list: \{0,01,10,1\}
- The new dangling suffix is 0 (from 10 and 1).
- Since the dangling suffix 0 is a codeword, \{0,01,10\} is not uniquely decodable.
Prefix Codes

- **Prefix codes**: A code in which no codeword is a prefix to another codeword.

- A prefix code can be defined by a binary tree

Example:

```
<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>00</td>
</tr>
<tr>
<td>b</td>
<td>01</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
</tr>
</tbody>
</table>
```

```
ccaccbbccc
1100011101111
```
Decoding a Prefix Codeword

Repeat
Start at root of tree
Repeat
If read bit = 1 then go right
Else go left
Until node is a leaf
Report leaf
Until end of the code

11000111100
Decoding a Prefix Codeword
How good is the code?

Suppose a, b, and c occur with probabilities 1/8, 1/4, and 5/8, respectively.

```
b = 1/4
a = 1/8

c
5/8
```

bit rate = \((1/8)2 + (1/4)2 + (5/8)1\) = 11/8 = 1.375 bps

Entropy = 1.3 bps

Standard code = 2 bps

(bps = bits per symbol)
Are we losing any efficiency by using prefix code?

- The answer is NO!

- **Theorem 1:** Let C be a code with \(N \) code words with lengths \(l_1, l_2, \ldots, l_N \). If C is uniquely decodable, then

\[
K(C) = \sum_{i=1}^{N} 2^{-l_i} \leq 1
\]

- **Theorem 2:** Given a set of integers \(l_1, l_2, \ldots, l_N \) that satisfy the inequality

\[
\sum_{i=1}^{N} 2^{-l_i} \leq 1
\]

we can always find a prefix code with codeword lengths \(l_1, l_2, \ldots, l_N \).
Proof of Theorem 1

\[K(C) = \sum_{i=1}^{N} 2^{-l_i} \leq 1 \]

\[
\left(\sum_{i=1}^{N} 2^{-l_i} \right)^n = \left(\sum_{i=1}^{N} 2^{-l_{i1}} \right) \left(\sum_{i=1}^{N} 2^{-l_{i2}} \right) \cdots \left(\sum_{i=1}^{N} 2^{-l_{i3}} \right) = \sum_{i_1=1}^{N} \sum_{i_2=1}^{N} \cdots \sum_{i_n=1}^{N} 2^{-(l_{i1}+l_{i2}+\cdots+l_{in})}
\]

The exponent \(k=(l_{i1}+l_{i2}+\cdots+l_{in}) \) is simply the length of \(n \) codewords.

Smallest value of \(k \) is \(n \) and largest value is \(Sn \).

So,

\[[K(C)]^n = \sum_{k=n}^{nl} A_k 2^{-k} \]

\(A_k \) is the number of combinations of \(n \) codewords that have a combined length of \(k \).

\(A_k \leq 2^k \) Since for a uniquely decodable code, each sequence can represent one and only one sequence of codewords. This implies

\[[K(C)]^n = \sum_{k=n}^{nl} A_k 2^{-k} \leq \sum_{k=n}^{nl} 2^k 2^{-k} = nl - n + 1 \]

Growth linearly!!!!

Thus, \(K(C) \leq 1 \)
Proof of Theorem 2: If \(\sum_{i=1}^{N} 2^{-l_i} \leq 1 \) we can always find a prefix codes with the length \(l_1, l_2 \ldots l_N \)

Assume: \(l_1 \leq l_2 \leq \ldots \leq l_N \)

Define: \(w_1 = 0, w_j = \sum_{i=1}^{j-1} 2^{l_j - l_i} \) \(j > 1 \)

Fact 1: binary representation of \(w_j \) would take up \(\text{ceil}[\log_2 (w_j + 1)] \)

Fact 2: The number of bits in the binary representation of \(w_j \) is less than \(l_j \)

\[
\log_2 (w_j + 1) = \log_2 \left(\sum_{i=1}^{j} 2^{l_j - l_i} + 1 \right) = \log_2 \left(2^{l_j} \left[\sum_{i=1}^{j-1} 2^{-l_i} + 2^{-l_j} \right] \right) \\
= l_j + \log_2 \left(\sum_{i=1}^{j} 2^{-l_i} \right) \leq l_j
\]
Proof of Theorem 2: If $\sum_{i=1}^{N} 2^{-l_i} \leq 1$ we can always find a prefix codes with the length $l_1, l_2 \ldots l_N$

Now using the binary representation of w_j, we define the codeword as:

If $\lceil \log_2 (w_j + 1) \rceil = l_j$, then the jth codeword c_j is the binary representation of w_j.

If $\lceil \log_2 (w_j + 1) \rceil \leq l_j$, then the jth codeword c_j is the binary representation of w_j with $l_j - \lceil \log_2 (w_j + 1) \rceil$ zeros.

This is clearly a decodable code (w_j are all different since $\sum_{i=1}^{j-1} 2^{l_j-l_i}$ is an increased function, each w_j also has length l_j).
Proof of Theorem 2: If $\sum_{i=1}^{N} 2^{-l_i} \leq 1$ we can always find a prefix codes with the length $l_1, l_2 \ldots l_N$.

Suppose the claim is not true, then for some $j < k$, c_j is the prefix of c_k. This means l_j most significant bits for w_k form the binary representation of w_j.

\[w_j = \left\lfloor \frac{w_k}{2^{l_k-l_j}} \right\rfloor \quad \text{However} \quad w_k = \sum_{i=1}^{k-1} 2^{l_k-l_j} \]

Therefore,

\[\frac{w_k}{2^{l_k-l_j}} = \sum_{i=1}^{k-1} 2^{l_j-l_i} = w_j + \sum_{i=j}^{k-1} 2^{l_j-l_i} = w_j + 1 + \sum_{i=j+1}^{k-1} 2^{l_j-l_i} \geq w_j + 1 \]

That is the smallest value for $\frac{w_k}{2^{l_k-l_j}}$ is $w_j + 1$.

Hence, contradicts!