
3 Secret Sharing

DNS is the system that maps human-memorable Internet domains like irs.gov to
machine-readable IP addresses like 166.123.218.220. If an attacker can masquerade as
the DNS system and convince your computer that irs.gov actually resides at some other
IP address, it might result in a bad day for you.

To protect against these kinds of attacks, a replacement called DNSSEC has been pro-
posed. DNSSEC uses cryptography to make it impossible to falsify a domain-name map-
ping. The cryptography required to authenticate DNS mappings is certainly interesting,
but an even more fundamental question remains: Who can be trusted with the master cryp-
tographic keys to the system? The non-pro�t organization in charge of these kinds of things
(ICANN) has chosen the following system. The master key is split into 7 pieces and dis-
tributed on smart cards to 7 geographically diverse people, who keep them in safe-deposit
boxes.

At least �ve key-holding members of this fellowship would have to meet at a
secure data center in the United States to reboot [DNSSEC] in case of a very
unlikely system collapse.

“If you round up �ve of these guys, they can decrypt [the root key] should the
West Coast fall in the water and the East Coast get hit by a nuclear bomb," [said]
Richard Lamb, program manager for DNSSEC at ICANN.1

How is it possible that any 5 out of the 7 key-holders can reconstruct the master key,
but (presumably) 4 out of the 7 cannot? The solution lies in a cryptographic tool called a
secret-sharing scheme, the topic of this chapter.

3.1 Definitions

We begin by introducing the syntax of a secret-sharing scheme:

Definition 3.1

(Secret-sharing)

A t-out-of-n threshold secret-sharing scheme (TSSS) consists of the following algorithms:

I Share: a randomized algorithm that takes a messagem ∈ M as input, and outputs a
sequence s = (s1, . . . , sn) of shares.

I Reconstruct: a deterministic algorithm that takes a collection of t or more shares as
input, and outputs a message.

We callM the message space of the scheme, and t its threshold. As usual, we refer to the
parameters/components of a scheme Σ as Σ.t , Σ.n, Σ.M, Σ.Share, Σ.Reconstruct.

1
h�p://www.livescience.com/6791-internet-key-holders-insurance-cyber-a�ack.html

© Copyright Mike Rosulek. Creative Commons BY-NC-SA 4.0. Latest version at joyofcryptography.com.

http://www.livescience.com/6791-internet-key-holders-insurance-cyber-attack.html
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://joyofcryptography.com

Draft: January 3, 2021 CHAPTER 3. SECRET SHARING

In secret-sharing, we number the users as {1, . . . ,n}, with user i receiving share si . Let
U ⊆ {1, . . . ,n} be a subset of users. Then {si | i ∈ U } refers to the set of shares belonging
to users U . If |U | > t , we say that U is authorized; otherwise it is unauthorized. The
goal of secret sharing is for all authorized sets of users/shares to be able to reconstruct the
secret, while all unauthorized sets learn nothing.

Definition 3.2

(TSSS correctness)

A t-out-of-n TSSS satis�es correctness if, for all authorized setsU ⊆ {1, . . . ,n} (i.e., |U | > t)
and for all s ← Share(m), we have Reconstruct({si | i ∈ U }) =m.

m

Share

s1 s2 s3 s4 s5 · · · sn

Reconstruct

m

n shares

any t of the shares

Security Definition

We’d like a security guarantee that says something like:

if you know only an unauthorized set of shares, then you learn no information
about the choice of secret message.

To translate this informal statement into a formal security de�nition, we de�ne two li-
braries that allow the calling program to learn a set of shares (for an unauthorized set),
and that di�er only in which secret is shared. If the two libraries are interchangeable,
then we conclude that seeing an unauthorized set of shares leaks no information about
the choice of secret message. The de�nition looks like this:

Definition 3.3

(TSSS security)

Let Σ be a threshold secret-sharing scheme. We say that Σ is secure ifLΣ
tsss-L

≡ LΣ
tsss-R

, where:

LΣ
tsss-L

share(mL,mR ∈ Σ.M,U):
if |U | > Σ.t : return err

s ← Σ.Share(mL)

return {si | i ∈ U }

LΣ
tsss-R

share(mL,mR ∈ Σ.M,U):
if |U | > Σ.t : return err

s ← Σ.Share(mR)

return {si | i ∈ U }

In an attempt to keep the notation uncluttered, we have not written the type of the argument
U , which isU ⊆ {1, . . . , Σ.n}.

48

Draft: January 3, 2021 CHAPTER 3. SECRET SHARING

Discussion & Pitfalls

I Similar to the de�nition of one-time secrecy of encryption, we let the calling pro-
gram choose the two secret messages that will be shared. As before, this models an
attack scenario in which the adversary has partial knowledge or in�uence on the
secretm being shared.

I The calling program also chooses the set U of users’ shares to obtain. The libraries
make it impossible for the calling program to obtain the shares of an authorized set
(returning err in that case). This does not mean that a user is never allowed to dis-
tribute an authorized number of shares (this would be strange indeed, since it would
make any future reconstruction impossible). It just means that we want a security
de�nition that says something about an attacker who sees only an unauthorized set
of shares, so we formalize security in terms of libraries with this restriction.

I Consider a 6-out-of-10 threshold secret-sharing scheme. With the libraries above,
the calling program can receive the shares of users {1, . . . , 5} (an unauthorized set)
in one call to share, and then receive the shares of users {6, . . . , 10} in another call.
It might seem like the calling program can then combine these shares to reconstruct
the secret (if the same message was shared in both calls). However, this is not the
case because these two sets of shares came from two independent executions of the
Share algorithm. Shares generated by one call to Share should not be expected to
function with shares generated by another call, even if both calls to Share used the
same secret message.

I Recall that in our style of de�ning security using libraries, it is only the internal
di�erences between the libraries that must be hidden. Anything that is the same
between the two libraries need not be hidden. One thing that is the same for the two
libraries here is the fact that they output the shares belonging to the same set of users
U . This security de�nition does not require shares to hide which user they belong
to. Indeed, you can modify a secret-sharing scheme so that each user’s identity
is appended to his/her corresponding share, and the result would still satisfy the
security de�nition above.

I Just like the encryption de�nition does not address the problem of key distribution,
the secret-sharing de�nition does not address the problem of who should run the
Share algorithm (if its input m is so secret that it cannot be entrusted to any sin-
gle person), or how the shares should be delivered to the n di�erent users. Those
concerns are considered out of scope by the problem of secret-sharing (although we
later discuss clever approaches to the �rst problem). Rather, the focus is simply on
whether it is even possible to encode data in such a way that an unauthorized set of
shares gives no information about the secret, while any authorized set completely
reveals the secret.

An Insecure Approach

One way to understand the security of secret sharing is to see an example of an “obvious”
but insecure approach for secret sharing, and study why it is insecure.

49

Draft: January 3, 2021 CHAPTER 3. SECRET SHARING

Let’s consider a 5-out-of-5 secret-sharing scheme. This means we want to split a secret
into 5 pieces so that any 4 of the pieces leak nothing. One way you might think to do this
is to literally chop up the secret into 5 pieces. For example, if the secret is 500 bits, you
might give the �rst 100 bits to user 1, the second 100 bits to user 2, and so on.

Construction 3.4

(Insecure TSSS)
M = {0, 1}500

t = 5
n = 5

Share(m):
splitm intom = s1‖ · · · ‖s5,

where each |si | = 100
return (s1, . . . , s5)

Reconstruct(s1, . . . , s5):
return s1‖ · · · ‖s5

It is true that the secret can be constructed by concatenating all 5 shares, and so this
construction satis�es the correctness property. (The only authorized set is the set of all 5
users, so we write Reconstruct to expect all 5 shares.)

However, the scheme is insecure (as promised). Suppose you have even just 1 share.
It is true that you don’t know the secret in its entirety, but the security de�nition (for 5-
out-of-5 secret sharing) demands that a single share reveals nothing about the secret. Of
course knowing 100 bits of something is not the same as than knowing nothing about it.

We can leverage this observation to make a more formal attack on the scheme, in the
form of a distinguisher between the two Ltsss-? libraries. As an extreme case, we can
distinguish between shares of an all-0 secret and shares of an all-1 secret:

A

s1 := share(0500, 1500, {1})
return s1

?
= 0100

Let’s link this calling program to both of the Ltsss-? libraries and see what happens:

A

s1 := share(0500, 1500, {1})
return s1

?
= 0100

�

Ltsss-L

share(mL,mR ,U):
if |U | > t : return err

s ← Share(mL)

return {si | i ∈ U }

When A is linked to Ltsss-L, it
receives a share of 0500, which
will itself be a string of all ze-
roes. In this case, A outputs 1
with probability 1.

A

s1 := share(0500, 1500, {1})
return s1

?
= 0100

�

Ltsss-R

share(mL,mR ,U):
if |U | > t : return err

s ← Share(mR)

return {si | i ∈ U }

When A is linked to Ltsss-R, it
receives a share of 1500 which
will be a string of all ones. In this
case,A outputs 1 with probabil-
ity 0.

We have constructed a calling program which behaves very di�erently (indeed, as
di�erently as possible) in the presence of the two libraries. Hence, this secret-sharing
scheme is not secure.

Hopefully this example demonstrates one of the main challenges (and amazing things)
about secret-sharing schemes. It is easy to reveal information about the secret gradually as

50

Draft: January 3, 2021 CHAPTER 3. SECRET SHARING

more shares are obtained, like in this insecure example. However, the security de�nition
of secret sharing is that the shares must leak absolutely no information about the secret,
until the number of shares passes the threshold value.

3.2 A Simple 2-out-of-2 Scheme

Believe it or not, we have already seen a simple secret-sharing scheme! In fact, it might
even be best to think of one-time pad as the simplest secret-sharing scheme.

Construction 3.5

(2-out-of-2 TSSS)
M = {0, 1}`

t = 2
n = 2

Share(m):
s1 ← {0, 1}

`

s2 := s1 ⊕m
return (s1, s2)

Reconstruct(s1, s2):
return s1 ⊕ s2

Since it’s a 2-out-of-2 scheme, the only authorized set of users is {1, 2}, so Reconstruct is
written to expect both shares s1 and s2 as its inputs. Correctness follows easily from what
we’ve already learned about the properties of xor.

Example If we want to share the stringm = 1101010001 then the Share algorithm might choose

s1 := 0110000011

s2 := s1 ⊕m
= 0110000011 ⊕ 1101010001 = 1011010010.

Then the secret can be reconstructed by xoring the two shares together, via:

s1 ⊕ s2 = 0110000011 ⊕ 1011010010 = 1101010001 =m.

Remember that this example shows just one possible execution of Share(1101010001), but
Share is a randomized algorithm and many other values of (s1, s2) are possible.

Theorem 3.6 Construction 3.5 is a secure 2-out-of-2 threshold secret-sharing scheme.

Proof Let Σ denote Construction 3.5. We will show that LΣ
tsss-L

≡ LΣ
tsss-R

using a hybrid proof.

LΣ
tsss-L

:

LΣ
tsss-L

share(mL,mR ,U):
if |U | > 2: return err

s1 ← {0, 1}
`

s2 := s1 ⊕mL

return {si | i ∈ U }

As usual, the starting point is
LΣ

tsss-L
, shown here with the

details of the secret-sharing
scheme �lled in (and the
types of the subroutine ar-
guments omitted to reduce
clutter).

51

Draft: January 3, 2021 CHAPTER 3. SECRET SHARING

share(mL,mR ,U):
if |U | > 2: return err

if U = {1}:
s1 ← {0, 1}

`

s2 := s1 ⊕mL
return {s1}

elsif U = {2}:
s1 ← {0, 1}

`

s2 := s1 ⊕mL
return {s2}

else return ∅

It has no e�ect on the li-
brary’s behavior if we dupli-
cate the main body of the
library into 3 branches of
a new if-statement. The
reason for doing so is that
the scheme generates s1 and
s2 di�erently. This means
that our proof will eventu-
ally handle the 3 di�erent
unauthorized sets ({1}, {2},
and ∅) in fundamentally dif-
ferent ways.

share(mL,mR ,U):
if |U | > 2: return err

if U = {1}:
s1 ← {0, 1}

`

s2 := s1 ⊕ mR

return {s1}
elsif U = {2}:
s1 ← {0, 1}

`

s2 := s1 ⊕mL
return {s2}

else return ∅

The de�nition of s2 has
been changed in the �rst
if-branch. This has no e�ect
on the library’s behavior
since s2 is never actually
used in this branch.

share(mL,mR ,U):
if |U | > 2: return err

if U = {1}:
s1 ← {0, 1}

`

s2 := s1 ⊕mR
return {s1}

elsif U = {2}:
s2 ← eavesdrop(mL,mR)

return {s2}
else return ∅

�

LOTP

ots-L

eavesdrop(mL,mR):
k ← {0, 1}`

c := k ⊕mL
return c

Recognizing the second
branch of the if-statement as
a one-time pad encryption
(of mL under key s1), we
factor out the generation
of s2 in terms of the library
LOTP

ots-L
from the one-time

secrecy de�nition. This has
no e�ect on the library’s
behavior. Importantly, the
subroutine in LOTP

ots-L
expects

two arguments, so that is
what we must pass. We
choose to pass mL and mR
for reasons that should
become clear very soon.

52

Draft: January 3, 2021 CHAPTER 3. SECRET SHARING

share(mL,mR ,U):
if |U | > 2: return err

if U = {1}:
s1 ← {0, 1}

`

s2 := s1 ⊕mR
return {s1}

elsif U = {2}:
s2 ← eavesdrop(mL,mR)

return {s2}
else return ∅

�

LOTP

ots-R

eavesdrop(mL,mR):
k ← {0, 1}`

c := k ⊕ mR

return c

We have replacedLOTP

ots-L
with

LOTP

ots-R
. From the one-time se-

crecy of one-time pad (and
the composition lemma), this
change has no e�ect on the
library’s behavior.

share(mL,mR ,U):
if |U | > 2: return err

if U = {1}:
s1 ← {0, 1}

`

s2 := s1 ⊕mR
return {s1}

elsif U = {2}:
s1 ← {0, 1}

`

s2 := s1 ⊕mR

return {s2}
else return ∅

A subroutine has been in-
lined; no e�ect on the li-
brary’s behavior.

LΣ
tsss-R

:

LΣ
tsss-R

share(mL,mR ,U):
if |U | > 2: return err

s1 ← {0, 1}
`

s2 := s1 ⊕mR
return {si | i ∈ U }

The code has been sim-
pli�ed. Speci�cally, the
branches of the if-statement
can all be uni�ed, with no ef-
fect on the library’s behav-
ior. The result is LΣ

tsss-R
.

We showed that LΣ
tsss-L

≡ Lhyb-1 ≡ · · · ≡ Lhyb-5 ≡ L
Σ
tsss-R

, and so the secret-sharing
scheme is secure. �

We in fact proved a slightly more general statement. The only property of one-time pad
we used was its one-time secrecy. Substituting one-time pad for any other one-time secret
encryption scheme would still allow the same proof to go through. So we actually proved
the following:

Theorem 3.7 If Σ is an encryption scheme with one-time secrecy, then the following 2-out-of-2 threshold
secret-sharing scheme S is secure:

53

Draft: January 3, 2021 CHAPTER 3. SECRET SHARING

M = Σ.M
t = 2
n = 2

Share(m):
s1 ← Σ.KeyGen

s2 ← Σ.Enc(s1,m)
return (s1, s2)

Reconstruct(s1, s2):
return Σ.Dec(s1, s2)

3.3 Polynomial Interpolation

You are probably familiar with the fact that two points determine a line (in Euclidean
geometry). It is also true that 3 points determine a parabola, and so on. The next secret-
sharing scheme we discuss is based on the following principle:

d + 1 points determine a unique degree-d polynomial.

A note on terminology: If f is a polynomial that can be written as f (x) =
∑d

i=0 fix
i ,

then we say that f is a degree-d polynomial. It would be more technically correct to say
that the degree of f is at most d since we allow the leading coe�cient fd to be zero. For
convenience, we’ll stick to saying “degree-d” to mean “degree at most d .”

Polynomials Over the Reals

Theorem 3.8

(Poly Interpolation)

Let {(x1,y1), . . . , (xd+1,yd+1)} ⊆ R2 be a set of points whose xi values are all distinct. Then
there is a unique degree-d polynomial f with real coe�cients that satis�es yi = f (xi) for
all i .

Proof To start, consider the following polynomial:

`1(x) =
(x − x2)(x − x3) · · · (x − xd+1)

(x1 − x2)(x1 − x3) · · · (x1 − xd+1)
.

The notation is potentially confusing. `1 is a polynomial with formal variable x (written
in bold). The non-bold xi values are just plain numbers (scalars), given in the theorem
statement. Therefore the numerator in `1 is a degree-d polynomial in x . The denominator
is just a scalar, and since all of the xi ’s are distinct, we are not dividing by zero. Overall,
`1 is a degree-d polynomial.

What happens when we evaluate `1 at one of the special xi values?

I Evaluating `1(x1) makes the numerator and denominator the same, so `1(x1) = 1.

I Evaluating `1(xi) for i , 1 leads to a term (xi − xi) in the numerator, so `1(xi) = 0.

Of course, `1 can be evaluated at any point (not just the special points x1, . . . ,xd+1), but
we don’t care about what happens in those cases.

We can similarly de�ne other polynomials `j :

`j (x) =
(x − x1) · · · (x − x j−1)(x − x j+1) · · · (x − xd+1)

(x j − x1) · · · (x j − x j−1)(x j − x j+1) · · · (x j − xd+1)
.

The pattern is that the numerator is “missing” the term (x − x j) and the denominator is
missing the term (x j −x j), because we don’t want a zero in the denominator. Polynomials

54

Draft: January 3, 2021 CHAPTER 3. SECRET SHARING

of this kind are called LaGrange polynomials. They are each degree-d polynomials, and
they satisfy the property:

`j (xi) =

{
1 if i = j

0 if i , j

Now consider the following polynomial:

f (x) = y1`1(x) + y2`2(x) + · · · + yd+1`d+1(x).

Note that f is a degree-d polynomial since it is the sum of degree-d polynomials (again,
the yi values are just scalars).

What happens when we evaluate f on one of the special xi values? Since `i (xi) = 1
and `j (xi) = 0 for j , i , we get:

f (xi) = y1`1(xi) + · · · + yi`i (xi) + · · · + yd+1`d+1(xi)

= y1 · 0 + · · · + yi · 1 + · · · + yd+1 · 0
= yi

So f (xi) = yi for every xi , which is what we wanted. This shows that there is some
degree-d polynomial with this property.

Now let’s argue that this f is unique. Suppose there are two degree-d polynomials
f and f ′ such that f (xi) = f ′(xi) = yi for i ∈ {1, . . . ,d + 1}. Then the polynomial
д(x) = f (x) − f ′(x) also is degree-d , and it satis�es д(xi) = 0 for all i . In other words,
each xi is a root of д, so д has at least d + 1 roots. But the only degree-d polynomial with
d + 1 roots is the identically-zero polynomial д(x) = 0. If д(x) = 0 then f = f ′. In other
words, any degree-d polynomial f ′ that satis�es f ′(xi) = yi must be equal to f . So f is
the unique polynomial with this property. �

Example Let’s �gure out the degree-3 polynomial that passes through the points
(3, 1), (4, 1), (5, 9), (2, 6):

i 1 2 3 4
xi 3 4 5 2
yi 1 1 9 6

First, let’s construct the appropriate LaGrange polynomials:

`1(x) =
(x − x2)(x − x3)(x − x4)

(x1 − x2)(x1 − x3)(x1 − x4)
=
(x − 4)(x − 5)(x − 2)
(3 − 4)(3 − 5)(3 − 2)

=
x3 − 11x2 + 38x − 40

2

`2(x) =
(x − x1)(x − x3)(x − x4)

(x2 − x1)(x2 − x3)(x2 − x4)
=
(x − 3)(x − 5)(x − 2)
(4 − 3)(4 − 5)(4 − 2)

=
x3 − 10x2 + 31x − 30

−2

`3(x) =
(x − x1)(x − x2)(x − x4)

(x3 − x1)(x3 − x2)(x3 − x4)
=
(x − 3)(x − 4)(x − 2)
(5 − 3)(5 − 4)(5 − 2)

=
x3 − 9x2 + 26x − 24

6

`4(x) =
(x − x1)(x − x2)(x − x3)

(x4 − x1)(x4 − x2)(x4 − x3)
=
(x − 3)(x − 4)(x − 5)
(2 − 3)(2 − 4)(2 − 5)

=
x3 − 12x2 + 47x − 60

−6

55

Draft: January 3, 2021 CHAPTER 3. SECRET SHARING

As a sanity check, notice how:

`1(x1) = `1(3) =
33 − 11 · 32 + 38 · 3 − 40

2
=

2
2
= 1

`1(x2) = `1(4) =
43 − 11 · 42 + 38 · 4 − 40

2
=

0
2
= 0

It will make the next step easier if we rewrite all LaGrange polynomials to have the same
denominator 6:

`1(x) =
3x3 − 33x2 + 114x − 120

6
`3(x) =

x3 − 9x2 + 26x − 24
6

`2(x) =
−3x3 + 30x2 − 93x + 90

6
`4(x) =

−x3 + 12x2 − 47x + 60
6

Our desired polynomial is

f (x) = y1 · `1(x) + y2 · `2(x) + y3 · `3(x) + y4 · `4(x)

= 1 · `1(x) + 1 · `2(x) + 9 · `3(x) + 6 · `4(x)

=
1
6

©«
1 ·

(
3x3 − 33x2 + 114x − 120

)
+ 1 ·

(
− 3x3 + 30x2 − 93x + 90

)
+ 9 ·

(
x3 − 9x2 + 26x − 24

)
+ 6 ·

(
− x3 + 12x2 − 47x + 60

)
ª®®®¬

=
1
6

(
3x3 − 12x2 − 27x + 114

)
=
x3

2
− 2x2 −

9x
2
+ 19

And indeed, f gives the correct values:

0 1 2 3 4 5 6
0
2
4
6
8
10
12
14
16

(3,1)(4,1)

(5,9)

(2,6)

f (x1) = f (3) =
33

2
− 2 · 32 −

9 · 3
2
+ 19 = 1 = y1

f (x2) = f (4) =
43

2
− 2 · 42 −

9 · 4
2
+ 19 = 1 = y2

f (x3) = f (5) =
53

2
− 2 · 52 −

9 · 5
2
+ 19 = 9 = y3

f (x4) = f (2) =
23

2
− 2 · 22 −

9 · 2
2
+ 19 = 6 = y4

Polynomials mod p

We will see a secret-sharing scheme based on polynomials, whose Share algorithm must
choose a polynomial with uniformly random coe�cients. Since we cannot have a uniform
distribution over the real numbers, we must instead consider polynomials with coe�cients
in Zp .

It is still true that d + 1 points determine a unique degree-d polynomial when working
modulo p, if p is a prime!

56

Draft: January 3, 2021 CHAPTER 3. SECRET SHARING

Theorem 3.9

(Interp mod p)

Let p be a prime, and let {(x1,y1), . . . , (xd+1,yd+1)} ⊆ (Zp)
2
be a set of points whosexi val-

ues are all distinct. Then there is a unique degree-d polynomial f with coe�cients from Zp
that satis�es yi ≡p f (xi) for all i .

The proof is the same as the one for Theorem 3.8, if you interpret all arithmetic modulo
p. Addition, subtraction, and multiplication mod p are straight forward; the only non-
trivial question is how to interpret “division mod p,” which is necessary in the de�nition
of the `j polynomials. For now, just accept that you can always “divide” mod p (except by
zero) when p is a prime. If you are interested in how division mod p works, look ahead to
Chapter 13.

We can also generalize the observation that d+1 points uniquely determine a degree-d
polynomial. It turns out that:

For any k points, there are exactly pd+1−k polynomials of degree-d that hit
those points, mod p.

Note how when k = d + 1, the statement says that there is just a single polynomial hitting
the points.

Corollary 3.10

(# of polys)

Let P = {(x1,y1), . . . , (xk ,yk)} ⊆ (Zp)2 be a set of points whose xi values are distinct. Let d
satisfy k 6 d + 1 and p > d . Then the number of degree-d polynomials f with coe�cients in
Zp that satisfy the condition yi ≡p f (xi) for all i is exactly pd+1−k .

Proof The proof is by induction on the value d + 1−k . The base case is when d + 1−k = 0. Then
we have k = d + 1 distinct points, and Theorem 3.9 says that there is a unique polynomial
satisfying the condition. Since pd+1−k = p0 = 1, the base case is true.

For the inductive case, we have k 6 d points in P. Let x∗ ∈ Zp be a value that does
not appear as one of the xi ’s. Every polynomial must give some value when evaluated at
x∗. So,

[# of degree-d polynomials passing through points in P]

=
∑
y∗∈Zp

[# of degree-d polynomials passing through points in P ∪ {(x∗,y∗)}]

(?)
=

∑
y∗∈Zp

pd+1−(k+1)

= p ·
(
pd+1−k−1

)
= pd+1−k

The equality marked (?) follows from the inductive hypothesis, since each of the terms
involves a polynomial passing through a speci�ed set of k + 1 points with distinct x-
coordinates. �

57

Draft: January 3, 2021 CHAPTER 3. SECRET SHARING

Example

0 1 2 3 4 5 6 7 8 9 10 11
0

11

22

33

44

55

66

77

88

99

110

121

132

143

154

165

176

(0,7)
(1,12)

(2,19)

(3,28)

(4,39)

(5,52)

(6,67)

(7,84)

(8,103)

(9,124)

(10,147)
What does a “polynomial mod p” look
like? Consider an example degree-2 poly-
nomial:

f (x) = x2 + 4x + 7

When we plot this polynomial over the real
numbers (the picture on the left), we get a
familiar parabola.

Let’s see what this polynomial “looks like”
modulo 11 (i.e., in Z11). Working mod 11
means to “wrap around” every time the
polynomial crosses over a multiple of 11
along the y-axis. This results in the blue
plot below:

0 1 2 3 4 5 6 7 8 9 10 11
0

11

This is a picture of a mod-11 parabola. In
fact, since we care only about Z11 inputs to
f , you could rightfully say that just the 11
highlighted points alone (not the blue
curve) are a picture of a mod-11 parabola.

3.4 Shamir Secret Sharing

Part of the challenge in designing a secret-sharing scheme is making sure that any autho-
rized set of users can reconstruct the secret. We have just seen that any d + 1 points on
a degree-d polynomial are enough to uniquely reconstruct the polynomial. So a natural
approach for secret sharing is to let each user’s share be a point on a polynomial.

That’s exactly what Shamir secret sharing does. To share a secret m ∈ Zp with
threshold t , �rst choose a degree-(t − 1) polynomial f that satis�es f (0) ≡p m, with all

58

Draft: January 3, 2021 CHAPTER 3. SECRET SHARING

other coe�cients chosen uniformly in Zp . The ith user receives the point (i, f (i) % p) on
the polynomial. The interpolation theorem says that any t of the shares can uniquely
determine the polynomial f , and hence recover the secret f (0).

Construction 3.11

(Shamir SSS)

M = Zp
p : prime
n < p
t 6 n

Share(m):
f1, . . . , ft−1 ← Zp
f (x) :=m +

∑t−1
j=1 fjx

j

for i = 1 to n:
si := (i, f (i) % p)

return s = (s1, . . . , sn)

Reconstruct({si | i ∈ U }):
f (x) := unique degree-(t − 1)

polynomial mod p passing
through points {si | i ∈ U }

return f (0)

Correctness follows from the interpolation theorem.

Example Here is an example of 3-out-of-5 secret sharing over Z11 (so p = 11). Suppose the secret being
shared is m = 7 ∈ Z11. The Share algorithm chooses a random degree-2 polynomial with
constant coe�cient 7.

Let’s say that the remaining two coe�cients are chosen as f2 = 1 and f1 = 4, resulting in
the following polynomial:

f (x) = 1 x2 + 4 x + 7

This is the same polynomial illustrated in the previous example:

0 1 2 3 4 5 6 7 8 9 10 11
0

11

For each user i ∈ {1, . . . , 5}, we distribute the share (i, f (i) % 11). These shares correspond to
the highlighted points in the mod-11 picture above.

user (i) f (i) share (i, f (i) % 11)
1 f (1) = 12 (1, 1)
2 f (2) = 19 (2, 8)
3 f (3) = 28 (3, 6)
4 f (4) = 39 (4, 6)
5 f (5) = 52 (5, 8)

Remember that this example illustrates just one possible execution of Share. Because Share

is a randomized algorithm, there are many valid sharings of the same secret (induced by
di�erent choices of the highlighted coe�cients in f).

59

Draft: January 3, 2021 CHAPTER 3. SECRET SHARING

Security

To show the security of Shamir secret sharing, we �rst show a convenient lemma about
the distribution of shares in an unauthorized set:

Lemma 3.12 Let p be a prime and de�ne the following two libraries:

Lshamir-real

poly(m, t ,U ⊆ {1, . . . ,p}):
if |U | > t : return err

f1, . . . , ft−1 ← Zp
f (x) :=m +

∑t−1
j=1 fjx

j

for i ∈ U :
si := (i, f (i) % p)

return {si | i ∈ U }

Lshamir-rand

poly(m, t ,U ⊆ {1, . . . ,p}):
if |U | > t : return err

for i ∈ U :
yi ← Zp
si := (i,yi)

return {si | i ∈ U }

Lshamir-real chooses a random degree-(t − 1) polynomial that passes through the point (0,m),
then evaluates it at the given x-coordinates (speci�ed by U). Lshamir-rand simply gives uni-
formly chosen points, unrelated to any polynomial.

The claim is that these libraries are interchangeable: Lshamir-real ≡ Lshamir-rand.

Proof Fix a messagem ∈ Zp , �x setU of users with |U | < t , and for each i ∈ U �x a valueyi ∈ Zp .
We wish to consider the probability that a call to poly(m, t ,U) outputs {(i,yi) | i ∈ U }, in
each of the two libraries.2

In library Lshamir-real, the subroutine chooses a random degree-(t − 1) polynomial f
such that f (0) ≡p m. From Corollary 3.10, we know there are pt−1 such polynomials.

In order for poly to output points consistent with our chosen yi ’s, the library must
have chosen one of the polynomials that passes through (0,m) and all of the {(i,yi) | i ∈
U } points. The library must have chosen one of the polynomials that passes through a
speci�c choice of |U | + 1 points, and Corollary 3.10 tells us that there are pt−(|U |+1) such
polynomials.

The only way for poly to give our desired output is for it to choose one of thept−(|U |+1)
“good” polynomials, out of the pt−1 possibilities. This happens with probability exactly

pt−|U |−1

pt−1
= p−|U |

Now, in library Lshamir-rand, poly chooses its |U | output values uniformly in Zp . There
are p |U | ways to choose them. But only one of those ways causes poly(m, t ,U) to output
our speci�c choice of {(i,yi) | i ∈ U }. Hence, the probability of receiving this output is
p−|U | .

For all possible inputs to poly, both libraries assign the same probability to every
possible output. Hence, the libraries are interchangeable. �

Theorem 3.13 Shamir’s secret-sharing scheme (Construction 3.11) is secure according to De�nition 3.3.

2This is similar to how, in Claim 2.7, we �xed a particular m and c and computed the probability that
eavesdrop(m) = c .

60

Draft: January 3, 2021 CHAPTER 3. SECRET SHARING

Proof Let S denote the Shamir secret-sharing scheme. We prove that LS
tsss-L

≡ LS
tsss-R

via a
hybrid argument.

LS
tsss-L

:

LS
tsss-L

share(mL,mR ,U):
if |U | > t : return err

f1, . . . , ft−1 ← Zp
f (x) :=mL +

∑t−1
j=1 fjx

j

for i ∈ U :
si := (i, f (i) % p)

return {si | i ∈ U }

Our starting point is LS
tsss-L

,
shown here with the details of
Shamir secret-sharing �lled in.

share(mL,mR ,U):
return poly(mL, t ,U)

�

Lshamir-real

poly(m, t ,U):
if |U | > t : return err

f1, . . . , ft−1 ← Zp
f (x) :=m +

∑t−1
j=1 fjx

j

for i ∈ U :
si := (i, f (i) % p)

return {si | i ∈ U }

Almost the entire body of
the share subroutine has
been factored out in terms
of the Lshamir-real library
de�ned above. The only thing
remaining is the “choice” of
whether to share mL or mR .
Restructuring the code in
this way has no e�ect on the
library’s behavior.

share(mL,mR ,U):
return poly(mL, t ,U)

�

Lshamir-rand

poly(m, t ,U):
if |U | > t : return err

for i ∈ U :
yi ← Zp
si := (i,yi)

return {si | i ∈ U }

By Lemma 3.12, we can replace
Lshamir-real with Lshamir-rand,
having no e�ect on the li-
brary’s behavior.

share(mL,mR ,U):
return poly(mR , t ,U)

�

Lshamir-rand

poly(m, t ,U):
if |U | > t : return err

for i ∈ U :
yi ← Zp
si := (i,yi)

return {si | i ∈ U }

The argument to poly has
been changed from mL to mR .
This has no e�ect on the li-
brary’s behavior, since poly is
actually ignoring its argument
in these hybrids.

61

Draft: January 3, 2021 CHAPTER 3. SECRET SHARING

share(mL,mR ,U):
return poly(mR , t ,U)

�

Lshamir-real

poly(m, t ,U):
if |U | > t : return err

f1, . . . , ft−1 ← Zp
f (x) :=m +

∑t−1
j=1 fjx

j

for i ∈ U :
si := (i, f (i) % p)

return {si | i ∈ U }

Applying the same steps
in reverse, we can replace
Lshamir-rand with Lshamir-real,
having no e�ect on the
library’s behavior.

LS
tsss-R

:

LS
tsss-R

share(mL,mR ,U):
if |U | > t : return err

f1, . . . , ft−1 ← Zp
f (x) :=mR +

∑t−1
j=1 fjx

j

for i ∈ U :
si := (i, f (i) % p)

return {si | i ∈ U }

A subroutine has been inlined,
which has no e�ect on the li-
brary’s behavior. The result-
ing library is LS

tsss-R
.

We showed that LS
tsss-L

≡ Lhyb-1 ≡ · · · ≡ Lhyb-4 ≡ L
S
tsss-R

, so Shamir’s secret sharing
scheme is secure. �

3.5? Visual Secret Sharing

Here is a fun variant of 2-out-of-2 secret-sharing called visual secret sharing. In this
variant, both the secret and the shares are black-and-white images. We require the same
security property as traditional secret-sharing — that is, a single share (image) by itself re-
veals no information about the secret (image). What makes visual secret sharing di�erent
is that we require the reconstruction procedure to be done visually.

More speci�cally, each share should be printed on transparent sheets. When the two
shares are stacked on top of each other, the secret image is revealed visually. We will dis-
cuss a simple visual secret sharing scheme that is inspired by the following observations:

when is stacked on top of , the result is

when is stacked on top of , the result is

when is stacked on top of , the result is

when is stacked on top of , the result is

Importantly, when stacking shares on top of each other in the �rst two cases, the result is
a 2× 2 block that is half-black, half-white (let’s call it “gray”); while in the other cases the
result is completely black.

The idea is to process each pixel of the source image independently, and to encode
each pixel as a 2×2 block of pixels in each of the shares. A white pixel should be shared in

62

Draft: January 3, 2021 CHAPTER 3. SECRET SHARING

a way that the two shares stack to form a “gray” 2 × 2 block, while a black pixel is shared
in a way that results in a black 2 × 2 block.

More formally:

Construction 3.14 Share(m):
initialize empty images s1, s2, with dimensions twice that ofm
for each position (i, j) inm:

randomly choose b1 ← { , }
ifm[i, j] is a white pixel: set b2 := b1
ifm[i, j] is a black pixel: set b2 to the “opposite” of b1 (i.e., { , } \ {b1})
add 2 × 2 block b1 to image s1 at position (2i, 2j)
add 2 × 2 block b2 to image s2 at position (2i, 2j)

return (s1, s2)

It is not hard to see that share s1 leaks no information about the secret imagem, because
it consists of uniformly chosen 2 × 2 blocks. In the exercises you are asked to prove that
s2 also individually leaks nothing about the secret image.

Note that whenever the source pixel is white, the two shares have identical 2×2 blocks
(so that when stacked, they make a “gray” block). Whenever a source pixel is black, the
two shares have opposite blocks, so stack to make a black block.

Example

source image

share #1

share #2

stacked shares

Exercises

3.1. Generalize Construction 3.5 to be an n-out-of-n secret-sharing scheme, and prove that
your scheme is correct and secure.

3.2. Prove Theorem 3.7.

3.3. Fill in the details of the following alternative proof of Theorem 3.6: Starting with Ltsss-L,
apply the �rst step of the proof as before, to duplicate the main body into 3 branches of a
new if-statement. Then apply Exercise 2.3 to the second branch of the if-statement. Argue
thatmL can be replaced withmR and complete the proof.

63

Draft: January 3, 2021 CHAPTER 3. SECRET SHARING

3.4. Suppose T is a �xed (publicly known) invertible n × n matrix over Zp , where p is a prime.

(a) Show that the following two libraries are interchangeable:

Lle�

qery():
r ← (Zp)n

return r

;

Lright

qery():
r ← (Zp)n

return T × r

.

(b) Show that the following two libraries are interchangeable:

Lle�

qery(v ∈ (Zp)n):
r ← (Zp)n

z := v +Tr
return z

;

Lright

qery(v ∈ (Zp)n):
z ← (Zp)n

return z

.

3.5. Consider a t-out-of-n threshold secret sharing scheme withM = {0, 1}` , and where each
user’s share is also a string of bits. Prove that if the scheme is secure, then every user’s
share must be at least ` bits long.

Hint:

Provethecontrapositive.Supposethe�rstuser’sshareislessthan`bits(andthatthisfactisknown
toeveryone).Showhowusers2throughtcanviolatesecuritybyenumeratingallpossibilitiesfor
the�rstuser’sshare.Giveyouranswerintheformofandistinguisherontherelevantlibraries.

3.6. n users have shared two secrets using Shamir secret sharing. User i has a share si = (i,yi)
of the secret m, and a share s ′i = (i,y

′
i) of the secret m′. Both sets of shares use the same

prime modulus p.

Suppose each user i locally computes zi = (yi + y ′i) % p.

(a) Prove that if the shares ofm and shares ofm′ had the same threshold, then the resulting
{(i, zi) | i 6 n} are a valid secret-sharing of the secretm +m′.

(b) Describe what the users get when the shares ofm andm′ had di�erent thresholds (say,
t and t ′, respectively).

3.7. Suppose there are 5 people on a committee: Alice (president), Bob, Charlie, David, Eve.
Suggest how they can securely share a secret so that it can only be opened by:

I Alice and any one other person

I Any three people

Describe in detail how the sharing algorithm works and how the reconstruction works
(for all authorized sets of users).

Note: It is �ne if di�erent users have shares which are of di�erent sizes (e.g., di�erent
number of bits to represent), and it is also �ne if the Reconstruct algorithm depends on
the identities of the users who are contributing their shares.

64

Draft: January 3, 2021 CHAPTER 3. SECRET SHARING

3.8. Suppose there are 9 people on an important committee: Alice, Bob, Carol, David, Eve,
Frank, Gina, Harold, & Irene. Alice, Bob & Carol form a subcommittee; David, Eve &
Frank form another subcommittee; and Gina, Harold & Irene form another subcommittee.

Suggest how a dealer can share a secret so that it can only be opened when a majority of
each subcommittee is present. Describe why a 6-out-of-9 threshold secret-sharing scheme
does not su�ce.

Hint:

AliceBobCarol

DavidEveFrank

GinaHaroldIrene

MAJ

MAJ

MAJ

AND

? 3.9. (a) Generalize the previous exercise. A monotone formula is a boolean function ϕ :
{0, 1}n → {0, 1} that when written as a formula uses only and and or operations (no
nots). For a set A ⊆ {1, . . . ,n}, let χA be the bitstring where whose ith bit is 1 if and
only if i ∈ A.
For every monotone formula ϕ : {0, 1}n → {0, 1}, construct a secret-sharing scheme
whose authorized sets are {A ⊆ {1, . . . ,n} | ϕ(χA) = 1}. Prove that your scheme is
secure.

Hint:

expresstheformulaasatreeofandandorgates.
(b) Give a construction of a t-out-of-n secret-sharing scheme in which all shares are binary

strings, and the only operation required of Share and Reconstruct is xor (so no mod-p
operations).
How big are the shares, compared to the Shamir scheme?

3.10. Prove that share s2 in Construction 3.14 is distributed independently of the secretm.

3.11. Using actual transparencies or with an image editing program, reconstruct the secret
shared in these two images:

65

Draft: January 3, 2021 CHAPTER 3. SECRET SHARING

? 3.12. Construct a 3-out-of-3 visual secret sharing scheme. Any two shares should together re-
veal nothing about the source image, but any three reveal the source image when stacked
together.

66

