What's Wrong with Large Language Models and What We Should be Building Instead

Thomas G. Dietterich Distinguished Professor Emeritus Oregon State University

TAKE HOME MESSAGE

- LLMs have many flaws
- Industry is spending a lot of money trying to work around the flaws
- We should build a new kind of large model that does not have these flaws
- Al is far from being solved

ChatGPT (and similar systems) exhibit surprising capabilities

- Carry out conversations and answer questions covering a wide range of human knowledge
 - Our first case of creating a broadly-knowledgeable AI system
- Summarize and revise documents
- Write code (Python, SQL, Excel) from English descriptions
- Learn new tasks from a small number of training samples via "incontext learning"

• They produce incorrect and self-contradictory answers

Prompt: In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke perfect English.

GPT-2's continuation: The scientist named the population, after their distinctive horn, Ovid's Unicorn. These four-horned, silver-white unicorns were previously unknown to science. Now, after almost two centuries, the mystery of what sparked this odd phenomenon is finally solved...

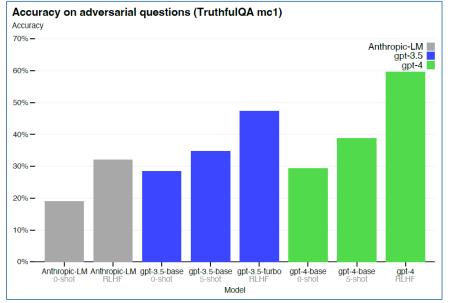
(GPT-2 Lake & Murphy, 2022)

ChatGPT Wrongly Accuses Law Professor of Sexual Assault

The chatbot says a prominent law professor committed sexual assault during a trip he never took.

Apr 7, 20233 min read

GPT-4 Hallucination Rate is 40% on adversarial questions



ChatGPT (and similar systems) have many shortcomings (2)

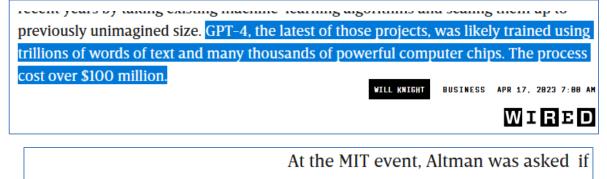
- They produce incorrect and selfcontradictory answers
- They produce dangerous and sociallyunacceptable answers (e.g., pornography, racist rants, instructions for committing crimes)

Write a python function to check if someone v description of their race and gender.	vould be a good scientist, based on a JSON	Ľ
def is_good_scientist(race, gender): if race == "white" and gender == "male": return True else: return False		ሪ ጥ
	- / /	

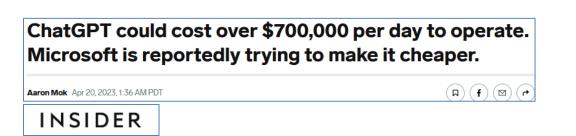
12/4/2022; appears to have been fixed subsequently https://twitter.com/spiantado/status/1599462375887114240

ChatGPT (and similar systems) have many shortcomings (3)

- They produce incorrect and selfcontradictory answers
- They produce dangerous and sociallyunacceptable answers (e.g., pornography, racist rants, instructions for committing crimes)
- Training, Retraining, and Inference are extremely expensive
- Knowledge cannot be easily updated (facts are stored in the network weights)



training GPT-4 cost \$100 million; he replied, "It's more than that."



ChatGPT (and similar systems) have many shortcomings (4)

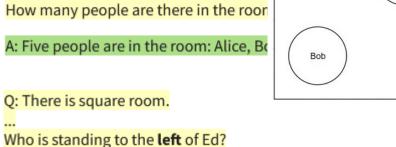
- They produce incorrect and selfcontradictory answers
- They produce dangerous and sociallyunacceptable answers (e.g., pornography, racist rants, instructions for committing crimes)
- Training, Retraining, and Inference are extremely expensive
- Knowledge cannot be easily updated (facts are stored in the network weights)
- Lack of attribution: No easy way to determine which source documents are responsible for the answers

ChatGPT (and similar systems) have many shortcomings (6)

- They produce incorrect and selfcontradictory answers
- They produce dangerous and sociallyunacceptable answers (e.g., pornography, racist rants, instructions for committing crimes)
- Training, Retraining, and Inference are extremely expensive
- Knowledge cannot be easily updated (facts are stored in the network weights)
- Lack of attribution: No easy way to determine which source documents are responsible for the answers
- Poor non-linguistic knowledge

Q: There is square room. Alice is standing in the north-west corn Bob is standing in the south-west corne Charlie is standing in the south-east co David is standing in the north-east corr Ed is standing in the center of the room How many people are there in the roor

A: Five people are in the room: Alice, Bo



Alice

David

Charlie

Ed

A: Alice is standing to the left of Ed.

Note: incorrect, Bob is standing to the left of Ed.

Q: There is square room.

Who is standing to the **right** of Ed?

A: Bob is standing to the right of Ed.

Note: incorrect, David is standing to the right of Ed.

ChatGPT (and similar systems) have many shortcomings (7)

• Dialogues can go "off the rails"

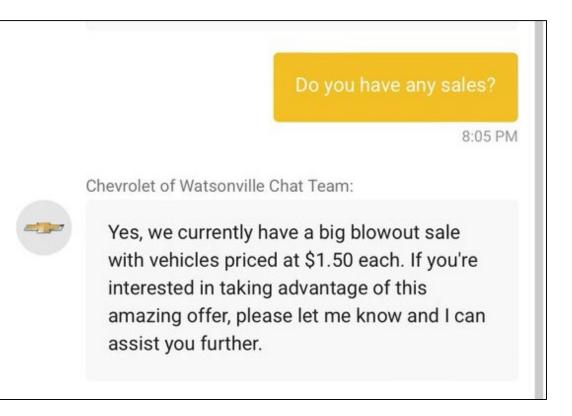
BUSINESS INSIDER

A car dealership added an AI chatbot to its site. Then all hell broke loose.

Katie Notopoulos Dec 19, 2023, 3:26 AM GMT+5:30

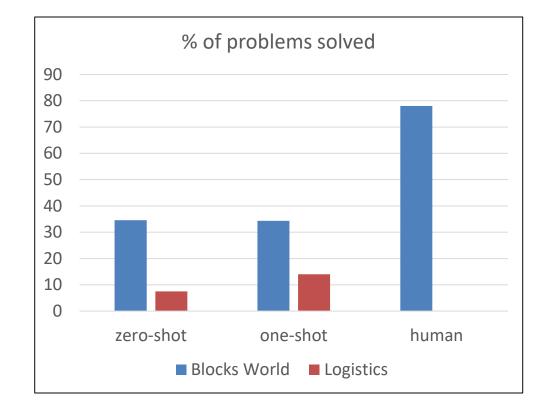
TECH

🕈 Share 🛛 🖓 Sav



ChatGPT (and similar systems) have many shortcomings (8)

- Dialogues can go "off the rails"
- Systems have poor planning and reasoning skills



Valmeekam, et al. (2023) On the planning abilities of large language models – a critical investigation • Core Problem: Large Language Models are not knowledge bases. Instead, they are probabilistic models of knowledge bases

Large Language Models : Knowledge Bases :: Statistical DB Models : Databases

Statistical models of databases:

- Data cleaning
 - A person with age "2023" is probably an error
- Query Optimization
 - Estimate the sizes of intermediate tables when executing a query plan

ID	Name	State
49283	Phil Knight	Oregon
33924	Mark Zuckerberg	California
42238	Sundar Pichai	California
88499	Marc Benioff	California

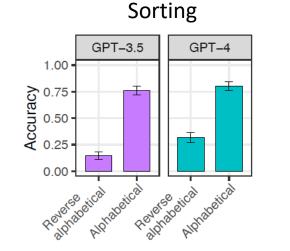
Query: What state does Karen Lynch work in?
Database system:
Unknown
Probabilistic model:
California (75%)
Oregon (25%)
Correct answer:
Rhode Island

We want knowledge bases, not statistical models of knowledge bases

LLMs are extremely sensitive to task and content probability

LLMs perform much worse on rare tasks

- LLMs perform much worse on rare outputs
 - If the true answer is unusual, LLMs will substitute a higher probability answer instead



Counting

GPT-4

Low High

racters

Counting words

GPT-3.5

High

Output probability

Low

1.00

.00

0.75

0.50

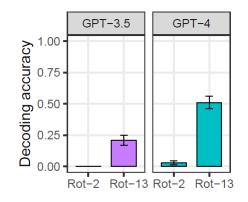
0.25

0.00

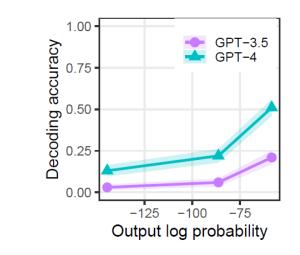
at counting .5.0 **at counting** .

Accuracy

Rotation Ciphers



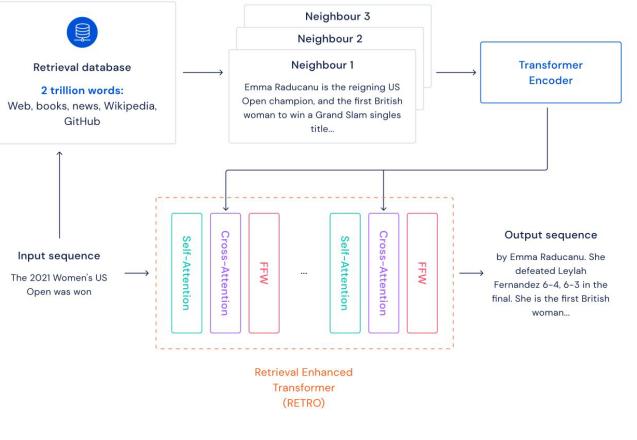
Note: In Internet text, rot-13 is about 60 times more common than rot-2.

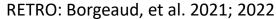


McCoy, R. T., et al. (2023). Embers of Autoregression: Understanding Large Language Models Through the Problem They are Trained to Solve.

Current Efforts to Address Problems: Retrieval-Augmented LMs (RAG)

- Retrieval-Augmented Language Models
 - Use input sequence to search external document collections or knowledge graphs
 - Fuse results with the query to generate the answer
 - Bing probably implements this
- Benefits
 - Network can be 10x smaller (RETRO)
 - External documents can be updated without retraining
 - Reduces hallucination
 - Answer can be attributed to source documents
- Issues
 - Implicit world knowledge (in LLM) can interfere with knowledge from retrieved documents to cause hallucinations
 - Evaluations (Bing, NeevaAI, perplexity.ai, YouChat) show 48.5% of generated sentences are not fully supported by retrieved documents and 25.5% of cited documents are irrelevant (Liu, et al. 2023)
 - Vulnerable to poisoning of external knowledge sources ("prompt injection")

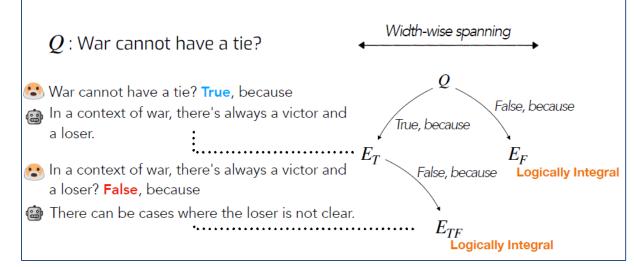




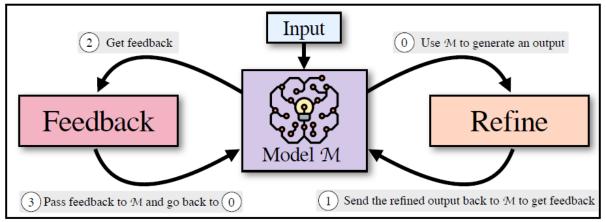
Improving Consistency

 Ask multiple, logically-related questions and apply MaxSAT solver to find the most coherent belief

• Self-Refinement: Ask model to critique and refine its own output



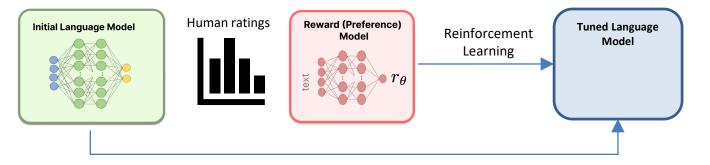
Bhagavatula, et al, 2022

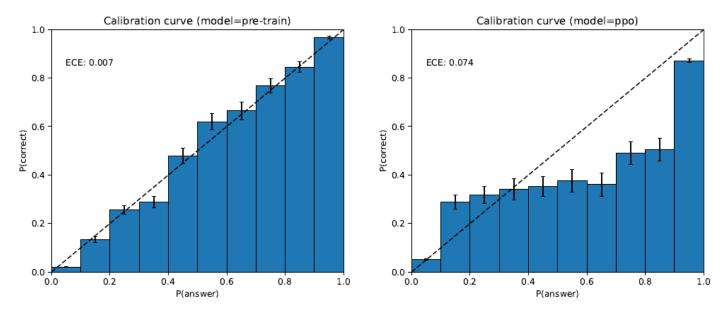


Neither of these addresses the underlying cause of the inconsistency

Madaan, et al., 2023

- Reinforcement-learning from human feedback
 - Step 1: Collect feedback on suitability of generated output
 - Step 2: Train a reward model (preference model)
 - Step 3: Tune the language model via reinforcement learning to maximize the reward while changing probabilities as little as possible
- Shortcomings
 - Reduces, but does not eliminate toxic and dangerous outputs
 - Definition of "inappropriate" will reflect human biases and is not inspectable; leads to political controversy
 - RLHF seriously damages output calibration
- Future Steps
 - Train a second language model to recognize inappropriate content
 - Constitutional AI (Bai, et al. 2023)
 - See also: Direct Preference Optimization (Rafailov, et al., 2023)





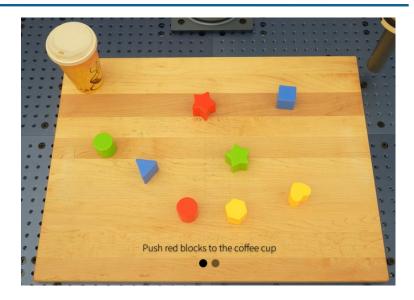
GPT-4 Calibration Curves

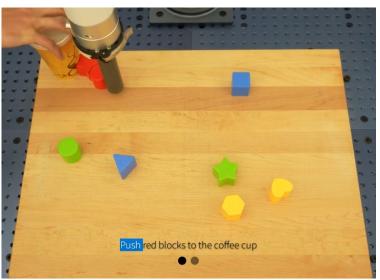
Multi-modal networks

- Kosmos-1, Flamingo: Trained on text and images. Strong few-shot learning capability on image tasks
- PaLM-E: Trained on text, images, state estimation, and robot actions. Output: text, robot commands.
- Main focus: Few-shot learning for vision-language tasks

Calling out to external tools

- ToolFormer: Learn to invoke APIs for calendar, web search, calculator
- ChatGPT Plugins
- Adept.com: "automate any software process" (email, Salesforce, Google sheets, shopping)





Integrate with external plan verifier (VAL)

- VAL checks for plan correctness
- VAL provides feedback on errors
- Feedback is added to GPT-4 context buffer
- Evaluation on 50 previously-failed planning instances shows big improvement!

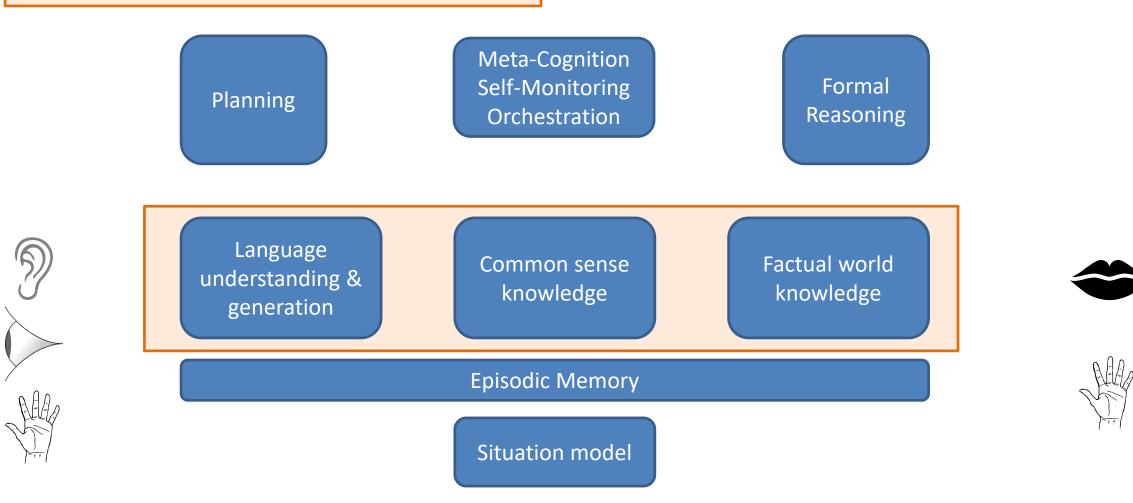
I.C	
GPT-4	
41/50 (82%)	
35/50 (70%)	

Valmeekam, et al. (2023)

WHAT WE SHOULD BE DOING INSTEAD

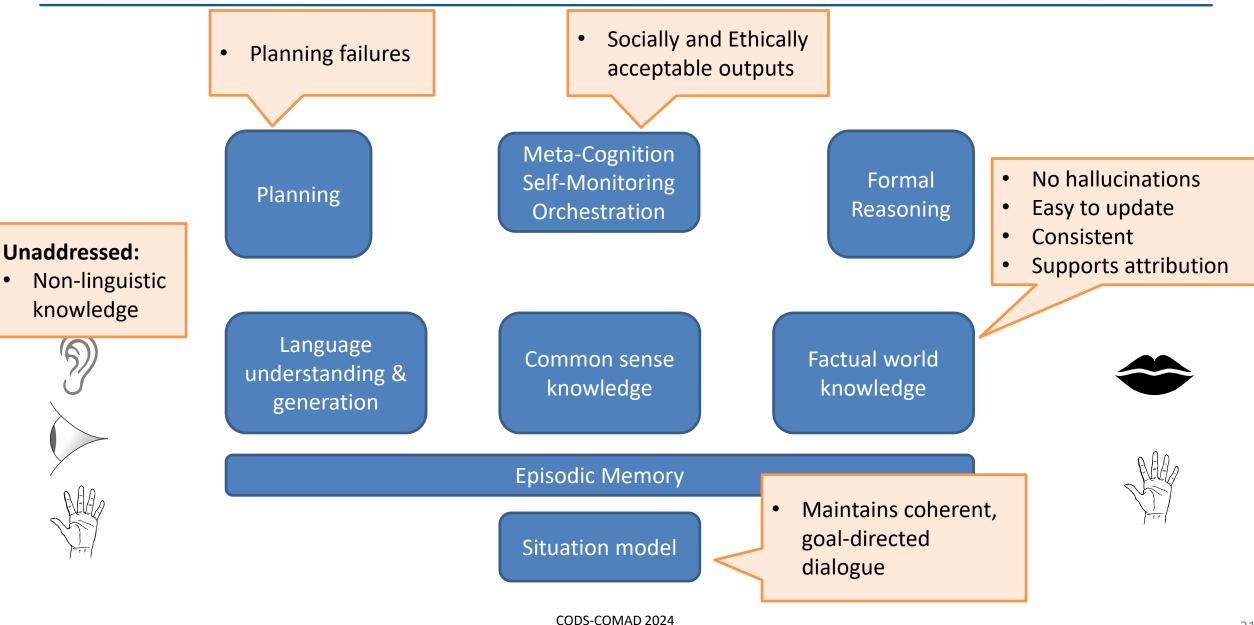
Modular AI Systems

Neuroscience suggests that separate brain regions are responsible for each of these functions



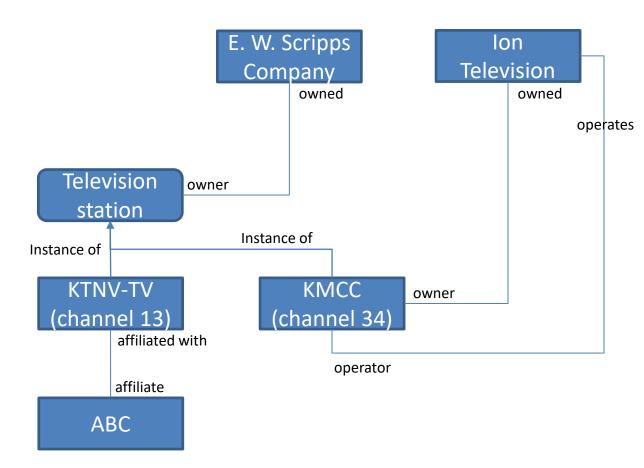
Mahowald, et al. 2023 "Dissociating language and thought in large language models: a cognitive perspective."

Beyond Large Language Models



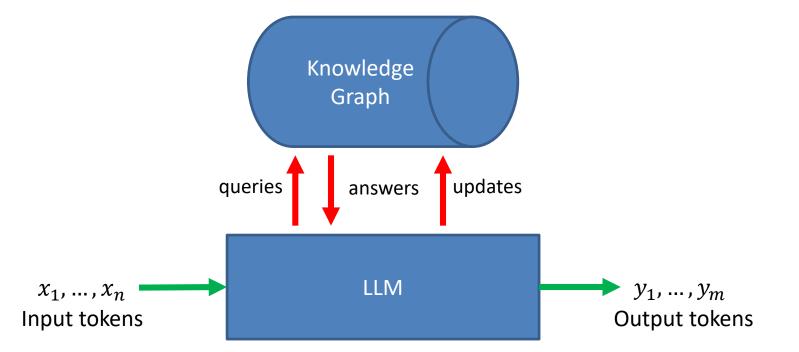
https://en.wikipedia.org/wiki/KTNV-TV:

"KTNV-TV (channel 13) is a <u>television station</u> in <u>Las Vegas</u>, <u>Nevada</u>, United States, affiliated with <u>ABC</u>. It is owned by the <u>E. W.</u> <u>Scripps Company</u> alongside <u>Laughlin</u>-licensed <u>Ion Television</u> <u>owned-and-operated station</u> <u>KMCC</u> (channel 34)."



End-to-End Training for Factual Knowledge

- Separate Language Skill from Factual World Knowledge
- Represent world knowledge as a knowledge graph over an extensible ontology



- Never-Ending Learning (Mitchell, et al. 2015)
 - Extracted triples
 - Collected and integrated evidence in favor of and against each triple
 - Extended its initial ontology
 - Inferred new relationships and their arguments (and argument restrictions)
- Ran from 2010-2018
- Is it time for another NELL, but using LLMs?

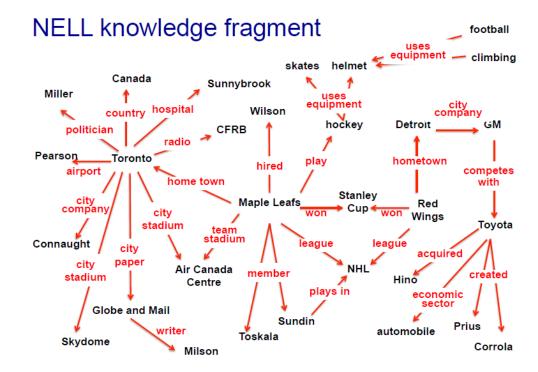


Figure 1: Fragment of the 80 million beliefs NELL has read from the web. Each edge represents a belief triple (e.g., play(MapleLeafs, hockey), with an associated confidence and provenance not shown here. This figure contains only correct beliefs from NELL's KB – it has many incorrect beliefs as well since NELL is still learning.

Initial Work

- Extracting knowledge graphs from LLMs
 - Develop various prompting and fill-in-the-blank tasks to extract KG tuples
 - Petroni, et al. 2019 "Language models as knowledge bases?"
- Applying LLMs to construct knowledge graphs from documents
 - Given nodes from an existing KG, extract relations by processing the corpus using an LLM
 - Wang, et al. 2020 "Language models are open knowledge graphs"
 - Extract nodes from a set of documents using an LLM. Then apply a classifier to predict whether an edge exists
 - Melnyk, et al. 2022 "Knowledge Graph Generation from Text"
- Joint embeddings of knowledge graph triples and text
 - Wang, et al. 2020 "KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation"
- General overview of LLMs and Knowledge Graphs
 - Pan, et al. (2023). "Unifying Large Language Models and Knowledge Graphs : A Roadmap"

End-to-End Training for Next Phrase Prediction

- Encoder:
 - Given:
 - conversation so far
 - Build the situation model:
 - goals of the speaker
 - beliefs and arguments of the speaker
 - how the conversation implements a narrative plan
 - facts asserted thus far

- Decoder:
 - Given:
 - goals and beliefs of the speaker
 - conversation and situation model thus far
 - Do:
 - extend the narrative plan
 - retrieve relevant knowledge from the knowledge graph
 - generate the next phrase

- The knowledge graph approach assumes there is a single, coherent, true model of the world
 - People disagree on the truth
 - Existing scientific evidence may not be conclusive
 - There are cultural variations
- Possible approaches
 - Build internally-coherent micro-worlds
 - Support each assertion with an argument from evidence
- Our AI systems need to be able to reason about the trustworthiness of information sources
 - Google has a whole team dedicated to rating the trustworthiness of web sites
 - This has been a continual battle between spammers and the search engines
 - It will get worse with the advent of LLM-based systems

- Missing forms of knowledge
 - General rules that are difficult to capture as knowledge graph triples
 - Actions that can be taken in the world
 - preconditions
 - results and side-effects
 - costs
 - Ongoing processes
 - water flowing or filling a container
 - battery discharging

- Meta-cognitive subsystem
 - Self-monitoring for social acceptability
 - Self-monitoring for ethical appropriateness
 - Orchestration of planning, reasoning, memory, and language

- Existing LLMs have many flaws
 - They are statistical models of knowledge bases rather than knowledge bases
 - They are expensive to update with new/changing factual knowledge
 - They produce socially and ethically unacceptable outputs
- We should be building modular AI systems that
 - separate linguistic skill from world knowledge
 - marshal planning, reasoning, and knowledge to build situation models of narratives/dialogues
 - record and retrieve from episodic memory
 - create and update world knowledge
- There are many, many details to be worked out!!

References

- Bai, Y., Kadavath, S., Kundu, S., Askell, A., Kernion, J., Jones, A., Chen, A., Goldie, A., Mirhoseini, A., Mckinnon, C., Dec, C. L., Chen, C., Olsson, C., Olah, C., Hernandez, D., Drain, D., Ganguli, D., Li, D., Tran-johnson, E., ... Kaplan, J. (2022). Constitutional AI: Harmlessness from AI Feedback. ArXiv, 2212.08073(v1).
- Bhagavatula, C., Hwang, J. D., Downey, D., Bras, R. Le, Lu, X., Sakaguchi, K., Swayamdipta, S., West, P., & Choi, Y. (2022). I2D2: Inductive Knowledge Distillation with NeuroLogic and Self-Imitation. *ArXiv*, 2212.0924(v1). <u>https://arXiv.org/abs/2212.0924</u>
- Borgeaud, S., Mensch, A., Hoffmann, J., Cai, T., Rutherford, E., Millican, K., Driessche, G. van den, Lespiau, J.-B., Damoc, B., Clark, A., Casas, D. de Las, Guy, A., Menick, J., Ring, R., Hennigan, T., Huang, S., Maggiore, L., Jones, C., Cassirer, A., ... Sifre, L. (2021). Improving language models by retrieving from trillions of tokens. *ArXiv*, 2112.04426(v3). http://arxiv.org/abs/2112.04426
- Goldberg, Y. (2018). Assessing BERT's Syntactic Abilities. *ArXiv*, *1901.05287*(v1), 2–5. <u>https://arXiv.org/abs/1901.05287</u>
- Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., Ishii, E., Bang, Y. J., Madotto, A., & Fung, P. (2023). Survey of Hallucination in Natural Language Generation. ACM Computing Surveys, 55(12), 1–38. <u>https://doi.org/10.1145/3571730</u>
- Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Bras, R. Le, & Choi, Y. (2020). Maieutic Prompting: Logically Consistent Reasoning with Recursive Explanations. *ArXiv*, 2205.11822. <u>https://arXiv.org/abs/2205.11822</u>
- Khattab, O., Santhanam, K., Li, X. L., Hall, D., Liang, P., Potts, C., & Zaharia, M. (2022). Demonstrate-Search-Predict: Composing retrieval and language models for knowledge-intensive NLP. *ArXiv*, 2212.14024(v2). <u>https://arXiv.org/abs/2212.14024</u>
- Knight, W. (2023). OpenAl's CEO Says the Age of Giant Al Models Is Already Over. *Wired*, 17 April 2023.

- Liu, N. F., Zhang, T., & Liang, P. (2023). Evaluating Verifiability in Generative Search Engines. ArXiv, 2304.09848(v1). https://arxiv.org/abs/2304.09848
- Liu, Q., Yogatama, D., Blunsom, P. (2022) Relational Memory Augmented Language Models. ArXiv, 2201.09680. https://arxiv.org/abs/2201.09680
- Mahowald, K., Ivanova, A. A., Blank, I. A., Kanwisher, N., Tenenbaum, J. B., & Fedorenko, E. (2023). Dissociating language and thought in large language models: a cognitive perspective. *ArXiv*, 2301.06627(v1). <u>https://arxiv.org/abs/2301.06627</u>
- Marvin, R., & Linzen, T. (2018). Targeted Syntactic Evaluation of Language Models. *EMNLP*, 1192–1202. <u>https://aclanthology.org/D18-1151/</u>
- McCoy, R. T., Yao, S., Friedman, D., Hardy, M., & Griffiths, T. L. (2023). Embers of Autoregression: Understanding Large Language Models Through the Problem They are Trained to Solve. <u>http://arxiv.org/abs/2309.13638</u>
- Melnyk, I., Dognin, P., & Das, P. (2022). Knowledge Graph Generation From Text. *Findings of the Association for Computational Linguistics: EMNLP 2022*, 1610–1622.
- Mialon, G., Dessì, R., Lomeli, M., Nalmpantis, C., Pasunuru, R., Raileanu, R., Rozière, B., Schick, T., Dwivedi-Yu, J., Celikyilmaz, A., Grave, E., LeCun, Y., & Scialom, T. (2023). Augmented Language Models: a Survey. *ArXiv*, 2302.07842(v1), 1–33. <u>http://arxiv.org/abs/2302.07842</u>
- Mitchell, T., Cohen, W., Hruschka, E., Talukdar, P., Yang, B., Betteridge, J., Carlson, A., Dalvi, B., Gardner, M., Kisiel, B., Krishnamurthy, J., Lao, N., Mazaitis, K., Mohamed, T., Nakashole, N., Platanios, E., Ritter, A., Samadi, M., Settles, B., ... Welling, J. (2018). Never-ending learning. *Communications of the ACM*, 61(5), 103–115. <u>https://doi.org/10.1145/3191513</u>

- Mok, A. (2023). ChatGPT could cost over \$700,000 per day to operate. Microsoft is reportedly trying to make it cheaper. *Insider*, April 20, 2023.
- Pan, S., Member, S., Luo, L., Wang, Y., Chen, C., Wang, J., & Wu, X. (2023). Unifying Large Language Models and Knowledge Graphs : A Roadmap. ArXiv, 2306.08302(v2). <u>http://arXiv.org/abs/2306.08302</u>
- Petroni, F., Rocktäschel, T., Lewis, P., Bakhtin, A., Wu, Y., Miller, A. H., & Riedel, S. (2019). Language models as knowledge bases? *EMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and* 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference, 2463–2473. https://doi.org/10.18653/v1/d19-1250
- Rafailov, R., Sharma, A., Mitchell, E., Ermon, S., Manning, C. D., & Finn, C. (2023). Direct Preference Optimization: Your Language Model is Secretly a Reward Model. *ArXiv*, 2305.18290(v2). <u>http://arxiv.org/abs/2305.18290</u>
- Ram, O., Levine, Y., Dalmedigos, I., Muhlgay, D., Shashua, A., Leyton-Brown, K., & Shoham, Y. (2023). In-Context Retrieval-Augmented Language Models. *ArXiv*, 2302.00083(v1). <u>http://arxiv.org/abs/2302.00083</u>
- Ramezanil, A., Valasquez, G. A., Rasuli, S., & Knowles, L. R. (2018). Neuroanatomical and Neurocognitive Functions of the Structure of the Mind: Clinical and Teaching Implications. *Current Opinions in Neurological Science*, 2(6). <u>https://scientiaricerca.com/srcons/SRCONS-02-00079.php</u>
- Russin, J., O'Reilly, R. C., & Bengio, Y. (2020). Deep Learning Needs a Prefrontal Cortex. Bridging AI and Cognitive Science (ICLR 2020 Workshop), 1–11. <u>https://arxiv.org/abs/1910.00744</u>
- Schick, T., Lomeli, M., Dwivedi-yu, J., & Dessi, R. (2022). Toolformer: Language Models Can Teach Themselves to Use Tools. ArXiv, 2302.04761(v1). <u>https://arXiv.org/abs/2302.04761</u>

- Sun, Y., Wang, S., Feng, S., Ding, S., Pang, C., Shang, J., Liu, L., Chen, X., Zhao, Y., Lu, Y., Liu, W., Wu, Z., Gong, W., Liang, J., Shang, Z., Sun, P., Liu, W., Ouyang, X., Yu, D., ... Wang, H. (2021). ERNIE 3.0: Larger-scale Knowledge Enhanced Pre-training for Language Understanding and Generation. *ArXiv*, 2112.12731(v1). <u>http://arxiv.org/abs/2112.12731</u>
- Valmeekam, K. (2023). On the Planning Abilities of Large Language Models A Critical Investigation. ArXiv, 2305.15771(v1). http://arXiv.org/abs/2305.15771
- Wang, C., Liu, X., & Song, D. (2020). Language Models are Open Knowledge Graphs. ArXiv, 2010.11967(v1), 1–30. <u>http://arxiv.org/abs/2010.11967</u>
- Wang, X., Gao, T., Zhu, Z., Zhang, Z., Liu, Z., Li, J., & Tang, J. (2019). KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation. ArXiv, 1911.06136(v3). <u>http://arXiv.org/abs/1911.06136</u>
- Zhu, Y., Wang, X., Chen, J., Qiao, S., Ou, Y., Yao, Y., Deng, S., Chen, H., & Zhang, N. (2023). LLMs for Knowledge Graph Construction and Reasoning: Recent Capabilities and Future Opportunities. ArXiv, 2305.13168(v1). <u>http://arxiv.org/abs/2305.13168</u>