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Value Function Approximation
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Large State Spaces

* When a problem has a large state space we
can not longer represent the V or Q functions
as explicit tables

* Even if we had enough memory
~ Never enough training data!
~ Learning takes too long

* What to do??



Function Approximation

* Never enough training data!

~ Must generalize what is learned from one situation to other
“similar” new situations

° |dea:

~ Instead of using large table to represent V or Q, use a
parameterized function

= The number of parameters should be small compared to
number of states (generally exponentially fewer
parameters)

~ Learn parameters from experience

~ When we update the parameters based on observations in
one state, then our V or Q estimate will also change for other
similar states

= |.e. the parameterization facilitates generalization of
experience



Linear Function Approximation

Define a set of state features f1(s), ..., fn(s)
~ The features are used as our representation of states
~ States with similar feature values will be considered to be similar

A common approximation is to represent V(s) as a weighted
sum of the features (i.e. a linear approximation)

V,(s)=0,+6,f,(5)+6,f,(5)+...+0,f ()

The approximation accuracy is fundamentally limited by the
Information provided by the features

Can we always define features that allow for a perfect linear
approximation?

~ Yes. Assign each state an indicator feature. (l.e. i'th feature is 1 iff i'th
state is present and 6, represents value of i'th state)

~ Of course this requires far too many features and gives no
generalization.



Example

Grid with no obstacles, deterministic actions U/D/L/R, no
discounting, -1 reward everywhere except +10 at goal

Features for state s=(x,y): f1(s)=x, f2(s)=y (just 2 features)
V(S) =6, + 0, X+ 0,y

Is there a good linear
approximation? 10|10
“ Yes.
~ 0,=10,0,=-1,0,=-1
~ (note upper right is origin)

6 0

V(s)=10-x-y
subtracts Manhattan dist.
from goal reward




But What If We Change Reward ...

* V(S) =0+ 0, X+ 0,y

° |Is there a good linear approximation?
“ No.
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But What If...

*V(s)=06,+0,x+0,y +0;2

°* Include new feature z

“ 2= (3] + 3]

~ z Is dist. to goal location

* Does this allow a
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good linear approx?

~0,=10,0,=0,=0,

63:'1




Linear Function Approximation

°* Define a set of features f,(s), ..., f.(S)
~ The features are used as our representation of states

- States with similar feature values will be treated
similarly

~ More complex functions require more complex features
V,(s)=0,+6,,(5)+6,f,(5)+...+ 6, f (5)

* Our goal Is to learn good parameter values (i.e.
feature weights) that approximate the value
function well

-~ How can we do this?

~ Use TD-based RL and somehow update parameters
based on each experience.



TD-based RL for Linear Approximators

1. Start with initial parameter values

2. Take action according to an explore/exploit policy
(should converge to greedy policy, i.e. GLIE)

3. Update estimated model (if model is not available)

4. Perform TD update for each parameter
0. «7?

5. Goto 2
What is a “TD update” for a parameter?



Aside: Gradient Descent

Given a function E(0,,..., 0,) of n real values 6=(0,,..., 0,)
suppose we want to minimize E with respect to 6

A common approach to doing this is gradient descent

The gradient of E at point 0, denoted by V,E(8), Is an
n-dimensional vector that points in the direction where f
Increases most steeply at point 6

Vector calculus tells us that V,E(0) Is just a vector of
partial derivatives

v E@)=| EY)  EO)
o6, " a6,
Where 5E—@: lim E(Hli'“ei_l,ei +5,9i+1 ..... Hn)_ E(@)
a@i e—0 £

Decrease E by moving 6 in negative gradient direction
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Aside: Gradient Descent for Squared Error

° Suppose that we have a sequence of states and target
values for each state (s;,v(s,)),(S,,V(s,)),...
-~ E.g. produced by the TD-based RL loop

° Our goal is to minimize the sum of squared errors between
our estimated function and each target value:

E,(0)==(,(s,)~v(s))?

- /
squared error of example | our estimated value

for j'th state

target value for j'th state

* After seeing j'th state the gradient descent rule tells us that
we can decrease error wrt E;(6) by updating parameters by:
[

learning rate "



Aside: continued

OE, 0, oV, (s )
0«6 —-—a——=6—
a(9| 8V (S )
N\ v ) y J
E;(0) = (V (s;)—V(s; )) Vs (Sj) — v(s;) gsgreggfn gpoiorm of

 For a linear approximation function:
V,(s) =6, +6,1,(s)+6,f,(s)+...+0,f (s)

N, (s)) _
= 1))

» Thus the update becomes: 6 < 6 +06(V(S,-) —\79(Sj))fi (s;)

* For linear functions this update is guaranteed to converge

to best approximation for suitable learning rate schedule
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TD-based RL for Linear Approximators

1.
2.

5.

Start with initial parameter values

Take action according to an explore/exploit policy
(should converge to greedy policy, i.e. GLIE)
Transition fromsto s’

Update estimated model

Perform TD update for each parameter
6, 6, +alv(s)—V, () )fy(s)
Goto 2
What should we use for “target value” v(s)?
Use the TD prediction based on the next state s’
V(s) = R(s) + BV, (s")

this is the same as previous TD method only with approximatio?3



TD-based RL for Linear Approximators
1. Start with initial parameter values

2. Take action according to an explore/exploit policy
(should converge to greedy policy, i.e. GLIE)

3. Update estimated model

4.  Perform TD update for each parameter

6, 6, +alR(s) + AV, (s') -V, (5))f,(5)
5. Goto 2

« Step 2 requires a model to select greedy action

* For some applications (e.g. Backgammon ) it is easy to get a
compact model representation (but not easy to get policy), so TD is
appropriate.

» For others it is difficult to small/compact model representation
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Q-function Approximation

* Define a set of features over state-action pairs:
f,(s,a), ..., f.(s,a)

~ State-action pairs with similar feature values will be
treated similarly

~ More complex functions require more complex features

Q,(s,a)=6,+6,f,(s,a)+0,f,(s,8) +...+ 6, f_(s,a)

Features are a function of states and actions.

* Just as for TD, we can generalize Q-learning to
update the parameters of the Q-function
approximation
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Q-learning with Linear Approximators

1. Start with initial parameter values

2. Take action a according to an explore/exploit policy
(should converge to greedy policy, i.e. GLIE) transitioning
fromstos’

3. Perform TD update for each parameter
6, 6, +alR(s)+ Bmax Q, (s, ') O, (s,a) )f, (5, 2)
J

N 2
4.  Goto 2 Y
estimate of Q(s,a) based

on observed transition

* TD converges close to minimum error solution

* Q-learning can diverge. Converges under some conditions.



Defining State-Action Features

* Often It Is straightforward to define features of
state-action pairs (example to come)

° |n other cases It Is easier and more natural to
define features on states f,(s), ..., f,(S)

~ Fortunately there is a generic way of deriving state-
features from a set of state features

* We construct a set of n x |A| state-action features

f.(s), If a=a,

_ le{l..,.n},ke{l..,| A}
0, otherwise

fi(s,a)= {
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Defining State-Action Features

* This effectively replicates the state features
across actions, and activates only one set of
features based on which action is selected

* Qg(s,a) = Yk 2i Qi fik (s, a)

= > 0irfir (s, ax), wherea = ay

° Each action a;, has its own set of parameters

{0ix }
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Example: Tactical Battles in Wargus

* Wargus is real-time strategy (RTS) game
~ Tactical battles are a key aspect of the game

3 2 ) & - — s
& %
I —&
8% ] by
7 &y
ok oo
Ay e
o84
%
8
® 7 -

Stref Strataud 477 5

* RL Task: learn a policy to control n friendly agents in a
battle against m enemy agents

~ Policy should be applicable to tasks with different sets and
numbers of agents
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Example: Tactical Battles in Wargus

States: contain information about the locations, health, and
current activity of all friendly and enemy agents

Actions: Attack(F,E)
~ causes friendly agent F to attack enemy E

Policy: represented via Q-function Q(s,Attack(F,E))

~ Each decision cycle loop through each friendly agent F and select
enemy E to attack that maximizes Q(s,Attack(F,E))

Q(s,Attack(F,E)) generalizes over any friendly and enemy
agents F and E
-~ We used a linear function approximator with Q-learning
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Example: Tactical Battles in Wargus
Q,(s,a)=6,+06,f,(s,a)+6,f,(s,a)+...+ 6. f_(s,a)

* Engineered a set of relational features
{f1(s,Attack(F,E)), ...., fn(s,Attack(F,E))}

* Example Features:
~ # of other friendly agents that are currently attacking E
~ Health of friendly agent F
~ Health of enemy agent E
~ Difference in health values
~ Walking distance between F and E
~ |s E the enemy agent that F is currently attacking?
~ |s F the closest friendly agent to E?
~ |s E the closest enemy agent to E?

* Features are well defined for any number of agents
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Example: Tactical Battles in Wargus
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Example: Tactical Battles in Wargus
°* Linear Q-learning in 5 vs. 5 battle
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Example: Tactical Battles in Wargus
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Learned Policy after 120 battles



Stratagis Vo (E)T1998=2004 By, The Stratagus Project,

10 vs. 10 using policy learned on 5vs. 5



Example: Tactical Battles in Wargus
* |nitialize Q-function for 10 vs. 10 to one learned

for5vs. 5

~ Initial performance is very good which demonstrates
generalization from 5 vs. 5to 10 vs. 10
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Q-learning w/ Non-linear Approximators

Qg (3, a) IS sometimes represented by a non-linear
approximator such as a neural network

1. Start with initial parameter values

2. Take action according to an explore/exploit policy
(should converge to greedy policy, i.e. GLIE)

3. Perform TD update for each parameter

O, <0 + a(R(S) +p max Q,(s',a)—Q, s, a))GQgS, a)
4.  Goto 2 | \
calculate

- Typically the space has many local minima closed-form

and we no Ionger guarantee convergence

« Often works well in practice
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~Worlds Best Backgammon Player

* Neural network with 80 hidden units

* Used Reinforcement Learning for 300,000 games of
self-play

° One of the top (2 or 3) players in the world!
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Al for General Atari 2600 Games

CapyrightT 1982

Playing Atari With Deep Reinforcement Learning
NIPS Deep Learning Workshop, 2013.




Deep Q-Networks for Policies: Atarl

* Network input = Observation history
~ Window of previous screen shots in Atari

* Network output = One output node per action (returns Q-
value)

Convglution Convglution Fully cgnnected Fully cgnnected
Q-val

w /e == (Q-values
- S ‘
|/ m
EH o & } @ e
El f \m
g
.
Previous w frames

31



DON : Q-Learning w/ Randomized
Experience Replay

S e o

7.

Initial “experience replay” data set D

Initialize parameter values to 6

Take action according to an explore/exploit policy based on 6
Add observed transition (s, a,r,s") to D (limit size of D to N)
Randomly sample a transition (s, ay, 1%, s;,) from D

Perform a TD update for each parameter based on mini-batch
0<0+a (Tk + B max Qo(sk,a’) — Qg (s, ak)) Vo Q (i, ag)

Goto 3



a k~ 0 D oPE

DON : Mini-Batches

Initial “experience replay” data set D

Initialize parameter values to 6

Take action according to an explore/exploit policy based on 6
Add observed transition (s, a,r,s") to D (limit size of D to N)

Randomly sample a mini-batch of B transition {(sy, ax, %, Sx)}
from D

Perform a TD update for each parameter based on mini-batch

0 <0+ “z (Tk + Bmax Qo(sg,a’) — Qp(sy, ak)) Vo Q(Sk, ag)
X

Goto 3



DON versus Traditional Q-learning

* Experience replay allows for reuse of data
~ More efficient use of experience

* Randomly sampling batches for updates versus
updating on latest sample

~ Claim that this breaks correlation among updates which
reduces variance

° Quantize the rewards to be 1, O, or -1 (depending
on sign of true reward)
~ Helps limit impact of any one update

~ Helps selecting learning parameters that work across
games

~ Could fundamentally change the optimal policy
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DON Results

B. Rider | Breakout | Enduro Pong | Q%bert | Seaquest | S. Invaders
Random 354 1.2 0 —20.4 157 110 179
Sarsa [3] 996 5.2 129 —19 614 665 271
Contingency [4] 1743 6 159 —17 960 723 268
DQN 4092 168 470 20 1952 1705 581
Human 7456 31 368 —3 18900 28010 3690
HNeat Best [8] 3616 H2 106 19 1800 920 1720
HNeat Pixel [8] 1332 4 91 —16 1325 800 1145
DQN Best 5184 225 661 21 4500 1740 1075
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