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RL for Large State Spaces: 

Value Function Approximation

Alan Fern 

* Based in part on slides by Daniel Weld
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Large State Spaces

When a problem has a large state space we 
can not longer represent the V or Q functions 
as explicit tables

Even if we had enough memory 
Never enough training data!

Learning takes too long

What to do??
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Function Approximation

 Never enough training data!
 Must generalize what is learned from one situation to other 

“similar” new situations

 Idea: 
 Instead of using large table to represent V or Q, use a 

parameterized function

 The number of parameters should be small compared to 
number of states (generally exponentially fewer 
parameters)

 Learn parameters from experience

 When we update the parameters based on observations in 
one state, then our V or Q estimate will also change for other 
similar states

 I.e. the parameterization facilitates generalization of 
experience
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Linear Function Approximation
 Define a set of state features f1(s), …, fn(s)

 The features are used as our representation of states

 States with similar feature values will be considered to be similar

 A common approximation is to represent V(s) as a weighted 

sum of the features (i.e. a linear approximation) 

 The approximation accuracy is fundamentally limited by the 

information provided by the features

 Can we always define features that allow for a perfect linear 

approximation?

 Yes. Assign each state an indicator feature. (I.e. i’th feature is 1 iff i’th

state is present and i represents value of i’th state)

 Of course this requires far too many features and gives no 

generalization.

)(...)()()(ˆ
22110 sfsfsfsV nn 



5

Example

 Grid with no obstacles, deterministic actions U/D/L/R, no 
discounting, -1 reward everywhere except +10 at goal

 Features for state s=(x,y):   f1(s)=x, f2(s)=y   (just 2 features)

 V(s) = 0 + 1 x + 2 y

 Is there a good linear 
approximation?
 Yes. 

 0 =10, 1 = -1, 2 = -1

 (note upper right is origin)

 V(s) = 10 - x - y
subtracts Manhattan dist.
from goal reward
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But What If We Change Reward …

 V(s) = 0 + 1 x + 2 y

 Is there a good linear approximation?
 No. 
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But What If…

V(s) = 0 + 1 x + 2 y

10

+ 3 z

 Include new feature z

z= |3-x| + |3-y| 

z is dist. to goal location

Does this allow a 

good linear approx?

0 =10, 1 = 2 = 0,

3 = -1
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Linear Function Approximation

Define a set of features f1(s), …, fn(s)
The features are used as our representation of states

States with similar feature values will be treated 
similarly

More complex functions require more complex features

Our goal is to learn good parameter values (i.e. 
feature weights) that approximate the value 
function well
How can we do this?

Use TD-based RL and somehow update parameters 
based on each experience.
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TD-based RL for Linear Approximators

1. Start with initial parameter values

2. Take action according to an explore/exploit policy
(should converge to greedy policy, i.e. GLIE) 

3. Update estimated model (if model is not available)

4. Perform TD update for each parameter

5. Goto 2

What is a “TD update” for a parameter?

?i
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Aside: Gradient Descent

 Given a function E(1,…, n) of n real values =(1,…, n) 
suppose we want to minimize E with respect to 

 A common approach to doing this is gradient descent

 The gradient of E at point , denoted by  E(), is an 
n-dimensional vector that points in the direction where f
increases most steeply at point 

 Vector calculus tells us that  E() is just a vector of 
partial derivatives

where

 Decrease E by moving  in negative gradient direction 
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Aside: Gradient Descent for Squared Error

 Suppose that we have a sequence of states and target 

values for each state

 E.g. produced by the TD-based RL loop

 Our goal is to minimize the sum of squared errors between 

our estimated function and each target value:

 After seeing j’th state the gradient descent rule tells us that 

we can decrease error wrt 𝐸𝑗 𝜃 by updating parameters by:
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squared error of example j
our estimated value

for j’th state

learning rate

target value for j’th state
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Aside: continued
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• For a linear approximation function:

• Thus the update becomes:

• For linear functions this update is guaranteed to converge

to best approximation for suitable learning rate schedule 
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TD-based RL for Linear Approximators
1. Start with initial parameter values

2. Take action according to an explore/exploit policy 
(should converge to greedy policy, i.e. GLIE) 
Transition from s to s’

3. Update estimated model

4. Perform TD update for each parameter

5. Goto 2

What should we use for “target value” v(s)?

  )()(ˆ)( sfsVsv iii  

• Use the TD prediction based on the next state s’

this is the same as previous TD method only with approximation
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TD-based RL for Linear Approximators
1. Start with initial parameter values

2. Take action according to an explore/exploit policy
(should converge to greedy policy, i.e. GLIE) 

3. Update estimated model

4. Perform TD update for each parameter

5. Goto 2

  )()(ˆ)'(ˆ)( sfsVsVsR iii  

• Step 2 requires a model to select greedy action 

• For some applications (e.g. Backgammon ) it is easy to get a 

compact model representation (but not easy to get policy), so TD is 

appropriate.

• For others it is difficult to small/compact model representation
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Q-function Approximation

Define a set of features over state-action pairs: 
f1(s,a), …, fn(s,a)
State-action pairs with similar feature values will be 

treated similarly

More complex functions require more complex features

Just as for TD, we can generalize Q-learning to 
update the parameters of the Q-function 
approximation

),(...),(),(),(ˆ
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Features are a function of states and actions.
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Q-learning with Linear Approximators

1. Start with initial parameter values

2. Take action a according to an explore/exploit policy
(should converge to greedy policy, i.e. GLIE) transitioning 
from s to s’

3. Perform TD update for each parameter

4. Goto 2
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• TD converges close to minimum error solution

• Q-learning can diverge. Converges under some conditions. 

estimate of Q(s,a) based 

on observed transition



17

Defining State-Action Features

Often it is straightforward to define features of 
state-action pairs (example to come)

 In other cases it is easier and more natural to 
define features on states f1(s), …, fn(s)
Fortunately there is a generic way of deriving state-

features from a set of state features

We construct a set of n x |A| state-action features



 


otherwise

aaifsf
asf

ki

ik
,0

),(
),( |}|,..,1{},,..,1{ Akni 



18

Defining State-Action Features

This effectively replicates the state features 
across actions, and activates only one set of 
features based on which action is selected

  𝑄𝜃 𝑠, 𝑎 =  𝑘  𝑖 𝜃𝑖𝑘𝑓𝑖𝑘 𝑠, 𝑎

=  𝑖 𝜃𝑖𝑘𝑓𝑖𝑘 𝑠, 𝑎𝑘 , where 𝑎 = 𝑎𝑘

Each action 𝑎𝑘 has its own set of parameters 
𝜃𝑖𝑘 .
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Example: Tactical Battles in Wargus

 Wargus is real-time strategy (RTS) game
 Tactical battles are a key aspect of the game

 RL Task: learn a policy to control n friendly agents in a 
battle against m enemy agents
 Policy should be applicable to tasks with different sets and 

numbers of agents

5 vs. 5 10 vs. 10



21

Example: Tactical Battles in Wargus

 States: contain information about the locations, health, and 
current activity of all friendly and enemy agents

 Actions:  Attack(F,E) 
 causes friendly agent F to attack enemy E

 Policy: represented via Q-function Q(s,Attack(F,E))
 Each decision cycle loop through each friendly agent F and select 

enemy E to attack that maximizes Q(s,Attack(F,E))

 Q(s,Attack(F,E)) generalizes over any friendly and enemy 
agents F and E
 We used a linear function approximator with Q-learning
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Example: Tactical Battles in Wargus

 Engineered a set of relational features 
{f1(s,Attack(F,E)), …., fn(s,Attack(F,E))}

 Example Features: 
 # of other friendly agents that are currently attacking E

 Health of friendly agent F

 Health of enemy agent E

 Difference in health values

 Walking distance between F and E

 Is E the enemy agent that F is currently attacking?

 Is F the closest friendly agent to E? 

 Is E the closest enemy agent to E? 

 …

 Features are well defined for any number of agents

),(...),(),(),(ˆ
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Example: Tactical Battles in Wargus

Initial random policy
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Example: Tactical Battles in Wargus
Linear Q-learning in 5 vs. 5 battle
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Example: Tactical Battles in Wargus

Learned Policy after 120 battles
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Example: Tactical Battles in Wargus

10 vs. 10 using policy learned on 5 vs. 5
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Example: Tactical Battles in Wargus
 Initialize Q-function for 10 vs. 10 to one learned 

for 5 vs. 5
 Initial performance is very good which demonstrates 

generalization from 5 vs. 5 to 10 vs. 10
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Q-learning w/ Non-linear Approximators

1. Start with initial parameter values

2. Take action according to an explore/exploit policy
(should converge to greedy policy, i.e. GLIE) 

3. Perform TD update for each parameter

4. Goto 2
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• Typically the space has many local minima 

and we no longer guarantee convergence

• Often works well in practice

is sometimes represented by a non-linear

approximator such as a neural network

calculate 

closed-form
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~Worlds Best Backgammon Player

Neural network with 80 hidden units

Used Reinforcement Learning for 300,000 games of 

self-play

One of the top (2 or 3) players in the world!



AI for General Atari 2600 Games

Playing Atari With Deep Reinforcement Learning

NIPS Deep Learning Workshop, 2013. 
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Deep Q-Networks for Policies: Atari

 Network input = Observation history

Window of previous screen shots in Atari

 Network output = One output node per action (returns Q-
value)

Previous w frames

Q-values



DQN :  Q-Learning w/ Randomized 

Experience Replay

1. Initial “experience replay” data set 𝐷

2. Initialize parameter values to 𝜃

3. Take action according to an explore/exploit policy based on 𝜃

4. Add observed transition (𝑠, 𝑎, 𝑟, 𝑠′) to 𝐷 (limit size of D to N)

5. Randomly sample a transition 𝑠𝑘 , 𝑎𝑘 , 𝑟𝑘 , 𝑠𝑘
′ from 𝐷

6. Perform a TD update for each parameter based on mini-batch

𝜃 ← 𝜃 + 𝛼 𝑟𝑘 + Βmax
𝑎′

 𝑄𝜃 𝑠𝑘
′ , 𝑎′ −  𝑄𝜃 𝑠𝑘 , 𝑎𝑘 𝛻𝜃𝑄 𝑠𝑘 , 𝑎𝑘

7.     Goto 3



DQN :  Mini-Batches

1. Initial “experience replay” data set 𝐷

2. Initialize parameter values to 𝜃

3. Take action according to an explore/exploit policy based on 𝜃

4. Add observed transition (𝑠, 𝑎, 𝑟, 𝑠′) to 𝐷 (limit size of D to N)

5. Randomly sample a mini-batch of 𝐵 transition { 𝑠𝑘 , 𝑎𝑘 , 𝑟𝑘 , 𝑠𝑘
′ }

from 𝐷

6. Perform a TD update for each parameter based on mini-batch

𝜃 ← 𝜃 + 𝛼 

𝑘

𝑟𝑘 + Βmax
𝑎′

 𝑄𝜃 𝑠𝑘
′ , 𝑎′ −  𝑄𝜃 𝑠𝑘 , 𝑎𝑘 ∇𝜃 𝑄 𝑠𝑘 , 𝑎𝑘

7. Goto 3
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DQN versus Traditional Q-learning

Experience replay allows for reuse of data
More efficient use of experience

Randomly sampling batches for updates versus 
updating on latest sample
Claim that this breaks correlation among updates which 

reduces variance

Quantize the rewards to be 1, 0, or -1 (depending 
on sign of true reward)
Helps limit impact of any one update

Helps selecting learning parameters that work across 
games

Could fundamentally change the optimal policy
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DQN Results


