
1

RL for Large State Spaces:

Value Function Approximation

Alan Fern

* Based in part on slides by Daniel Weld

2

Large State Spaces

When a problem has a large state space we
can not longer represent the V or Q functions
as explicit tables

Even if we had enough memory
Never enough training data!

Learning takes too long

What to do??

3

Function Approximation

 Never enough training data!
 Must generalize what is learned from one situation to other

“similar” new situations

 Idea:
 Instead of using large table to represent V or Q, use a

parameterized function

 The number of parameters should be small compared to
number of states (generally exponentially fewer
parameters)

 Learn parameters from experience

 When we update the parameters based on observations in
one state, then our V or Q estimate will also change for other
similar states

 I.e. the parameterization facilitates generalization of
experience

4

Linear Function Approximation
 Define a set of state features f1(s), …, fn(s)

 The features are used as our representation of states

 States with similar feature values will be considered to be similar

 A common approximation is to represent V(s) as a weighted

sum of the features (i.e. a linear approximation)

 The approximation accuracy is fundamentally limited by the

information provided by the features

 Can we always define features that allow for a perfect linear

approximation?

 Yes. Assign each state an indicator feature. (I.e. i’th feature is 1 iff i’th

state is present and i represents value of i’th state)

 Of course this requires far too many features and gives no

generalization.

)(...)()()(ˆ
22110 sfsfsfsV nn

5

Example

 Grid with no obstacles, deterministic actions U/D/L/R, no
discounting, -1 reward everywhere except +10 at goal

 Features for state s=(x,y): f1(s)=x, f2(s)=y (just 2 features)

 V(s) = 0 + 1 x + 2 y

 Is there a good linear
approximation?
 Yes.

 0 =10, 1 = -1, 2 = -1

 (note upper right is origin)

 V(s) = 10 - x - y
subtracts Manhattan dist.
from goal reward

10

0

0

6

6

6

But What If We Change Reward …

 V(s) = 0 + 1 x + 2 y

 Is there a good linear approximation?
 No.

10

0

0

7

But What If…

V(s) = 0 + 1 x + 2 y

10

+ 3 z

 Include new feature z

z= |3-x| + |3-y|

z is dist. to goal location

Does this allow a

good linear approx?

0 =10, 1 = 2 = 0,

3 = -1

0

0

3

3

8

Linear Function Approximation

Define a set of features f1(s), …, fn(s)
The features are used as our representation of states

States with similar feature values will be treated
similarly

More complex functions require more complex features

Our goal is to learn good parameter values (i.e.
feature weights) that approximate the value
function well
How can we do this?

Use TD-based RL and somehow update parameters
based on each experience.

)(...)()()(ˆ
22110 sfsfsfsV nn

9

TD-based RL for Linear Approximators

1. Start with initial parameter values

2. Take action according to an explore/exploit policy
(should converge to greedy policy, i.e. GLIE)

3. Update estimated model (if model is not available)

4. Perform TD update for each parameter

5. Goto 2

What is a “TD update” for a parameter?

?i

10

Aside: Gradient Descent

 Given a function E(1,…, n) of n real values =(1,…, n)
suppose we want to minimize E with respect to

 A common approach to doing this is gradient descent

 The gradient of E at point , denoted by E(), is an
n-dimensional vector that points in the direction where f
increases most steeply at point

 Vector calculus tells us that E() is just a vector of
partial derivatives

where

 Decrease E by moving in negative gradient direction

)(),,,,,(
lim

)(111

0

EEE niii

i

n

EE
E

)(
,,

)(
)(

1

11

Aside: Gradient Descent for Squared Error

 Suppose that we have a sequence of states and target

values for each state

 E.g. produced by the TD-based RL loop

 Our goal is to minimize the sum of squared errors between

our estimated function and each target value:

 After seeing j’th state the gradient descent rule tells us that

we can decrease error wrt 𝐸𝑗 𝜃 by updating parameters by:

 2)()(ˆ
2

1
)(jjj svsVE

squared error of example j
our estimated value

for j’th state

learning rate

target value for j’th state

,)(,,)(, 2211 svssvs

i

j

ii

E

12

Aside: continued

i

j

j

j

i

i

j

ii

sV

sV

EE

)(ˆ

)(ˆ

• For a linear approximation function:

• Thus the update becomes:

• For linear functions this update is guaranteed to converge

to best approximation for suitable learning rate schedule

)(...)()()(ˆ
22111 sfsfsfsV nn

)()(ˆ)(jijjii sfsVsv

)(
)(ˆ

ji

i

j
sf

sV

depends on form of

approximator
 2)()(ˆ

2

1
)(jjj svsVE 𝑉𝜃 𝑠𝑗 − 𝑣(𝑠𝑗)

13

TD-based RL for Linear Approximators
1. Start with initial parameter values

2. Take action according to an explore/exploit policy
(should converge to greedy policy, i.e. GLIE)
Transition from s to s’

3. Update estimated model

4. Perform TD update for each parameter

5. Goto 2

What should we use for “target value” v(s)?

)()(ˆ)(sfsVsv iii

• Use the TD prediction based on the next state s’

this is the same as previous TD method only with approximation

)'(ˆ)()(sVsRsv

14

TD-based RL for Linear Approximators
1. Start with initial parameter values

2. Take action according to an explore/exploit policy
(should converge to greedy policy, i.e. GLIE)

3. Update estimated model

4. Perform TD update for each parameter

5. Goto 2

)()(ˆ)'(ˆ)(sfsVsVsR iii

• Step 2 requires a model to select greedy action

• For some applications (e.g. Backgammon) it is easy to get a

compact model representation (but not easy to get policy), so TD is

appropriate.

• For others it is difficult to small/compact model representation

15

Q-function Approximation

Define a set of features over state-action pairs:
f1(s,a), …, fn(s,a)
State-action pairs with similar feature values will be

treated similarly

More complex functions require more complex features

Just as for TD, we can generalize Q-learning to
update the parameters of the Q-function
approximation

),(...),(),(),(ˆ
22110 asfasfasfasQ nn

Features are a function of states and actions.

16

Q-learning with Linear Approximators

1. Start with initial parameter values

2. Take action a according to an explore/exploit policy
(should converge to greedy policy, i.e. GLIE) transitioning
from s to s’

3. Perform TD update for each parameter

4. Goto 2

),(),(ˆ)','(ˆmax)(
'

asfasQasQsR i
a

ii

• TD converges close to minimum error solution

• Q-learning can diverge. Converges under some conditions.

estimate of Q(s,a) based

on observed transition

17

Defining State-Action Features

Often it is straightforward to define features of
state-action pairs (example to come)

 In other cases it is easier and more natural to
define features on states f1(s), …, fn(s)
Fortunately there is a generic way of deriving state-

features from a set of state features

We construct a set of n x |A| state-action features

otherwise

aaifsf
asf

ki

ik
,0

),(
),(|}|,..,1{},,..,1{ Akni

18

Defining State-Action Features

This effectively replicates the state features
across actions, and activates only one set of
features based on which action is selected

 𝑄𝜃 𝑠, 𝑎 = 𝑘 𝑖 𝜃𝑖𝑘𝑓𝑖𝑘 𝑠, 𝑎

= 𝑖 𝜃𝑖𝑘𝑓𝑖𝑘 𝑠, 𝑎𝑘 , where 𝑎 = 𝑎𝑘

Each action 𝑎𝑘 has its own set of parameters
𝜃𝑖𝑘 .

19

20

Example: Tactical Battles in Wargus

 Wargus is real-time strategy (RTS) game
 Tactical battles are a key aspect of the game

 RL Task: learn a policy to control n friendly agents in a
battle against m enemy agents
 Policy should be applicable to tasks with different sets and

numbers of agents

5 vs. 5 10 vs. 10

21

Example: Tactical Battles in Wargus

 States: contain information about the locations, health, and
current activity of all friendly and enemy agents

 Actions: Attack(F,E)
 causes friendly agent F to attack enemy E

 Policy: represented via Q-function Q(s,Attack(F,E))
 Each decision cycle loop through each friendly agent F and select

enemy E to attack that maximizes Q(s,Attack(F,E))

 Q(s,Attack(F,E)) generalizes over any friendly and enemy
agents F and E
 We used a linear function approximator with Q-learning

22

Example: Tactical Battles in Wargus

 Engineered a set of relational features
{f1(s,Attack(F,E)), …., fn(s,Attack(F,E))}

 Example Features:
 # of other friendly agents that are currently attacking E

 Health of friendly agent F

 Health of enemy agent E

 Difference in health values

 Walking distance between F and E

 Is E the enemy agent that F is currently attacking?

 Is F the closest friendly agent to E?

 Is E the closest enemy agent to E?

 …

 Features are well defined for any number of agents

),(...),(),(),(ˆ
22111 asfasfasfasQ nn

23

Example: Tactical Battles in Wargus

Initial random policy

24

Example: Tactical Battles in Wargus
Linear Q-learning in 5 vs. 5 battle

-100

0

100

200

300

400

500

600

700

D
a
m

a
g

e

D

if
fe

r
e
n

ti
a
l

Episodes

25

Example: Tactical Battles in Wargus

Learned Policy after 120 battles

26

Example: Tactical Battles in Wargus

10 vs. 10 using policy learned on 5 vs. 5

27

Example: Tactical Battles in Wargus
 Initialize Q-function for 10 vs. 10 to one learned

for 5 vs. 5
 Initial performance is very good which demonstrates

generalization from 5 vs. 5 to 10 vs. 10

28

Q-learning w/ Non-linear Approximators

1. Start with initial parameter values

2. Take action according to an explore/exploit policy
(should converge to greedy policy, i.e. GLIE)

3. Perform TD update for each parameter

4. Goto 2

i

a
ii

asQ
asQasQsR

),(ˆ
),(ˆ)','(ˆmax)(

'

),(ˆ asQ

• Typically the space has many local minima

and we no longer guarantee convergence

• Often works well in practice

is sometimes represented by a non-linear

approximator such as a neural network

calculate

closed-form

29

~Worlds Best Backgammon Player

Neural network with 80 hidden units

Used Reinforcement Learning for 300,000 games of

self-play

One of the top (2 or 3) players in the world!

AI for General Atari 2600 Games

Playing Atari With Deep Reinforcement Learning

NIPS Deep Learning Workshop, 2013.

31

Deep Q-Networks for Policies: Atari

 Network input = Observation history

Window of previous screen shots in Atari

 Network output = One output node per action (returns Q-
value)

Previous w frames

Q-values

DQN : Q-Learning w/ Randomized

Experience Replay

1. Initial “experience replay” data set 𝐷

2. Initialize parameter values to 𝜃

3. Take action according to an explore/exploit policy based on 𝜃

4. Add observed transition (𝑠, 𝑎, 𝑟, 𝑠′) to 𝐷 (limit size of D to N)

5. Randomly sample a transition 𝑠𝑘 , 𝑎𝑘 , 𝑟𝑘 , 𝑠𝑘
′ from 𝐷

6. Perform a TD update for each parameter based on mini-batch

𝜃 ← 𝜃 + 𝛼 𝑟𝑘 + Βmax
𝑎′

 𝑄𝜃 𝑠𝑘
′ , 𝑎′ − 𝑄𝜃 𝑠𝑘 , 𝑎𝑘 𝛻𝜃𝑄 𝑠𝑘 , 𝑎𝑘

7. Goto 3

DQN : Mini-Batches

1. Initial “experience replay” data set 𝐷

2. Initialize parameter values to 𝜃

3. Take action according to an explore/exploit policy based on 𝜃

4. Add observed transition (𝑠, 𝑎, 𝑟, 𝑠′) to 𝐷 (limit size of D to N)

5. Randomly sample a mini-batch of 𝐵 transition { 𝑠𝑘 , 𝑎𝑘 , 𝑟𝑘 , 𝑠𝑘
′ }

from 𝐷

6. Perform a TD update for each parameter based on mini-batch

𝜃 ← 𝜃 + 𝛼

𝑘

𝑟𝑘 + Βmax
𝑎′

 𝑄𝜃 𝑠𝑘
′ , 𝑎′ − 𝑄𝜃 𝑠𝑘 , 𝑎𝑘 ∇𝜃 𝑄 𝑠𝑘 , 𝑎𝑘

7. Goto 3

34

DQN versus Traditional Q-learning

Experience replay allows for reuse of data
More efficient use of experience

Randomly sampling batches for updates versus
updating on latest sample
Claim that this breaks correlation among updates which

reduces variance

Quantize the rewards to be 1, 0, or -1 (depending
on sign of true reward)
Helps limit impact of any one update

Helps selecting learning parameters that work across
games

Could fundamentally change the optimal policy

35

DQN Results

