RL for Large State Spaces:
Value Function Approximation

Alan Fern

* Based in part on slides by Daniel Weld

Large State Spaces

* When a problem has a large state space we
can not longer represent the V or Q functions
as explicit tables

* Even if we had enough memory
~ Never enough training data!
~ Learning takes too long

* What to do??

Function Approximation

* Never enough training data!

~ Must generalize what is learned from one situation to other
“similar” new situations

° |dea:

~ Instead of using large table to represent V or Q, use a
parameterized function

= The number of parameters should be small compared to
number of states (generally exponentially fewer
parameters)

~ Learn parameters from experience

~ When we update the parameters based on observations in
one state, then our V or Q estimate will also change for other
similar states

= |.e. the parameterization facilitates generalization of
experience

Linear Function Approximation

Define a set of state features f1(s), ..., fn(s)
~ The features are used as our representation of states
~ States with similar feature values will be considered to be similar

A common approximation is to represent V(s) as a weighted
sum of the features (i.e. a linear approximation)

V,(s)=0,+6,f,(5)+6,f,(5)+...+0,f ()

The approximation accuracy is fundamentally limited by the
Information provided by the features

Can we always define features that allow for a perfect linear
approximation?

~ Yes. Assign each state an indicator feature. (l.e. i'th feature is 1 iff i'th
state is present and 6, represents value of i'th state)

~ Of course this requires far too many features and gives no
generalization.

Example

Grid with no obstacles, deterministic actions U/D/L/R, no
discounting, -1 reward everywhere except +10 at goal

Features for state s=(x,y): f1(s)=x, f2(s)=y (just 2 features)
V(S) =6, + 0, X+ 0,y

Is there a good linear
approximation? 10|10
“ Yes.
~ 0,=10,0,=-1,0,=-1
~ (note upper right is origin)

6 0

V(s)=10-x-y
subtracts Manhattan dist.
from goal reward

But What If We Change Reward ...

* V(S) =0+ 0, X+ 0,y

° |Is there a good linear approximation?
“ No.

10

But What If...

*V(s)=06,+0,x+0,y +0;2

°* Include new feature z

“ 2= (3] + 3]

~ z Is dist. to goal location

* Does this allow a

10

good linear approx?

~0,=10,0,=0,=0,

63:'1

Linear Function Approximation

°* Define a set of features f,(s), ..., f.(S)
~ The features are used as our representation of states

- States with similar feature values will be treated
similarly

~ More complex functions require more complex features
V,(s)=0,+6,,(5)+6,f,(5)+...+ 6, f (5)

* Our goal Is to learn good parameter values (i.e.
feature weights) that approximate the value
function well

-~ How can we do this?

~ Use TD-based RL and somehow update parameters
based on each experience.

TD-based RL for Linear Approximators

1. Start with initial parameter values

2. Take action according to an explore/exploit policy
(should converge to greedy policy, i.e. GLIE)

3. Update estimated model (if model is not available)

4. Perform TD update for each parameter
0. «7?

5. Goto 2
What is a “TD update” for a parameter?

Aside: Gradient Descent

Given a function E(0,,..., 0,) of n real values 6=(0,,..., 0,)
suppose we want to minimize E with respect to 6

A common approach to doing this is gradient descent

The gradient of E at point 0, denoted by V,E(8), Is an
n-dimensional vector that points in the direction where f
Increases most steeply at point 6

Vector calculus tells us that V,E(0) Is just a vector of
partial derivatives

v E@)=| EY) EO)
o6, " a6,
Where 5E—@: lim E(Hli'“ei_l,ei +5,9i+1 Hn)_ E(@)
a@i e—0 £

Decrease E by moving 6 in negative gradient direction
10

Aside: Gradient Descent for Squared Error

° Suppose that we have a sequence of states and target
values for each state (s;,v(s,)),(S,,V(s,)),...
-~ E.g. produced by the TD-based RL loop

° Our goal is to minimize the sum of squared errors between
our estimated function and each target value:

E,(0)==(,(s,)~v(s))?

- /
squared error of example | our estimated value

for j'th state

target value for j'th state

* After seeing j'th state the gradient descent rule tells us that
we can decrease error wrt E;(6) by updating parameters by:
[

learning rate "

Aside: continued

OE, 0, oV, (s)
0«6 —-—a——=6—
a(9| 8V (S)
N\ v) y J
E;(0) = (V (s;)—V(s;)) Vs (Sj) — v(s;) gsgreggfn gpoiorm of

 For a linear approximation function:
V,(s) =6, +6,1,(s)+6,f,(s)+...+0,f (s)

N, (s)) _
= 1))

» Thus the update becomes: 6 < 6 +06(V(S,-) —\79(Sj))fi (s;)

* For linear functions this update is guaranteed to converge

to best approximation for suitable learning rate schedule
12

TD-based RL for Linear Approximators

1.
2.

5.

Start with initial parameter values

Take action according to an explore/exploit policy
(should converge to greedy policy, i.e. GLIE)
Transition fromsto s’

Update estimated model

Perform TD update for each parameter
6, 6, +alv(s)—V, ())fy(s)
Goto 2
What should we use for “target value” v(s)?
Use the TD prediction based on the next state s’
V(s) = R(s) + BV, (s")

this is the same as previous TD method only with approximatio?3

TD-based RL for Linear Approximators
1. Start with initial parameter values

2. Take action according to an explore/exploit policy
(should converge to greedy policy, i.e. GLIE)

3. Update estimated model

4. Perform TD update for each parameter

6, 6, +alR(s) + AV, (s') -V, (5))f,(5)
5. Goto 2

« Step 2 requires a model to select greedy action

* For some applications (e.g. Backgammon) it is easy to get a
compact model representation (but not easy to get policy), so TD is
appropriate.

» For others it is difficult to small/compact model representation
14

Q-function Approximation

* Define a set of features over state-action pairs:
f,(s,a), ..., f.(s,a)

~ State-action pairs with similar feature values will be
treated similarly

~ More complex functions require more complex features

Q,(s,a)=6,+6,f,(s,a)+0,f,(s,8) +...+ 6, f_(s,a)

Features are a function of states and actions.

* Just as for TD, we can generalize Q-learning to
update the parameters of the Q-function
approximation

15

Q-learning with Linear Approximators

1. Start with initial parameter values

2. Take action a according to an explore/exploit policy
(should converge to greedy policy, i.e. GLIE) transitioning
fromstos’

3. Perform TD update for each parameter
6, 6, +alR(s)+ Bmax Q, (s, ') O, (s,a))f, (5, 2)
J

N 2
4. Goto 2 Y
estimate of Q(s,a) based

on observed transition

* TD converges close to minimum error solution

* Q-learning can diverge. Converges under some conditions.

Defining State-Action Features

* Often It Is straightforward to define features of
state-action pairs (example to come)

° |n other cases It Is easier and more natural to
define features on states f,(s), ..., f,(S)

~ Fortunately there is a generic way of deriving state-
features from a set of state features

* We construct a set of n x |A| state-action features

f.(s), If a=a,

_ le{l..,.n},ke{l..,| A}
0, otherwise

fi(s,a)= {

17

Defining State-Action Features

* This effectively replicates the state features
across actions, and activates only one set of
features based on which action is selected

* Qg(s,a) = Yk 2i Qi fik (s, a)

= > 0irfir (s, ax), wherea = ay

° Each action a;, has its own set of parameters

{0ix }

18

19

Example: Tactical Battles in Wargus

* Wargus is real-time strategy (RTS) game
~ Tactical battles are a key aspect of the game

3 2) & - — s
& %
I —&
8%] by
7 &y
ok oo
Ay e
o84
%
8
® 7 -

Stref Strataud 477 5

* RL Task: learn a policy to control n friendly agents in a
battle against m enemy agents

~ Policy should be applicable to tasks with different sets and
numbers of agents

20

Example: Tactical Battles in Wargus

States: contain information about the locations, health, and
current activity of all friendly and enemy agents

Actions: Attack(F,E)
~ causes friendly agent F to attack enemy E

Policy: represented via Q-function Q(s,Attack(F,E))

~ Each decision cycle loop through each friendly agent F and select
enemy E to attack that maximizes Q(s,Attack(F,E))

Q(s,Attack(F,E)) generalizes over any friendly and enemy
agents F and E
-~ We used a linear function approximator with Q-learning

21

Example: Tactical Battles in Wargus
Q,(s,a)=6,+06,f,(s,a)+6,f,(s,a)+...+ 6. f_(s,a)

* Engineered a set of relational features
{f1(s,Attack(F,E)),, fn(s,Attack(F,E))}

* Example Features:
~ # of other friendly agents that are currently attacking E
~ Health of friendly agent F
~ Health of enemy agent E
~ Difference in health values
~ Walking distance between F and E
~ |s E the enemy agent that F is currently attacking?
~ |s F the closest friendly agent to E?
~ |s E the closest enemy agent to E?

* Features are well defined for any number of agents

22

Example: Tactical Battles in Wargus

&

S¥atagis V2L (&) 1998220028 b THe STratagis Prajec

Initial random policy

Example: Tactical Battles in Wargus
°* Linear Q-learning in 5 vs. 5 battle

700

o\

100 B
W RFS TR F S

O
(@)]
©
cDEﬁ O ‘ |||||||||||||||||||||||||||||||||

Episodes

Example: Tactical Battles in Wargus

Fatagis V2 (E) 199822004, b THe SITataqus PYojee

Learned Policy after 120 battles

Stratagis Vo (E)T1998=2004 By, The Stratagus Project,

10 vs. 10 using policy learned on 5vs. 5

Example: Tactical Battles in Wargus
* |nitialize Q-function for 10 vs. 10 to one learned

for5vs. 5

~ Initial performance is very good which demonstrates
generalization from 5 vs. 5to 10 vs. 10

1360

Damage Differential

1200

1340 +

1320 ~

1300 ~

1280 H

1260 ~

1240 ~

1220 ~

—-Transfer

27

Q-learning w/ Non-linear Approximators

Qg (3, a) IS sometimes represented by a non-linear
approximator such as a neural network

1. Start with initial parameter values

2. Take action according to an explore/exploit policy
(should converge to greedy policy, i.e. GLIE)

3. Perform TD update for each parameter

O, <0 + a(R(S) +p max Q,(s',a)—Q, s, a))GQgS, a)
4. Goto 2 | \
calculate

- Typically the space has many local minima closed-form

and we no Ionger guarantee convergence

« Often works well in practice

28

~Worlds Best Backgammon Player

* Neural network with 80 hidden units

* Used Reinforcement Learning for 300,000 games of
self-play

° One of the top (2 or 3) players in the world!

29

Al for General Atari 2600 Games

CapyrightT 1982

Playing Atari With Deep Reinforcement Learning
NIPS Deep Learning Workshop, 2013.

Deep Q-Networks for Policies: Atarl

* Network input = Observation history
~ Window of previous screen shots in Atari

* Network output = One output node per action (returns Q-
value)

Convglution Convglution Fully cgnnected Fully cgnnected
Q-val

w /e == (Q-values
- S ‘
|/ m
EH o & } @ e
El f \m
g
.
Previous w frames

31

DON : Q-Learning w/ Randomized
Experience Replay

S e o

7.

Initial “experience replay” data set D

Initialize parameter values to 6

Take action according to an explore/exploit policy based on 6
Add observed transition (s, a,r,s") to D (limit size of D to N)
Randomly sample a transition (s, ay, 1%, s;,) from D

Perform a TD update for each parameter based on mini-batch
0<0+a (Tk + B max Qo(sk,a’) — Qg (s, ak)) Vo Q (i, ag)

Goto 3

a k~ 0 D oPE

DON : Mini-Batches

Initial “experience replay” data set D

Initialize parameter values to 6

Take action according to an explore/exploit policy based on 6
Add observed transition (s, a,r,s") to D (limit size of D to N)

Randomly sample a mini-batch of B transition {(sy, ax, %, Sx)}
from D

Perform a TD update for each parameter based on mini-batch

0 <0+ “z (Tk + Bmax Qo(sg,a’) — Qp(sy, ak)) Vo Q(Sk, ag)
X

Goto 3

DON versus Traditional Q-learning

* Experience replay allows for reuse of data
~ More efficient use of experience

* Randomly sampling batches for updates versus
updating on latest sample

~ Claim that this breaks correlation among updates which
reduces variance

° Quantize the rewards to be 1, O, or -1 (depending
on sign of true reward)
~ Helps limit impact of any one update

~ Helps selecting learning parameters that work across
games

~ Could fundamentally change the optimal policy

34

DON Results

B. Rider | Breakout | Enduro Pong | Q%bert | Seaquest | S. Invaders
Random 354 1.2 0 —20.4 157 110 179
Sarsa [3] 996 5.2 129 —19 614 665 271
Contingency [4] 1743 6 159 —17 960 723 268
DQN 4092 168 470 20 1952 1705 581
Human 7456 31 368 —3 18900 28010 3690
HNeat Best [8] 3616 H2 106 19 1800 920 1720
HNeat Pixel [8] 1332 4 91 —16 1325 800 1145
DQN Best 5184 225 661 21 4500 1740 1075

35

