
1

RL for Large State Spaces:

Value Function Approximation

Alan Fern

* Based in part on slides by Daniel Weld

2

Large State Spaces

When a problem has a large state space we
can not longer represent the V or Q functions
as explicit tables

Even if we had enough memory
Never enough training data!

Learning takes too long

What to do??

3

Function Approximation

 Never enough training data!
 Must generalize what is learned from one situation to other

“similar” new situations

 Idea:
 Instead of using large table to represent V or Q, use a

parameterized function

 The number of parameters should be small compared to
number of states (generally exponentially fewer
parameters)

 Learn parameters from experience

 When we update the parameters based on observations in
one state, then our V or Q estimate will also change for other
similar states

 I.e. the parameterization facilitates generalization of
experience

4

Linear Function Approximation
 Define a set of state features f1(s), …, fn(s)

 The features are used as our representation of states

 States with similar feature values will be considered to be similar

 A common approximation is to represent V(s) as a weighted

sum of the features (i.e. a linear approximation)

 The approximation accuracy is fundamentally limited by the

information provided by the features

 Can we always define features that allow for a perfect linear

approximation?

 Yes. Assign each state an indicator feature. (I.e. i’th feature is 1 iff i’th

state is present and i represents value of i’th state)

 Of course this requires far to many features and gives no

generalization.

)(...)()()(ˆ
22110 sfsfsfsV nn 

5

Example

 Grid with no obstacles, deterministic actions U/D/L/R, no
discounting, -1 reward everywhere except +10 at goal

 Features for state s=(x,y): f1(s)=x, f2(s)=y (just 2 features)

 V(s) = 0 + 1 x + 2 y

 Is there a good linear
approximation?
 Yes.

 0 =10, 1 = -1, 2 = -1

 (note upper right is origin)

 V(s) = 10 - x - y
subtracts Manhattan dist.
from goal reward

10

0

0

6

6

6

But What If We Change Reward …

 V(s) = 0 + 1 x + 2 y

 Is there a good linear approximation?
 No.

10

0

0

7

But What If…

V(s) = 0 + 1 x + 2 y

10

 + 3 z

 Include new feature z

z= |3-x| + |3-y|

z is dist. to goal location

Does this allow a

good linear approx?

0 =10, 1 = 2 = 0,

 0 = -1

0

0

3

3

8

Linear Function Approximation

Define a set of features f1(s), …, fn(s)
The features are used as our representation of states

States with similar feature values will be treated
similarly

More complex functions require more complex features

Our goal is to learn good parameter values (i.e.
feature weights) that approximate the value
function well
How can we do this?

Use TD-based RL and somehow update parameters
based on each experience.

)(...)()()(ˆ
22110 sfsfsfsV nn 

9

TD-based RL for Linear Approximators

1. Start with initial parameter values

2. Take action according to an explore/exploit policy
(should converge to greedy policy, i.e. GLIE)

3. Update estimated model (if model is not available)

4. Perform TD update for each parameter

5. Goto 2

 What is a “TD update” for a parameter?

?i

10

Aside: Gradient Descent

 Given a function f(1,…, n) of n real values =(1,…, n)
suppose we want to minimize f with respect to 

 A common approach to doing this is gradient descent

 The gradient of f at point , denoted by  f(), is an
n-dimensional vector that points in the direction where f
increases most steeply at point 

 Vector calculus tells us that  f() is just a vector of
partial derivatives

where

Can decrease f by moving in negative gradient direction











)(),,,,,(
lim

)(111

0

fff niii

i






 























n

ff
f










)(
,,

)(
)(

1



11

Aside: Gradient Descent for Squared Error

 Suppose that we have a sequence of states and target

values for each state

 E.g. produced by the TD-based RL loop

 Our goal is to minimize the sum of squared errors between

our estimated function and each target value:

 After seeing j’th state the gradient descent rule tells us that

we can decrease error by updating parameters by:

  2)()(ˆ
2

1
jjj svsVE  

squared error of example j
our estimated value

for j’th state

learning rate

target value for j’th state

,)(,,)(, 2211 svssvs

i

j

ii

E








12

Aside: continued

 
i

j

jji

i

j

ii

sV
svsV

E




















)(ˆ
)()(ˆ

)(ˆ
j

j

sV

E





• For a linear approximation function:

• Thus the update becomes:

• For linear functions this update is guaranteed to converge

 to best approximation for suitable learning rate schedule

)(...)()()(ˆ
22111 sfsfsfsV nn 

 )()(ˆ)(jijjii sfsVsv  

)(
)(ˆ

ji

i

j
sf

sV










depends on form of

approximator
  2)()(ˆ

2

1
jjj svsVE  

13

TD-based RL for Linear Approximators
1. Start with initial parameter values

2. Take action according to an explore/exploit policy
(should converge to greedy policy, i.e. GLIE)
Transition from s to s’

3. Update estimated model

4. Perform TD update for each parameter

5. Goto 2

 What should we use for “target value” v(s)?

 )()(ˆ)(sfsVsv iii  

• Use the TD prediction based on the next state s’

 this is the same as previous TD method only with approximation

)'(ˆ)()(sVsRsv 

14

TD-based RL for Linear Approximators
1. Start with initial parameter values

2. Take action according to an explore/exploit policy
(should converge to greedy policy, i.e. GLIE)

3. Update estimated model

4. Perform TD update for each parameter

5. Goto 2

 )()(ˆ)'(ˆ)(sfsVsVsR iii  

• Step 2 requires a model to select greedy action

• For some applications (e.g. Backgammon as we will see later) it

is easy to get a model (but not easy to get a policy)

• For others it is difficult to get a good model

15

Q-function Approximation

Define a set of features over state-action pairs:
f1(s,a), …, fn(s,a)
State-action pairs with similar feature values will be

treated similarly

More complex functions require more complex features

Just as for TD, we can generalize Q-learning to
update the parameters of the Q-function
approximation

),(...),(),(),(ˆ
22110 asfasfasfasQ nn 

Features are a function of states and actions.

16

Q-learning with Linear Approximators

1. Start with initial parameter values

2. Take action a according to an explore/exploit policy
(should converge to greedy policy, i.e. GLIE) transitioning
from s to s’

3. Perform TD update for each parameter

4. Goto 2

 ),(),(ˆ)','(ˆmax)(
'

asfasQasQsR i
a

ii  

• TD converges close to minimum error solution

• Q-learning can diverge. Converges under some conditions.

estimate of Q(s,a) based

on observed transition

17

Example: Tactical Battles in Wargus

 Wargus is real-time strategy (RTS) game
 Tactical battles are a key aspect of the game

 RL Task: learn a policy to control n friendly agents in a
battle against m enemy agents
 Policy should be applicable to tasks with different sets and

numbers of agents

5 vs. 5 10 vs. 10

18

Example: Tactical Battles in Wargus

 States: contain information about the locations, health, and
current activity of all friendly and enemy agents

 Actions: Attack(F,E)
 causes friendly agent F to attack enemy E

 Policy: represented via Q-function Q(s,Attack(F,E))
 Each decision cycle loop through each friendly agent F and select

enemy E to attack that maximizes Q(s,Attack(F,E))

 Q(s,Attack(F,E)) generalizes over any friendly and enemy
agents F and E
 We used a linear function approximator with Q-learning

 RL Task: learn a policy to control n friendly agents in a battle
against m enemy agents
 Policy should be applicable to tasks with different sets and numbers of

agents

 That is, policy should be relational

19

Example: Tactical Battles in Wargus

 Engineered a set of relational features
 {f1(s,Attack(F,E)), …., fn(s,Attack(F,E))}

 Example Features:
 # of other friendly agents that are currently attacking E

 Health of friendly agent F

 Health of enemy agent E

 Difference in health values

 Walking distance between F and E

 Is E the enemy agent that F is currently attacking?

 Is F the closest friendly agent to E?

 Is E the closest enemy agent to E?

 …

 Features are well defined for any number of agents

),(...),(),(),(ˆ
22111 asfasfasfasQ nn 

20

Example: Tactical Battles in Wargus

Initial random policy

21

Example: Tactical Battles in Wargus
Linear Q-learning in 5 vs. 5 battle

-100

0

100

200

300

400

500

600

700

D
a
m

a
g

e

D

if
fe

r
e
n

ti
a
l

Episodes

22

Example: Tactical Battles in Wargus

Learned Policy after 120 battles

23

Example: Tactical Battles in Wargus

10 vs. 10 using policy learned on 5 vs. 5

24

Example: Tactical Battles in Wargus
 Initialize Q-function for 10 vs. 10 to one learned

for 5 vs. 5
 Initial performance is very good which demonstrates

generalization from 5 vs. 5 to 10 vs. 10

25

Q-learning w/ Non-linear Approximators

1. Start with initial parameter values

2. Take action according to an explore/exploit policy
(should converge to greedy policy, i.e. GLIE)

3. Perform TD update for each parameter

4. Goto 2

 
i

a
ii

asQ
asQasQsR


 







),(ˆ
),(ˆ)','(ˆmax)(

'

),(ˆ asQ

• Typically the space has many local minima

 and we no longer guarantee convergence

• Often works well in practice

is sometimes represented by a non-linear

approximator such as a neural network

calculate

closed-form

26

~Worlds Best Backgammon Player

Neural network with 80 hidden units

Used TD-updates for 300,000 games against self

 Is one of the top (2 or 3) players in the world!

