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RL for Large State Spaces: 

Value Function Approximation 

Alan Fern  

* Based in part on slides by Daniel Weld 
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Large State Spaces 

When a problem has a large state space we 
can not longer represent the V or Q functions 
as explicit tables 

Even if we had enough memory  
Never enough training data! 

Learning takes too long 

 

 

What to do?? 
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Function Approximation 

 Never enough training data! 
 Must generalize what is learned from one situation to other 

“similar” new situations 

 Idea:  
 Instead of using large table to represent V or Q, use a 

parameterized function 

 The number of parameters should be small compared to 
number of states (generally exponentially fewer 
parameters) 

 Learn parameters from experience 

 When we update the parameters based on observations in 
one state, then our V or Q estimate will also change for other 
similar states 

 I.e. the parameterization facilitates generalization of 
experience 
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Linear Function Approximation 
 Define a set of state features f1(s), …, fn(s) 

 The features are used as our representation of states 

 States with similar feature values will be considered to be similar 

 A common approximation is to represent V(s) as a weighted 

sum of the features (i.e. a linear approximation)  

 

 The approximation accuracy is fundamentally limited by the 

information provided by the features 

 Can we always define features that allow for a perfect linear 

approximation? 

 Yes. Assign each state an indicator feature. (I.e. i’th feature is 1 iff i’th 

state is present and i represents value of i’th state) 

 Of course this requires far to many features and gives no 

generalization. 
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Example 

 Grid with no obstacles, deterministic actions U/D/L/R, no 
discounting, -1 reward everywhere except +10 at goal 

 Features for state s=(x,y):   f1(s)=x, f2(s)=y   (just 2 features) 

 V(s) = 0 + 1 x + 2 y 

 Is there a good linear  
approximation? 
 Yes.  

 0 =10, 1 = -1, 2 = -1 

 (note upper right is origin) 

 

 V(s) = 10 - x - y 
subtracts Manhattan dist. 
from goal reward 

 

10 

0 

0 

6 

6 



6 

But What If We Change Reward … 

 V(s) = 0 + 1 x + 2 y 

 Is there a good linear approximation? 
 No.  
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But What If… 

V(s) = 0 + 1 x + 2 y 
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                                        + 3 z 

 

 Include new feature z 

z= |3-x| + |3-y|  

z is dist. to goal location 

Does this allow a  

good linear approx? 

0 =10, 1 = 2 = 0, 

 0 = -1 
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Linear Function Approximation 

Define a set of features f1(s), …, fn(s) 
The features are used as our representation of states 

States with similar feature values will be treated 
similarly 

More complex functions require more complex features 

  

 

Our goal is to learn good parameter values (i.e. 
feature weights) that approximate the value 
function well 
How can we do this? 

Use TD-based RL and somehow update parameters 
based on each experience. 
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TD-based RL for Linear Approximators 

1. Start with initial parameter values 

2. Take action according to an explore/exploit policy 
(should converge to greedy policy, i.e. GLIE)  

3. Update estimated model (if model is not available) 

4. Perform TD update for each parameter 
 
 

5. Goto 2 

     What is a “TD update” for a parameter?  
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Aside: Gradient Descent 

 Given a function f(1,…, n) of n real values =(1,…, n) 
suppose we want to minimize f with respect to  

 A common approach to doing this is gradient descent 

 The gradient of f at point , denoted by  f(), is an  
n-dimensional vector that points in the direction where f 
increases most steeply at point  

 Vector calculus tells us that  f() is just a vector of 
partial derivatives 
 
 
 
 
where 
 
Can decrease f by moving in negative gradient direction  
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Aside: Gradient Descent for Squared Error 

 Suppose that we have a sequence of states and target 

values for each state 

 E.g. produced by the TD-based RL loop 

 Our goal is to minimize the sum of squared errors between 

our estimated function and each target value: 

 

 

 

 After seeing j’th state the gradient descent rule tells us that 

we can decrease error by updating parameters by: 
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squared error of example j 
our estimated value 

for j’th state 

learning rate 

target value for j’th state 
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Aside: continued 
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• For a linear approximation function: 

 

 

 

• Thus the update becomes: 

• For linear functions this update is guaranteed to converge 

  to best approximation for suitable learning rate schedule  
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TD-based RL for Linear Approximators 
1. Start with initial parameter values 

2. Take action according to an explore/exploit policy  
(should converge to greedy policy, i.e. GLIE)  
Transition from s to s’ 

3. Update estimated model 

4. Perform TD update for each parameter 
 
 

5. Goto 2 

     What should we use for “target value” v(s)? 
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• Use the TD prediction based on the next state s’ 

 

  this is the same as previous TD method only with approximation 
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TD-based RL for Linear Approximators 
1. Start with initial parameter values 

2. Take action according to an explore/exploit policy 
(should converge to greedy policy, i.e. GLIE)  

3. Update estimated model 

4. Perform TD update for each parameter 
 
 

5. Goto 2 
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•  Step 2 requires a model to select greedy action  

•  For some applications (e.g. Backgammon as we will see later) it 

is easy to get a model (but not easy to get a policy) 

•  For others it is difficult to get a good model 
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Q-function Approximation 

Define a set of features over state-action pairs: 
f1(s,a), …, fn(s,a) 
State-action pairs with similar feature values will be 

treated similarly 

More complex functions require more complex features 

  

 

 

Just as for TD, we can generalize Q-learning to 
update the parameters of the Q-function 
approximation 
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Features are a function of states and actions. 
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Q-learning with Linear Approximators 

1. Start with initial parameter values 

2. Take action a according to an explore/exploit policy 
(should converge to greedy policy, i.e. GLIE) transitioning 
from s to s’ 

3. Perform TD update for each parameter 
 
 

4. Goto 2 
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• TD converges close to minimum error solution 

• Q-learning can diverge. Converges under some conditions.  

estimate of Q(s,a) based  

on observed transition 
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Example: Tactical Battles in Wargus 

 Wargus is real-time strategy (RTS) game 
 Tactical battles are a key aspect of the game 

 

 

 

 

 

 

 

   

 RL Task: learn a policy to control n friendly agents in a 
battle against m enemy agents 
 Policy should be applicable to tasks with different sets and 

numbers of agents 

 

 

5 vs. 5 10 vs. 10 
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Example: Tactical Battles in Wargus 

 States: contain information about the locations, health, and 
current activity of all friendly and enemy agents 

 Actions:  Attack(F,E)  
 causes friendly agent F to attack enemy E 

 

 Policy: represented via Q-function Q(s,Attack(F,E)) 
 Each decision cycle loop through each friendly agent F and select 

enemy E to attack that maximizes Q(s,Attack(F,E)) 

 

 Q(s,Attack(F,E)) generalizes over any friendly and enemy 
agents F and E 
 We used a linear function approximator with Q-learning 

 

 

 

 

 

   

 RL Task: learn a policy to control n friendly agents in a battle 
against m enemy agents 
 Policy should be applicable to tasks with different sets and numbers of 

agents 

 That is, policy should be relational 
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Example: Tactical Battles in Wargus 

 Engineered a set of relational features  
     {f1(s,Attack(F,E)), …., fn(s,Attack(F,E))} 

 

 Example Features:  
 # of other friendly agents that are currently attacking E 

 Health of friendly agent F 

 Health of enemy agent E 

 Difference in health values 

 Walking distance between F and E 

 Is E the enemy agent that F is currently attacking? 

 Is F the closest friendly agent to E?  

 Is E the closest enemy agent to E?  

 … 

 Features are well defined for any number of agents 
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Example: Tactical Battles in Wargus 
 

 

 

 

 

 

 

 

 

Initial random policy 
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Example: Tactical Battles in Wargus 
Linear Q-learning in 5 vs. 5 battle 
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Example: Tactical Battles in Wargus 
 

 

 

 

 

 

 

 

 

Learned Policy after 120 battles 
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Example: Tactical Battles in Wargus 
 

 

 

 

 

 

 

 

 

10 vs. 10 using policy learned on 5 vs. 5 
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Example: Tactical Battles in Wargus 
 Initialize Q-function for 10 vs. 10 to one learned 

for 5 vs. 5 
 Initial performance is very good which demonstrates 

generalization from 5 vs. 5 to 10 vs. 10 
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Q-learning w/ Non-linear Approximators 

1. Start with initial parameter values 

2. Take action according to an explore/exploit policy 
(should converge to greedy policy, i.e. GLIE)  

3. Perform TD update for each parameter 
 
 

 

4. Goto 2 
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• Typically the space has many local minima  

   and we no longer guarantee convergence 

• Often works well in practice 

is sometimes represented by a non-linear 

approximator such as a neural network 

calculate  

closed-form 
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~Worlds Best Backgammon Player 

Neural network with 80 hidden units 

Used TD-updates for 300,000 games against self 

 Is one of the top (2 or 3) players in the world! 


