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RL for Large State Spaces: 

Value Function Approximation 

Alan Fern  

* Based in part on slides by Daniel Weld 
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Large State Spaces 

When a problem has a large state space we 
can not longer represent the V or Q functions 
as explicit tables 

Even if we had enough memory  
Never enough training data! 

Learning takes too long 

 

 

What to do?? 
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Function Approximation 

 Never enough training data! 
 Must generalize what is learned from one situation to other 

“similar” new situations 

 Idea:  
 Instead of using large table to represent V or Q, use a 

parameterized function 

 The number of parameters should be small compared to 
number of states (generally exponentially fewer 
parameters) 

 Learn parameters from experience 

 When we update the parameters based on observations in 
one state, then our V or Q estimate will also change for other 
similar states 

 I.e. the parameterization facilitates generalization of 
experience 
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Linear Function Approximation 
 Define a set of state features f1(s), …, fn(s) 

 The features are used as our representation of states 

 States with similar feature values will be considered to be similar 

 A common approximation is to represent V(s) as a weighted 

sum of the features (i.e. a linear approximation)  

 

 The approximation accuracy is fundamentally limited by the 

information provided by the features 

 Can we always define features that allow for a perfect linear 

approximation? 

 Yes. Assign each state an indicator feature. (I.e. i’th feature is 1 iff i’th 

state is present and i represents value of i’th state) 

 Of course this requires far to many features and gives no 

generalization. 
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Example 

 Grid with no obstacles, deterministic actions U/D/L/R, no 
discounting, -1 reward everywhere except +10 at goal 

 Features for state s=(x,y):   f1(s)=x, f2(s)=y   (just 2 features) 

 V(s) = 0 + 1 x + 2 y 

 Is there a good linear  
approximation? 
 Yes.  

 0 =10, 1 = -1, 2 = -1 

 (note upper right is origin) 

 

 V(s) = 10 - x - y 
subtracts Manhattan dist. 
from goal reward 
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But What If We Change Reward … 

 V(s) = 0 + 1 x + 2 y 

 Is there a good linear approximation? 
 No.  
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But What If… 

V(s) = 0 + 1 x + 2 y 
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                                        + 3 z 

 

 Include new feature z 

z= |3-x| + |3-y|  

z is dist. to goal location 

Does this allow a  

good linear approx? 

0 =10, 1 = 2 = 0, 

 0 = -1 
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Linear Function Approximation 

Define a set of features f1(s), …, fn(s) 
The features are used as our representation of states 

States with similar feature values will be treated 
similarly 

More complex functions require more complex features 

  

 

Our goal is to learn good parameter values (i.e. 
feature weights) that approximate the value 
function well 
How can we do this? 

Use TD-based RL and somehow update parameters 
based on each experience. 
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TD-based RL for Linear Approximators 

1. Start with initial parameter values 

2. Take action according to an explore/exploit policy 
(should converge to greedy policy, i.e. GLIE)  

3. Update estimated model (if model is not available) 

4. Perform TD update for each parameter 
 
 

5. Goto 2 

     What is a “TD update” for a parameter?  

             

?i
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Aside: Gradient Descent 

 Given a function f(1,…, n) of n real values =(1,…, n) 
suppose we want to minimize f with respect to  

 A common approach to doing this is gradient descent 

 The gradient of f at point , denoted by  f(), is an  
n-dimensional vector that points in the direction where f 
increases most steeply at point  

 Vector calculus tells us that  f() is just a vector of 
partial derivatives 
 
 
 
 
where 
 
Can decrease f by moving in negative gradient direction  
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Aside: Gradient Descent for Squared Error 

 Suppose that we have a sequence of states and target 

values for each state 

 E.g. produced by the TD-based RL loop 

 Our goal is to minimize the sum of squared errors between 

our estimated function and each target value: 

 

 

 

 After seeing j’th state the gradient descent rule tells us that 

we can decrease error by updating parameters by: 
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squared error of example j 
our estimated value 

for j’th state 

learning rate 

target value for j’th state 
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Aside: continued 
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• For a linear approximation function: 

 

 

 

• Thus the update becomes: 

• For linear functions this update is guaranteed to converge 

  to best approximation for suitable learning rate schedule  
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TD-based RL for Linear Approximators 
1. Start with initial parameter values 

2. Take action according to an explore/exploit policy  
(should converge to greedy policy, i.e. GLIE)  
Transition from s to s’ 

3. Update estimated model 

4. Perform TD update for each parameter 
 
 

5. Goto 2 

     What should we use for “target value” v(s)? 
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• Use the TD prediction based on the next state s’ 

 

  this is the same as previous TD method only with approximation 
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TD-based RL for Linear Approximators 
1. Start with initial parameter values 

2. Take action according to an explore/exploit policy 
(should converge to greedy policy, i.e. GLIE)  

3. Update estimated model 

4. Perform TD update for each parameter 
 
 

5. Goto 2 
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•  Step 2 requires a model to select greedy action  

•  For some applications (e.g. Backgammon as we will see later) it 

is easy to get a model (but not easy to get a policy) 

•  For others it is difficult to get a good model 
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Q-function Approximation 

Define a set of features over state-action pairs: 
f1(s,a), …, fn(s,a) 
State-action pairs with similar feature values will be 

treated similarly 

More complex functions require more complex features 

  

 

 

Just as for TD, we can generalize Q-learning to 
update the parameters of the Q-function 
approximation 
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Features are a function of states and actions. 
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Q-learning with Linear Approximators 

1. Start with initial parameter values 

2. Take action a according to an explore/exploit policy 
(should converge to greedy policy, i.e. GLIE) transitioning 
from s to s’ 

3. Perform TD update for each parameter 
 
 

4. Goto 2 
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• TD converges close to minimum error solution 

• Q-learning can diverge. Converges under some conditions.  

estimate of Q(s,a) based  

on observed transition 
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Example: Tactical Battles in Wargus 

 Wargus is real-time strategy (RTS) game 
 Tactical battles are a key aspect of the game 

 

 

 

 

 

 

 

   

 RL Task: learn a policy to control n friendly agents in a 
battle against m enemy agents 
 Policy should be applicable to tasks with different sets and 

numbers of agents 

 

 

5 vs. 5 10 vs. 10 
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Example: Tactical Battles in Wargus 

 States: contain information about the locations, health, and 
current activity of all friendly and enemy agents 

 Actions:  Attack(F,E)  
 causes friendly agent F to attack enemy E 

 

 Policy: represented via Q-function Q(s,Attack(F,E)) 
 Each decision cycle loop through each friendly agent F and select 

enemy E to attack that maximizes Q(s,Attack(F,E)) 

 

 Q(s,Attack(F,E)) generalizes over any friendly and enemy 
agents F and E 
 We used a linear function approximator with Q-learning 

 

 

 

 

 

   

 RL Task: learn a policy to control n friendly agents in a battle 
against m enemy agents 
 Policy should be applicable to tasks with different sets and numbers of 

agents 

 That is, policy should be relational 
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Example: Tactical Battles in Wargus 

 Engineered a set of relational features  
     {f1(s,Attack(F,E)), …., fn(s,Attack(F,E))} 

 

 Example Features:  
 # of other friendly agents that are currently attacking E 

 Health of friendly agent F 

 Health of enemy agent E 

 Difference in health values 

 Walking distance between F and E 

 Is E the enemy agent that F is currently attacking? 

 Is F the closest friendly agent to E?  

 Is E the closest enemy agent to E?  

 … 

 Features are well defined for any number of agents 
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Example: Tactical Battles in Wargus 
 

 

 

 

 

 

 

 

 

Initial random policy 



21 

Example: Tactical Battles in Wargus 
Linear Q-learning in 5 vs. 5 battle 
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Example: Tactical Battles in Wargus 
 

 

 

 

 

 

 

 

 

Learned Policy after 120 battles 
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Example: Tactical Battles in Wargus 
 

 

 

 

 

 

 

 

 

10 vs. 10 using policy learned on 5 vs. 5 
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Example: Tactical Battles in Wargus 
 Initialize Q-function for 10 vs. 10 to one learned 

for 5 vs. 5 
 Initial performance is very good which demonstrates 

generalization from 5 vs. 5 to 10 vs. 10 
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Q-learning w/ Non-linear Approximators 

1. Start with initial parameter values 

2. Take action according to an explore/exploit policy 
(should converge to greedy policy, i.e. GLIE)  

3. Perform TD update for each parameter 
 
 

 

4. Goto 2 

       

             

 
i

a
ii

asQ
asQasQsR


 







),(ˆ
),(ˆ)','(ˆmax)(

'

),(ˆ asQ

• Typically the space has many local minima  

   and we no longer guarantee convergence 

• Often works well in practice 

is sometimes represented by a non-linear 

approximator such as a neural network 

calculate  

closed-form 
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~Worlds Best Backgammon Player 

Neural network with 80 hidden units 

Used TD-updates for 300,000 games against self 

 Is one of the top (2 or 3) players in the world! 


