RL for Large State Spaces:
Value Function Approximation

Alan Fern

* Based in part on slides by Daniel Weld

Large State Spaces

* When a problem has a large state space we
can not longer represent the V or Q functions
as explicit tables

* Even if we had enough memory
~ Never enough training data!
~ Learning takes too long

* What to do??

Function Approximation

* Never enough training data!

~ Must generalize what is learned from one situation to other
“similar” new situations

° |dea:

~ Instead of using large table to represent V or Q, use a
parameterized function

= The number of parameters should be small compared to
number of states (generally exponentially fewer
parameters)

~ Learn parameters from experience

-~ When we update the parameters based on observations in
one state, then our V or Q estimate will also change for other
similar states

= |.e. the parameterization facilitates generalization of
experience

Linear Function Approximation

Define a set of state features f1(s), ..., fn(s)
~ The features are used as our representation of states
~ States with similar feature values will be considered to be similar

A common approximation is to represent V(s) as a weighted
sum of the features (i.e. a linear approximation)

V,(s)=0,+6,f,(s)+6,f,(5)+...+0,f_(5)

The approximation accuracy is fundamentally limited by the
iInformation provided by the features

Can we always define features that allow for a perfect linear
approximation?

~ Yes. Assign each state an indicator feature. (l.e. i'th feature is 1 iff i'th
state is present and 6, represents value of i'th state)

~ Of course this requires far to many features and gives no
generalization.

Example

Grid with no obstacles, deterministic actions U/D/L/R, no
discounting, -1 reward everywhere except +10 at goal

Features for state s=(x,y): fl(s)=x, f2(s)=y (just 2 features)
V(S) =6y +0;, x+6,y

Is there a good linear
approximation? 10|0
“~ Yes.
~9,=10,0,=-1,0,=-1
~ (note upper right is origin)

6 0

V(s)=10-x-y
subtracts Manhattan dist.
from goal reward

o1

But What If We Change Reward ...

* V(S) =0y + 0, X+ 0,y

* |Is there a good linear approximation?
“ No.

10

But What If...

*V(S)=0,+0,Xx+0,y +0;7Z

°* Include new feature z

“ 2= 13| + 3]

~ 7 Is dist. to goal location

°* Does this allow a

10

good linear approx?

~0,=10,0,=0,=0,

Linear Function Approximation

* Define a set of features f,(s), ..., f,(S)
~ The features are used as our representation of states

- States with similar feature values will be treated
similarly

-~ More complex functions require more complex features
V,(s)=0,+6,,(5)+6,f,(5)+...+ 6, f (5)

* Our goal Is to learn good parameter values (i.e.
feature weights) that approximate the value
function well

-~ How can we do this?

~ Use TD-based RL and somehow update parameters
based on each experience.

TD-based RL for Linear Approximators

1. Start with initial parameter values

2. Take action according to an explore/exploit policy
(should converge to greedy policy, i.e. GLIE)

3. Update estimated model (if model is not available)
4. Perform TD update for each parameter

0 «7?

5. Goto 2
What is a “TD update” for a parameter?

Aside: Gradient Descent

Given a function f(0,,..., 6,) of n real values 6=(0,,..., 0,)
suppose we want to minimize f with respect to 0

A common approach to doing this is gradient descent

The gradient of f at point 9, denoted by V,1(0), is an
n-dimensional vector that points in the direction where f
Increases most steeply at point 6

Vector calculus tells us that V,(0) Is just a vector of
partial derivatives

ng(e){a”@),...,af(@)}

00, o0

where @) _ i 100,..0.4,6+¢,0,,...,6,)~ 1(0)
aHI e—0 c

Can decrease f by moving in negative gradient direction

10

Aside: Gradient Descent for Squared Error

° Suppose that we have a sequence of states and target
values for each state (s;,v(s,)),(S,,V(s,)),...
~ E.g. produced by the TD-based RL loop

* Our goal is to minimize the sum of squared errors between
our estimated function and each target value:

£, ==V, (s,)—V(s)))’
2 .

squared error of example | target value for j'th state

our estimated value
for j'th state

°* After seeing j'th state the gradient descent rule tells us that
we can decrease error by updating parameters by:
ok .

learning rate 1

Aside: continued

0« 0 a% 0, —ali, (s.) —v(s)|)

i N D o8
V \
oE.

E, =%(\76,(sj)—v(sj))2 ! depends on form of
@Ve (Sj) approximator

* For a linear approximation function:
V,(s)=6,+6,1,(5)+0,f,(S)+...+ 0. f (3)

8V (s;)
00,

= 1,(5;)

» Thus the update becomes: &, < 6. +05(V(Sj)—\76,(8j))fi (s;)

* For linear functions this update is guaranteed to converge
to best approximation for suitable learning rate schedule

12

TD-based RL for Linear Approximators

1.
2.

S.

Start with initial parameter values

Take action according to an explore/exploit policy
(should converge to greedy policy, i.e. GLIE)
Transition fromsto s’

Update estimated model
Perform TD update for each parameter

6, < 6 +alv(s) -V, (9))f,(s)
Goto 2
What should we use for “target value” v(s)?
Use the TD prediction based on the next state s’

V(s) = R(s) + BV, (s")

this is the same as previous TD method only with approximatio?3

TD-based RL for Linear Approximators

1.
2.

5.

Start with initial parameter values

Take action according to an explore/exploit policy
(should converge to greedy policy, i.e. GLIE)

Update estimated model

Perform TD update for each parameter

6, 6, +a{R(s)+ BV, () -V, ())f, (5)
Goto 2

« Step 2 requires a model to select greedy action

« For some applications (e.g. Backgammon as we will see later) it
IS easy to get a model (but not easy to get a policy)

« For others it is difficult to get a good model

14

Q-function Approximation

* Define a set of features over state-action pairs:
f,(s,a), ..., f,(s,a)

~ State-action pairs with similar feature values will be
treated similarly

~ More complex functions require more complex features

Q,(s,a)=6,+06,f,(s,a)+0,f,(s,8) +...+ 6, f_(s,a)

Features are a function of states and actions.

* Just as for TD, we can generalize Q-learning to
update the parameters of the Q-function
approximation

15

Q-learning with Linear Approximators

1. Start with initial parameter values

2. Take action a according to an explore/exploit policy
(should converge to greedy policy, i.e. GLIE) transitioning
fromstos

3. Perform TD update for each parameter

6, « 6, +alR(s)+ Bmax Q, (s',a') -0, (s,a) f, (5,)
4 J

N
4. Goto 2 A
estimate of Q(s,a) based

on observed transition

* TD converges close to minimum error solution

* Q-learning can diverge. Converges under some conditions.

16

Example: Tactical Battles in Wargus

° Wargus is real-time strategy (RTS) game
~ Tactical battles are a key aspect of the game

by (Fio) 5 - - ——
) %
'y | e
7 (13 ‘
o o
& | o
Stratagud 4 i3
By Cycle 437 7500,
s A - ¥
gorls g)
%
A A
3 ~

StrateBd § ¢ o7

°* RL Task: learn a policy to control n friendly agents in a
battle against m enemy agents

~ Policy should be applicable to tasks with different sets and
numbers of agents

17

Example: Tactical Battles in Wargus

States: contain information about the locations, health, and
current activity of all friendly and enemy agents

Actions: Attack(F,E)
~ causes friendly agent F to attack enemy E

Policy: represented via Q-function Q(s,Attack(F,E))

~ Each decision cycle loop through each friendly agent F and select
enemy E to attack that maximizes Q(s,Attack(F,E))

Q(s,Attack(F,E)) generalizes over any friendly and enemy
agents F and E
~ We used a linear function approximator with Q-learning

18

Example: Tactical Battles in Wargus
Q,(s,a)=6,+06,f,(s,a)+6,1,(s,a)+...+ 6. (s,a)

° Engineered a set of relational features
{f1(s,Attack(F,E)),, fn(s,Attack(F,E))}

* Example Features:
~ # of other friendly agents that are currently attacking E
~ Health of friendly agent F
~ Health of enemy agent E
~ Difference in health values
~ Walking distance between F and E
~ Is E the enemy agent that F is currently attacking?
~ Is F the closest friendly agent to E?
~ |s E the closest enemy agent to E?

* Features are well defined for any number of agents

19

Example: Tactical Battles in Wargus

&L

Tatagis V2 (&) 199822002 by THe STratagis Prajec

Initial random policy

Example: Tactical Battles in Wargus
°* Linear Q-learning in 5 vs. 5 battle

700
600 1
500 1
400 -
300 1
200 1

| —
o
o

D\ [aN

OSSO
RN S Y S S A

Damage Differential

TN
o
o

Episodes

Example: Tactical Battles in Wargus

Learned Policy after 120 battles

Example: Tactical Battles in Wargus

Menu (F10) -
= = = Do it! Dotit now!

Stratagis Ve (E)T1998=2004 b, The Stratagils Project,

10 vs. 10 using policy learned on 5vs. 5

Example: Tactical Battles in Wargus

* |nitialize Q-function for 10 vs. 10 to one learned
for5vs. 5

~ Initial performance is very good which demonstrates
generalization from 5vs. 5to 10 vs. 10

1360

Damage Differential

1200

1340 +

1320 ~

1300 ~

1280 H

1260 ~

1240 ~

1220 ~

——Transfer

24

Q-learning w/ Non-linear Approximators

Qe (S, a) IS sometimes represented by a non-linear
approximator such as a neural network

1. Start with initial parameter values

2. Take action according to an explore/exploit policy
(should converge to greedy policy, i.e. GLIE)

3. Perform TD update for each parameter

b, <06, + a(R(S) + [mgx QAH (s',a') _Qg (s, a))ﬁQgS, a)
4. Goto 2 | \
calculate

» Typically the space has many local minima closed-form

and we no Ionger guarantee convergence

 Often works well in practice

25

~Worlds Best Backgammon Player

* Neural network with 80 hidden units
* Used TD-updates for 300,000 games against self

° |s one of the top (2 or 3) players in the world!

26

