
1

Classical STRIPS Planning

Alan Fern *

* Based in part on slides by Daniel Weld.

2

Percepts Actions

????

World

perfect

fully

observable

 instantaneous

stochastic

Stochastic/Probabilistic Planning:

Markov Decision Process (MDP) Model

sole source

of change

Goal
maximize expected

reward over lifetime

3

Percepts Actions

????

World

perfect

fully

observable

instantaneous

deterministic

Classical Planning Assumptions

sole source

of change

Goal
achieve goal condition

4

Why care about classical planning?

 Places an emphasis on analyzing the combinatorial

structure of problems

 Developed a many powerful ideas in this direction

 MDP research has mostly ignored this type of analysis

 Classical planners tend scale much better to large

state spaces by leveraging those ideas

 Replanning: many stabilized environments ~satisfy

classical assumptions (e.g. robotic crate mover)

 It is possible to handle minor assumption violations through

replanning and execution monitoring

 The world is often not so random and can be effectively

thought about deterministically

5

Why care about classical planning?

 Ideas from classical planning techniques often form

the basis for developing non-classical planning

techniques

 Recent work uses classical planners as a component of

probabilistic planning [Yoon et. al. 2008]

(i.e. reducing probabilistic planning to classical planning)

 Powerful domain analysis techniques from classical planning

have been integrated into MDP planners

6

Representing States

holding(A)

clear(B)

on(B,C)

onTable(C)

State 1

handEmpty

clear(A)

on(A,B)

on(B,C)

onTable(C)

State 2

C

A

B
C

A
B

World states are represented as sets of facts.

We will also refer to facts as propositions.

Closed World Assumption (CWA):

Fact not listed in a state are assumed to be false. Under CWA

we are assuming the agent has full observability.

7

Representing Goals

Goals are also represented as sets of facts.

For example { on(A,B) } is a goal in the blocks world.

A goal state is any state that contains all the goal facts.

handEmpty

clear(A)

on(A,B)

on(B,C)

onTable(C)

State 1

C

A
B

holding(A)

clear(B)

on(B,C)

onTable(C)

State 2

C

A

B

State 1 is a goal state for the goal { on(A,B) }.

State 2 is not a goal state for the goal { on(A,B) }.

8

Representing Action in STRIPS

holding(A)

clear(B)

on(B,C)

onTable(C)

State 1

handEmpty

clear(A)

on(A,B)

on(B,C)

onTable(C)

State 2

PutDown(A,B)

C

A

B

C

A
B

A STRIPS action definition specifies:

 1) a set PRE of preconditions facts

 2) a set ADD of add effect facts

 3) a set DEL of delete effect facts

PutDown(A,B):

 PRE: { holding(A), clear(B) }

 ADD: { on(A,B), handEmpty, clear(A) }

 DEL: { holding(A), clear(B) }

9

Semantics of STRIPS Actions

holding(A)

clear(B)

on(B,C)

onTable(C)

 S

handEmpty

clear(A)

on(A,B)

on(B,C)

onTable(C)

 S ADD – DEL

PutDown(A,B)

C

A

B

C

A
B

• A STRIPS action is applicable (or allowed) in a state when its

 preconditions are contained in the state.

• Taking an action in a state S results in a new state S ADD – DEL

 (i.e. add the add effects and remove the delete effects)

PutDown(A,B):

 PRE: { holding(A), clear(B) }

 ADD: { on(A,B), handEmpty, clear(A)}

 DEL: { holding(A), clear(B) }

10

STRIPS Planning Problems

PutDown(A,B):

 PRE: { holding(A), clear(B) }

 ADD: { on(A,B), handEmpty, clear(A)}

 DEL: { holding(A), clear(B) }

A STRIPS planning problem specifies:

 1) an initial state S

 2) a goal G

 3) a set of STRIPS actions

holding(A)

clear(B)

onTable(B)

 Initial State

A

B on(A,B)

 Goal

PutDown(B,A):

 PRE: { holding(B), clear(A) }

 ADD: { on(B,A), handEmpty, clear(B) }

 DEL: { holding(B), clear(A) }

STRIPS Actions

Example Problem:

Objective: find a “short” action sequence reaching a goal state,

 or report that the goal is unachievable

Solution: (PutDown(A,B))

11

Propositional Planners
 For clarity we have written propositions such as on(A,B) in

terms of objects (e.g. A and B) and predicates (e.g. on).

 However, the planners we will consider ignore the internal

structure of propositions such as on(A,B).

 Such planners are called propositional planners as opposed

to first-order or relational planners

 Thus it will make no difference to the planner if we replace

every occurrence of “on(A,B)” in a problem with “prop1” (and so

on for other propositions)

 It feels wrong to ignore the existence of objects. But currently

propositional planners are the state-of-the-art.

holding(A)

clear(B)

onTable(B)

 Initial State

on(A,B)

 Goal

prop2

prop3

prop4

 Initial State

prop1

 Goal

12

STRIPS Action Schemas

PutDown(x,y):

 PRE: { holding(x), clear(y) }

 ADD: { on(x,y), handEmpty, clear(x) }

 DEL: { holding(x), clear(y) }

For convenience we typically specify problems via action

schemas rather than writing out individual STRIPS actions.

Action Schema: (x and y are variables)

PutDown(A,B):

 PRE: { holding(A), clear(B) }

 ADD: { on(A,B), handEmpty, clear(A) }

 DEL: { holding(A), clear(B) }

PutDown(B,A):

 PRE: { holding(B), clear(A) }

 ADD: { on(B,A), handEmpty, clear(B) }

 DEL: { holding(B), clear(A) }

 Each way of replacing variables with objects from the initial

state and goal yields a “ground” STRIPS action.

 Given a set of schemas, an initial state, and a goal,

propositional planners compile schemas into ground actions

and then ignore the existence of objects thereafter.

. . . .

13

STRIPS Versus PDDL

 Your book refers to the PDDL language for defining planning

problems rather than STRIPS

 The Planning Domain Description Language (PDDL) was

defined by planning researchers as a standard language for

defining planning problems

 Includes STRIPS as special case along with more advanced features

 Some simple additional features include: type specification for objects,

negated preconditions, conditional add/del effects

 Some more advanced features include allowing numeric variables and

durative actions

 Most planners you can download take PDDL as input

 Majority only support the simple PDDL features (essentially STRIPS)

 PDDL syntax is easy to learn from examples packaged with planners,

but a definition of the STRIPS fragment can be found at:

http://eecs.oregonstate.edu/ipc-learn/documents/strips-pddl-subset.pdf

14

Properties of Planners

 A planner is sound if any action sequence it returns

is a true solution

 A planner is complete if it outputs an action

sequence or “no solution” for any input problem

 A planner is optimal if it always returns the shortest

possible solution

 Is optimality an important requirement?

Is it a reasonable requirement?

15

Planning as Graph Search

 It is easy to view planning as a graph search

problem

Nodes/vertices = possible states

Directed Arcs = STRIPS actions

Solution: path from the initial state (i.e. vertex) to

one state/vertices that satisfies the goal

16

Search Space: Blocks World

Graph is finite

Initial State

Goal State

17

Planning as Graph Search

Planning is just finding a path in a graph

Why not just use standard graph algorithms for finding

paths?

Answer: graphs are exponentially large in the

problem encoding size (i.e. size of STRIPS

problems).

But, standard algorithms are poly-time in graph size

So standard algorithms would require exponential time

Can we do better than this?

18

Complexity of STRIPS Planning

 PlanSAT is decidable.

 Why?

 In general PlanSAT is PSPACE-complete!

Just finding a plan is hard in the worst case.

 even when actions limited to just 2 preconditions and 2 effects

PlanSAT

 Given: a STRIPS planning problem

 Output: “yes” if problem is solvable, otherwise “no”

NOTE: PSPACE is set of all problems that are decidable in polynomial space.

 PSPACE-complete is widely believed to strictly contain NP.

Does this mean that we should give up on AI planning?

19

Satisficing vs. Optimality

?

 While just finding a plan is hard in the worst case, for many

planning domains, finding a plan is easy.

 However finding optimal solutions can still be hard in those

domains.

 For example, optimal planning in the blocks world is NP-complete.

 In practice it is often sufficient to find “good” solutions

“quickly” although they may not be optimal.

 This is often referred to as the “satisficing” objective.

 For example, producing approx. optimal blocks world solutions can

be done in linear time. How?

20

Satisficing

Still finding satisficing plans for arbitrary STRIPS

problems is not easy.

Must still deal with the exponential size of the

underlying state spaces

Why might we be able to do better than generic

graph algorithms?

 Answer: we have the compact and structured

STRIPS description of problems

Try to leverage structure in these descriptions to

intelligently search for solutions

We will now consider several frameworks for

doing this, in historical order.

