Classical STRIPS Planning

Alan Fern *

* Based in part on slides by Daniel Weld.

Stochastic/Probabilistic Planning:
Markov Decision Process (MDP) Model

4 A _
Percepts Actions
World

sole source
perfect of change
fully stochastic
observable
Instantaneous
Goal

maximize expected
reward over lifetime

Classical Planning Assumptions

Percepts Actions

sole source
perfect of change
fully deterministic
observable
Instantaneous
Goal

achieve goal condition

Why care about classical planning?

* Places an emphasis on analyzing the combinatorial
structure of problems
~ Developed a many powerful ideas in this direction
~ MDP research has mostly ignored this type of analysis

* Classical planners tend scale much better to large
state spaces by leveraging those ideas

* Replanning: many stabilized environments ~satisfy
classical assumptions (e.g. robotic crate mover)

~ |tis possible to handle minor assumption violations through
replanning and execution monitoring

~ The world is often not so random and can be effectively
thought about deterministically

Why care about classical planning?

* ldeas from classical planning technigues often form
the basis for developing non-classical planning
techniques

~ Recent work uses classical planners as a component of
probabilistic planning [Yoon et. al. 2008]
(.e. reducing probabilistic planning to classical planning)

~ Powerful domain analysis techniques from classical planning
have been integrated into MDP planners

Representing States

World states are represented as sets of facts.

We will also refer to facts as propositions.

holding(A) handEmpty
B clear(B) clear(A) i
on(B,C) on(A,B)
onTable(C) on(B,C)
State 1 onTabIe(C)
State 2

Closed World Assumption (CWA):
Fact not listed Iin a state are assumed to be false. Under CWA

we are assuming the agent has full observability.

Representing Goals

Goals are also represented as sets of facts.

For example { on(A,B) } is a goal in the blocks world.

A goal state is any state that contains all the goal facts.

handEmpty holding(A)
clear(A) olding(A
' | | on(A,B) @h | | clear(B)
on(B,C) on(B,C)
onTable(C) onTable(C)
State 1 State 2

State 1 is a goal state for the goal { on(A,B) }.
State 2 is not a goal state for the goal { on(A,B) }.

Representing Action in STRIPS

B

A STRIPS action definition specifies:
1) a set PRE of preconditions facts

holding(A)
clear(B)
on(B,C)
onTable(C)

PutDown(A,B)

State 1

2) a set ADD of add effect facts
3) a set DEL of delete effect facts

handEmpty
clear(A)

* on(A,B)

on(B,C)
onTable(C)

State 2

PutDown(A,B):

PRE: { holding(A), clear(B) }
ADD: { on(A,B), handEmpty, clear(A) }
DEL: { holding(A), clear(B) }

Semantics of STRIPS Actions

A

~N

_ handEmpty

holding(A) PutDown(A,B) clear(A)

clear(B) » on(A,B)

on(B,C) on(B’C)

onTable(C) onTa’bIe(C)
S

S UADD - DEL

* ASTRIPS action is applicable (or allowed) in a state when its
preconditions are contained in the state.

« Taking an action in a state S results in a new state S w ADD — DEL
(i.e. add the add effects and remove the delete effects)

PutDown(A,B):

PRE: { holding(A), clear(B) }
ADD: { on(A,B), handEmpty, clear(A)}
DEL: { holding(A), clear(B) }

STRIPS Planning Problems

A STRIPS planning problem specifies:
1) an initial state S
2) agoal G
3) a set of STRIPS actions

Objective: find a “short” action sequence reaching a goal state,
or report that the goal is unachievable

Example Problem: Solution: (PutDown(A,B))
ir holding(A)
clear(B)
onTable(B) on(A,B)
Initial State Goal
PutDown(A,B): PutDown(B,A):
PRE: { holding(A), clear(B) } PRE: { holding(B), clear(A) } STRIPS Actions

ADD: { on(A,B), handEmpty, clear(A)} ADD: { on(B,A), handEmpty, clear(B) }
DEL: { holding(A), clear(B) } DEL: { holding(B), clear(A) }

Propositional Planners

For clarity we have written propositions such as on(A,B) in
terms of objects (e.g. A and B) and predicates (e.g. on).

However, the planners we will consider ignore the internal
structure of propositions such as on(A,B).

Such planners are called propositional planners as opposed
to first-order or relational planners

Thus it will make no difference to the planner if we replace
every occurrence of “on(A,B)” in a problem with “prop1” (and so
on for other propositions)

It feels wrong to ignore the existence of objects. But currently
propositional planners are the state-of-the-art.

holding(A) prop2

clear(B) —p | PrOp3

onTable(B) on(A,B) prop4 propl
Initial State Goal Initial State Goal

11

STRIPS Action Schemas

For convenience we typically specify problems via action
schemas rather than writing out individual STRIPS actions.

Action Schema: (x and y are variables) Putbown(B,A):
PRE: { holding(B), clear(A) }

PutDown(x,y): ADD: { on(B,A), handEmpty, clear(B) }
DEL: { holding(B), clear(A) }

PRE: { holding(x), clear(y) } -
ADD: { on(x,y), handEmpty, clear(x) } .
DEL: { holding(x), clear(y) } PutDown(A,B):

PRE: { holding(A), clear(B) }
ADD: { on(A,B), handEmpty, clear(A) }
DEL: { holding(A), clear(B) }

* Each way of replacing variables with objects from the initial
state and goal yields a “ground” STRIPS action.

° Given a set of schemas, an initial state, and a goal,
propositional planners compile schemas into ground actions

and then ignore the existence of objects thereatfter.
12

STRIPS Versus PDDL

* Your book refers to the PDDL language for defining planning
problems rather than STRIPS

* The Planning Domain Description Language (PDDL) was
defined by planning researchers as a standard language for
defining planning problems

~ Includes STRIPS as special case along with more advanced features

~ Some simple additional features include: type specification for objects,
negated preconditions, conditional add/del effects

-~ Some more advanced features include allowing numeric variables and
durative actions

* Most planners you can download take PDDL as input
~ Majority only support the simple PDDL features (essentially STRIPS)

-~ PDDL syntax is easy to learn from examples packaged with planners,
but a definition of the STRIPS fragment can be found at:

http://eecs.oregonstate.edu/ipc-learn/documents/strips-pddl-subset.pdf

13

Properties of Planners

* A planner is sound if any action sequence it returns
IS a true solution

* A planner is complete if it outputs an action
sequence or “no solution” for any input problem

* A planner is optimal if it always returns the shortest
possible solution

Is optimality an important requirement?

IS It a reasonable requirement?

14

Planning as Graph Search

° |t Is easy to view planning as a graph search
problem

* Nodes/vertices = possible states
° Directed Arcs = STRIPS actions

° Solution: path from the initial state (i.e. vertex) to
one state/vertices that satisfies the goal

15

Search Space: Blocks World

Graph is finite

16

Planning as Graph Search

* Planning is just finding a path in a graph
~ Why not just use standard graph algorithms for finding
paths?

°* Answer: graphs are exponentially large in the
problem encoding size (i.e. size of STRIPS
problems).
~ But, standard algorithms are poly-time in graph size
~ So standard algorithms would require exponential time

* Can we do better than this?

17

Complexity of STRIPS Planning

PlanSAT
Given: a STRIPS planning problem
Output: “yes” if problem is solvable, otherwise “no”

* PlanSAT is decidable.
-~ Why?

° In general PlanSAT is PSPACE-complete!
Just finding a plan is hard in the worst case.
- even when actions limited to just 2 preconditions and 2 effects

Does this mean that we should give up on Al planning?

NOTE: PSPACE is set of all problems that are decidable in polynomial space.

PSPACE-complete is widely believed to strictly contain NP. 8

Satisficing vs. Optimality

* While just finding a plan is hard in the worst case, for many
planning domains, finding a plan is easy.

* However finding optimal solutions can still be hard in those
domains.

~ For example, optimal planning in the blocks world is NP-complete.

* In practice it is often sufficient to find “good” solutions
“quickly” although they may not be optimal.

~ This is often referred to as the “satisficing” objective.

~ For example, producing approx. optimal blocks world solutions can
be done in linear time. How?

19

Satisficing

* Still finding satisficing plans for arbitrary STRIPS
problems is not easy.

~ Must still deal with the exponential size of the
underlying state spaces

* Why might we be able to do better than generic
graph algorithms?

* Answer: we have the compact and structured
STRIPS description of problems

~ Try to leverage structure in these descriptions to
Intelligently search for solutions

* We will now consider several frameworks for
doing this, in historical order.

20

