
1

Classical STRIPS Planning

Alan Fern *

* Based in part on slides by Daniel Weld.

2

Percepts Actions

????

World

perfect

fully

observable

 instantaneous

stochastic

Stochastic/Probabilistic Planning:

Markov Decision Process (MDP) Model

sole source

of change

Goal
maximize expected

reward over lifetime

3

Percepts Actions

????

World

perfect

fully

observable

instantaneous

deterministic

Classical Planning Assumptions

sole source

of change

Goal
achieve goal condition

4

Why care about classical planning?

 Places an emphasis on analyzing the combinatorial

structure of problems

 Developed a many powerful ideas in this direction

 MDP research has mostly ignored this type of analysis

 Classical planners tend scale much better to large

state spaces by leveraging those ideas

 Replanning: many stabilized environments ~satisfy

classical assumptions (e.g. robotic crate mover)

 It is possible to handle minor assumption violations through

replanning and execution monitoring

 The world is often not so random and can be effectively

thought about deterministically

5

Why care about classical planning?

 Ideas from classical planning techniques often form

the basis for developing non-classical planning

techniques

 Recent work uses classical planners as a component of

probabilistic planning [Yoon et. al. 2008]

(i.e. reducing probabilistic planning to classical planning)

 Powerful domain analysis techniques from classical planning

have been integrated into MDP planners

6

Representing States

holding(A)

clear(B)

on(B,C)

onTable(C)

State 1

handEmpty

clear(A)

on(A,B)

on(B,C)

onTable(C)

State 2

C

A

B
C

A
B

World states are represented as sets of facts.

We will also refer to facts as propositions.

Closed World Assumption (CWA):

Fact not listed in a state are assumed to be false. Under CWA

we are assuming the agent has full observability.

7

Representing Goals

Goals are also represented as sets of facts.

For example { on(A,B) } is a goal in the blocks world.

A goal state is any state that contains all the goal facts.

handEmpty

clear(A)

on(A,B)

on(B,C)

onTable(C)

State 1

C

A
B

holding(A)

clear(B)

on(B,C)

onTable(C)

State 2

C

A

B

State 1 is a goal state for the goal { on(A,B) }.

State 2 is not a goal state for the goal { on(A,B) }.

8

Representing Action in STRIPS

holding(A)

clear(B)

on(B,C)

onTable(C)

State 1

handEmpty

clear(A)

on(A,B)

on(B,C)

onTable(C)

State 2

PutDown(A,B)

C

A

B

C

A
B

A STRIPS action definition specifies:

 1) a set PRE of preconditions facts

 2) a set ADD of add effect facts

 3) a set DEL of delete effect facts

PutDown(A,B):

 PRE: { holding(A), clear(B) }

 ADD: { on(A,B), handEmpty, clear(A) }

 DEL: { holding(A), clear(B) }

9

Semantics of STRIPS Actions

holding(A)

clear(B)

on(B,C)

onTable(C)

 S

handEmpty

clear(A)

on(A,B)

on(B,C)

onTable(C)

 S  ADD – DEL

PutDown(A,B)

C

A

B

C

A
B

• A STRIPS action is applicable (or allowed) in a state when its

 preconditions are contained in the state.

• Taking an action in a state S results in a new state S  ADD – DEL

 (i.e. add the add effects and remove the delete effects)

PutDown(A,B):

 PRE: { holding(A), clear(B) }

 ADD: { on(A,B), handEmpty, clear(A)}

 DEL: { holding(A), clear(B) }

10

STRIPS Planning Problems

PutDown(A,B):

 PRE: { holding(A), clear(B) }

 ADD: { on(A,B), handEmpty, clear(A)}

 DEL: { holding(A), clear(B) }

A STRIPS planning problem specifies:

 1) an initial state S

 2) a goal G

 3) a set of STRIPS actions

holding(A)

clear(B)

onTable(B)

 Initial State

A

B on(A,B)

 Goal

PutDown(B,A):

 PRE: { holding(B), clear(A) }

 ADD: { on(B,A), handEmpty, clear(B) }

 DEL: { holding(B), clear(A) }

STRIPS Actions

Example Problem:

Objective: find a “short” action sequence reaching a goal state,

 or report that the goal is unachievable

Solution: (PutDown(A,B))

11

Propositional Planners
 For clarity we have written propositions such as on(A,B) in

terms of objects (e.g. A and B) and predicates (e.g. on).

 However, the planners we will consider ignore the internal

structure of propositions such as on(A,B).

 Such planners are called propositional planners as opposed

to first-order or relational planners

 Thus it will make no difference to the planner if we replace

every occurrence of “on(A,B)” in a problem with “prop1” (and so

on for other propositions)

 It feels wrong to ignore the existence of objects. But currently

propositional planners are the state-of-the-art.

holding(A)

clear(B)

onTable(B)

 Initial State

on(A,B)

 Goal

prop2

prop3

prop4

 Initial State

prop1

 Goal

12

STRIPS Action Schemas

PutDown(x,y):

 PRE: { holding(x), clear(y) }

 ADD: { on(x,y), handEmpty, clear(x) }

 DEL: { holding(x), clear(y) }

For convenience we typically specify problems via action

schemas rather than writing out individual STRIPS actions.

Action Schema: (x and y are variables)

PutDown(A,B):

 PRE: { holding(A), clear(B) }

 ADD: { on(A,B), handEmpty, clear(A) }

 DEL: { holding(A), clear(B) }

PutDown(B,A):

 PRE: { holding(B), clear(A) }

 ADD: { on(B,A), handEmpty, clear(B) }

 DEL: { holding(B), clear(A) }

 Each way of replacing variables with objects from the initial

state and goal yields a “ground” STRIPS action.

 Given a set of schemas, an initial state, and a goal,

propositional planners compile schemas into ground actions

and then ignore the existence of objects thereafter.

. . . .

13

STRIPS Versus PDDL

 Your book refers to the PDDL language for defining planning

problems rather than STRIPS

 The Planning Domain Description Language (PDDL) was

defined by planning researchers as a standard language for

defining planning problems

 Includes STRIPS as special case along with more advanced features

 Some simple additional features include: type specification for objects,

negated preconditions, conditional add/del effects

 Some more advanced features include allowing numeric variables and

durative actions

 Most planners you can download take PDDL as input

 Majority only support the simple PDDL features (essentially STRIPS)

 PDDL syntax is easy to learn from examples packaged with planners,

but a definition of the STRIPS fragment can be found at:

http://eecs.oregonstate.edu/ipc-learn/documents/strips-pddl-subset.pdf

14

Properties of Planners

 A planner is sound if any action sequence it returns

is a true solution

 A planner is complete if it outputs an action

sequence or “no solution” for any input problem

 A planner is optimal if it always returns the shortest

possible solution

 Is optimality an important requirement?

Is it a reasonable requirement?

15

Planning as Graph Search

 It is easy to view planning as a graph search

problem

Nodes/vertices = possible states

Directed Arcs = STRIPS actions

Solution: path from the initial state (i.e. vertex) to

one state/vertices that satisfies the goal

16

Search Space: Blocks World

Graph is finite

Initial State

Goal State

17

Planning as Graph Search

Planning is just finding a path in a graph

Why not just use standard graph algorithms for finding

paths?

Answer: graphs are exponentially large in the

problem encoding size (i.e. size of STRIPS

problems).

But, standard algorithms are poly-time in graph size

So standard algorithms would require exponential time

Can we do better than this?

18

Complexity of STRIPS Planning

 PlanSAT is decidable.

 Why?

 In general PlanSAT is PSPACE-complete!

Just finding a plan is hard in the worst case.

 even when actions limited to just 2 preconditions and 2 effects

PlanSAT

 Given: a STRIPS planning problem

 Output: “yes” if problem is solvable, otherwise “no”

NOTE: PSPACE is set of all problems that are decidable in polynomial space.

 PSPACE-complete is widely believed to strictly contain NP.

Does this mean that we should give up on AI planning?

19

Satisficing vs. Optimality

?

 While just finding a plan is hard in the worst case, for many

planning domains, finding a plan is easy.

 However finding optimal solutions can still be hard in those

domains.

 For example, optimal planning in the blocks world is NP-complete.

 In practice it is often sufficient to find “good” solutions

“quickly” although they may not be optimal.

 This is often referred to as the “satisficing” objective.

 For example, producing approx. optimal blocks world solutions can

be done in linear time. How?

20

Satisficing

Still finding satisficing plans for arbitrary STRIPS

problems is not easy.

Must still deal with the exponential size of the

underlying state spaces

Why might we be able to do better than generic

graph algorithms?

 Answer: we have the compact and structured

STRIPS description of problems

Try to leverage structure in these descriptions to

intelligently search for solutions

We will now consider several frameworks for

doing this, in historical order.

