ECE 322

Winter 2016

Test 1 (02/01/16)

Total # Pages 4 Total # Problems 4

Name_____

1.	(10 points)	
2.	(25 points)	
3.	(40 points)	
4.	(25 points)	

Total (100 points)

GOOD LUCK

1. A diode circuit and voltage waveform $v_s(t)$ are shown. (10 points).

2. Consider the diode circuit shown below with a signal voltage waveform $v_s(t)$ as shown. Draw the specified voltage waveforms in the table below. (25 points).

<u>Sketch</u> the voltage waveform for $v_o(t)$ assuming an ideal diode. Label the time axes and the signal values.	<u>Sketch</u> the voltage waveform for $v_o(t)$ assuming a constant voltage drop model for the diode (the diode voltage is at 0.5V when conducting). Label the time axes and the signal values.
v _o	V _o
t	t

- 3. Answer the following questions. $|V_{BE}| = 0.7V$ for an ON transistor and $|V_{CE}| = 0.2V$ when the transistor is in saturation.
- a) For the bipolar transistors and conditions shown in the following table <u>calculate</u> the missing entries. (**15 points**).

Device	I _C (mA)	I _B (mA)	I _E (mA)	α	β
а	2				50
b			1	0.98	
с		10	110		10

b) In the circuit shown, <u>calculate</u> the collector current and collector voltage assuming β = 100. (10 points).

c) For the circuit shown <u>determine</u> the region of operation (cutoff, active, or saturation) for the transistor with $\beta = 49$. (15 points).

4. For the circuit shown, the emitter voltage is 4 V. <u>Calculate</u> the collector voltage and collector, base, and emitter currents for the transistor. Use this information to <u>calculate</u> α and β . **Do not assume large** β . $|V_{BE}| = 0.7V$ for an ON transistor. (25 points).

