Test 1 (02/01/16)

Total \# Pages 4
 Total \# Problems 4

Name \qquad

1. (10 points)
2. (25 points)
3. (40 points)
4. (25 points)

Total (100 points)

GOOD LUCK

1. A diode circuit and voltage waveform $\mathrm{v}_{\mathrm{s}}(\mathrm{t})$ are shown. ($\mathbf{1 0}$ points).

List which diodes are ON (i.e., forward biased and conducting current) and which are OFF for $0<\mathrm{t}<2$. Assume ideal diodes.	List which diodes are ON and which are OFF for $2<\mathrm{t}<4$. Assume ideal diodes.
ON Diodes:	ON Diodes:
OFF Diodes:	OFF Diodes:

2. Consider the diode circuit shown below with a signal voltage waveform $\mathrm{v}_{\mathrm{s}}(\mathrm{t})$ as shown. Draw the specified voltage waveforms in the table below. (25 points).

| Sketch the voltage waveform for $\mathrm{v}_{\mathrm{o}}(\mathrm{t})$ | |
| :--- | :--- | :--- |
| assuming an ideal diode. Label the time axes | |
| and the signal values. | Sketch the voltage waveform for $\mathrm{v}_{\mathrm{o}}(\mathrm{t})$
 assuming a constant voltage drop model for
 the diode (the diode voltage is at $\mathbf{0 . 5 V}$ when
 conducting). Label the time axes and the
 signal values. |

3. Answer the following questions. $\left|\mathbf{V}_{\mathbf{B E}}\right|=\mathbf{0 . 7 V}$ for an $\mathbf{O N}$ transistor and $\left|\mathbf{V}_{\mathbf{C E}}\right|=$ 0.2 V when the transistor is in saturation.
a) For the bipolar transistors and conditions shown in the following table calculate the missing entries. (15 points).

Device	$\mathrm{I}_{\mathrm{C}}(\mathrm{mA})$	$\mathrm{I}_{\mathrm{B}}(\mathrm{mA})$	$\mathrm{I}_{\mathrm{E}}(\mathrm{mA})$	α	β
a	2				50
b			1	0.98	
c		10	110		10

b) In the circuit shown, calculate the collector current and collector voltage assuming β $=100$. (10 points).
\qquad
\qquad

c) For the circuit shown determine the region of operation (cutoff, active, or saturation) for the transistor with $\beta=49$. (15 points).

4. For the circuit shown, the emitter voltage is 4 V . Calculate the collector voltage and collector, base, and emitter currents for the transistor. Use this information to calculate α and β. Do not assume large β. $\left|\mathbf{V}_{\mathbf{B E}}\right|=\mathbf{0 . 7 V}$ for an ON transistor. (25 points).
\qquad

$$
\mathrm{I}_{\mathrm{B}}=
$$

$$
\mathrm{I}_{\mathrm{E}}=
$$

\qquad

$$
\mathrm{V}_{\mathrm{C}}=
$$

$$
\alpha=
$$

$$
\beta=
$$

