# Test Date: 10/21/2020 

Problems: 4

## Total Pages: 6

Name: $\qquad$

1. (10 points) $\qquad$
2. (20 points) $\qquad$
3. (30 points) $\qquad$
4. (30 points) $\qquad$

## Total (90 points)

$\qquad$

Good Luck

Problem 1: (10 points) A circuit with 3 diodes is shown below along with the waveform of the input source. Assume real diodes (Diode Drop = 0.7V) answer the following:

1(a) Draw Vout as a function of time and mark the peak voltage.



| $1(b):$ Write the diode | $1(c):$ Write the diode <br> which is turned on <br> which is turned on <br> during time 0s to 1s. |
| :--- | :--- |



Problem 2: (20 points) A circuit with one diode is shown below along with the waveform of the input source. Draw the output waveform $\operatorname{Vout}(\mathrm{t})$. Assume the diode is ideal.




## Problem 3: (30 points)

(a) For a PNP transistor, the base current $\mathrm{I}_{\mathrm{B}}$ is $50 \mu \mathrm{~A}$ and the value of $\beta=100$. Calculate the following quantities:
Emitter Current
$(\mathrm{IE})=$ $\qquad$
Current Gain
( $\alpha$ ) $=$ $\qquad$
(b) For the circuit shown below, assume $\left|\mathrm{V}_{\mathrm{BE}}\right|=0.7 \mathrm{~V}$, calculate the following quantities:
$\mathrm{Ic}=$ $\qquad$
$V_{E}=$ $\qquad$

(c) For the circuit shown below, assume $\left|\mathrm{V}_{\mathrm{BE}}\right|=0.7 \mathrm{~V}$, determine the region of operation for the transistor (cutoff, active, or saturation)

Region of Operation = $\qquad$


Problem 4: (30 points) For the circuit shown below $\left|\mathrm{VBE}_{\mathrm{BE}}\right|=0.7 \mathrm{~V}$, calculate the following quantities:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{C}}= \\
& \mathrm{V}_{\mathrm{E}}= \\
& \mathrm{I}_{\mathrm{C}}= \\
& \mathrm{I}_{\mathrm{B}}= \\
& \mathrm{I}_{\mathrm{E}}= \\
& \mathrm{a}= \\
& \hline
\end{aligned}
$$

6|Page

