ECE 322 Electronics-1, Fall 2018

Test Date: 11/19/2018
Problems: 3
Total Pages: 8

Name:

1. (20 points)
2. (20 points +5 Bonus)
3. (20 points)

Total (60 points) \qquad

Good Luck!

Problem 1 (a) (10 points): For circuit show below, draw the small signal model and derive the small signal resistance Rout.

Rout $=$

(b) (10 points): For circuit show below, draw the small signal model and derive the small signal resistance Rout. Transconductance of both BJTs are same - gm.

Rout $=$ \qquad

Problem 2(a): (10 points) The circuit shown below is known as Darlington transistor connection. Draw the small signal "Hybrid pi" model and derive the small signal resistance $\mathrm{R}_{\text {IN1 }}$. You can assume transconductance of the BJTs as gm1 and gm2.
$\mathrm{R}_{\mathrm{IN} 1}=$ \qquad

(b): (10 points) For circuit show below, draw the small signal "Hybrid pi" model and derive the small signal resistance $\mathrm{R}_{\mathrm{IN} 2}$. You can assume transconductance of the BJTs as gm1 and gm2.
$\mathrm{R}_{\mathrm{IN} 2}=$ \qquad

Bonus (5 points) For circuit show below, draw the small signal "Hybrid pi" model and derive the small signal resistance R_{IN}.

Problem 3: (20 points) For the amplifier circuit shown below, calculate the amplifier gain $V_{\text {Out }} / \mathrm{V}_{\text {IN }}$ through small signal analysis (show the complete analysis). Assume $\left|\mathrm{V}_{\mathrm{BE}}\right|=0.7 \mathrm{~V}$

Final Answer

8 | Page

