ECE 322 Electronics-1, Fall 2019
Test Date: 11/20/2019
Problems: 3
Total Pages: 8
Name:
1. (20 points)
2. (20 points + 5 Bonus)
3 (20 points)
3. (20 points)
Total (60 points)
Good Luck!

-

Problem 1 (a) (10 points): For circuit shown below, <u>draw the small signal model</u> and <u>derive</u> the small signal resistance R_0 . The current gain β is infinite. Assume transconductance of the BJT = gm.

 $R_0 =$

(b) (10 points): For circuit shown below, draw the small signal model and derive the small signal resistance R_0 . The current gain β is finite. Assume transconductance of the BJT = gm.

R₀=_____

Problem 2(a): (10 points) For circuit shown below, <u>draw the small signal model</u> and <u>derive the</u> <u>small signal resistance</u> R_{IN} . The current gain β is finite. Assume transconductance of the BJT = gm.

R_{IN}=

(b): (10 points) For circuit shown below, draw the small signal "Hybrid pi" model and derive the small signal resistance R_0 . You can assume transconductances of the BJTs as gm1 and gm2 and base resistances as $r\pi 1$ and $r\pi 2$.

 $R_0 =$

Bonus (5 points) For circuit shown below, the two BJTs are similar. Assuming transconductance **gm** for both the BJTs, <u>draw the small signal "Hybrid pi" model and derive the small signal resistance R_{IN} looking between port A and port B.</u>

(Note: No partial credit in Bonus Problem)

R_{IN} =_____

Problem 3: (20 points) For the amplifier circuit shown below, calculate the amplifier gain V_{OUT}/V_{IN} through small signal analysis (show the complete analysis). Assume $|V_{BE}|=0.7V$

