## ECE 322 Electronics-1, Fall 2020

Test Date: 11/18/2020

Problems: 3
Total Pages: 7

Name: $\qquad$

1. (20 points)
2. (20 points + 10 Bonus)
3. (20 points) $\qquad$

Total ( 60 points)

## Good Luck!

Problem 1 (a) (10 points): For circuit shown below, draw the small signal model and derive the small signal resistance $R_{0}$. The current gain $\boldsymbol{\beta}$ is infinite. Both the BJTs are similar. Assume transconductance of both the BJTs $=\mathrm{gm}$.
$\mathrm{R}_{\mathrm{O}}=$ $\qquad$

(b) (10 points): For circuit shown below, draw the small signal model and derive the small signal resistance $R_{0}$. The current gain $\boldsymbol{\beta}$ is finite. Both the BJTs are similar. Assume transconductance of both the $\mathrm{BJTs}=\mathrm{gm}$.

$$
\mathrm{R}_{\mathrm{O}}=
$$

$\qquad$


Problem 2: (20 points) For circuit shown below, draw the small signal model and derive the small signal resistance $\mathrm{R}_{\mathrm{O}}$.
$\mathrm{R}_{\mathrm{O}}=$ $\qquad$


Bonus (10 points) For circuit shown below, draw the small signal model and derive the small signal resistance $R_{\text {IN }}$.
(Note: No partial credit in Bonus Problem)
$\mathrm{R}_{\mathrm{IN}}=$ $\qquad$


Problem 3: (20 points) For the amplifier circuit shown below, calculate the amplifier gain $\mathrm{V}_{\text {Out }} / \mathrm{V}_{\text {IN }}$ through small signal analysis (show the complete analysis). Assume $\left|\mathrm{V}_{\mathrm{BE}}\right|=0.7 \mathrm{~V}$


7|Page

