ECE 322 Electronics-1, Fall 2020

Test Date: 11/18/2020
Problems: 3
Total Pages: 7
Name
Name:
1. (20 points)
2. (20 points + 10 Bonus)
3. (20 points)
Total (60 points)
Good Luck!

Problem 1 (a) (10 points): For circuit shown below, <u>draw the small signal model</u> and <u>derive the small signal resistance</u> R_O . The current gain β is infinite. Both the BJTs are similar. Assume transconductance of both the BJTs = gm.

 $R_{O} =$

(b) (10 points): For circuit shown below, <u>draw the small signal model</u> and <u>derive the small signal resistance</u> R_O . The current gain β is finite. Both the BJTs are similar. Assume transconductance of both the BJTs = gm.

 R_0 =____

Problem 2: (20 points) For circuit shown below, <u>draw the small signal model</u> and <u>derive the small signal resistance</u> R_0 .

 $R_O =$

Bonus (10 points) For circuit shown below, <u>draw the small signal model</u> and <u>derive the small signal resistance</u> $R_{\rm IN}$.

.

(Note: No partial credit in Bonus Problem)

 $R_{IN} =$

Problem 3: (20 points) For the amplifier circuit shown below, calculate the amplifier gain V_{OUT}/V_{IN} through small signal analysis (show the complete analysis). Assume $|V_{BE}|$ =0.7V

