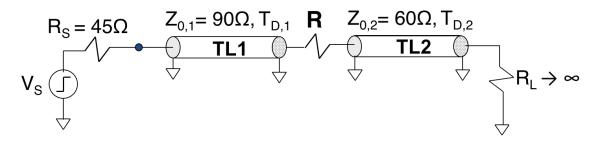
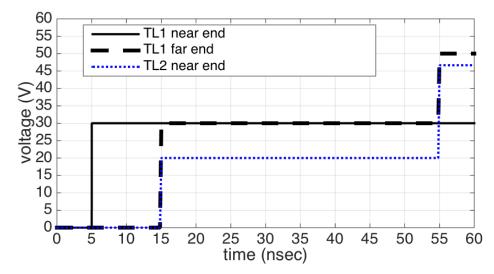
Name:	
	(Last name, first name)
Student ID:_	

ECE 391

TRANSMISSION LINES

Spring Term 2017

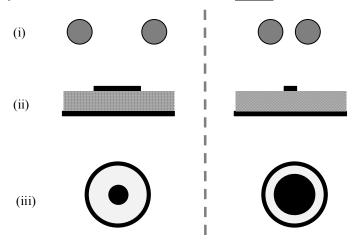

Final Exam


Exam is closed book, closed notes; **three** sheet (6 pages) of notes and formulas allowed; 1 hour 50 minutes. Show all work on the pages provided. No extra pages (use back if necessary). **Read each question very carefully**.

Box your final answer and include units where appropriate. Number of points for each problem is given in parenthesis (50 points total).

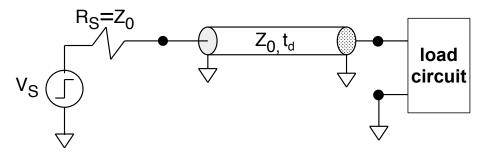
Problem 1 (12	2 pts.)	
Problem 2 (11	1 pts.)	
Problem 3 (11	1 pts.)	
Problem 4 (16	6 pts.)	
Total (50 pts.))	

1. [12 pts.] Two PCB traces of different widths are connected via a resistor R, as shown in the circuit diagram below. The DC source voltage is turned on **at time** *t* = **5ns** and the resulting voltage waveforms at the near end and far end of transmission line 1 (TL1) and at the near end of transmission line 2 (TL2) are recorded and plotted below.

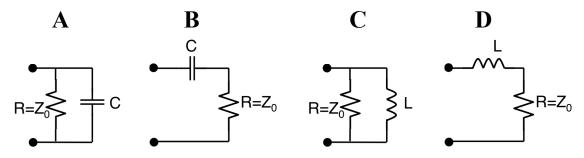


(a) Determine the delay times TD1 and TD2 of the two PCB traces TL1 and TL2, respectively.

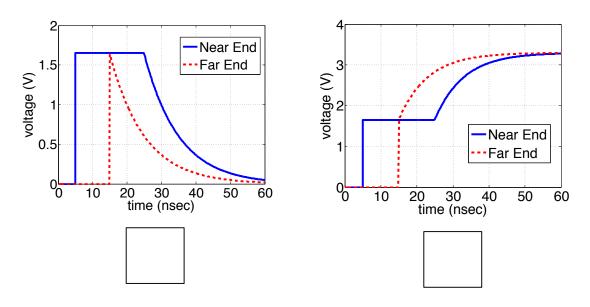
(b) Determine the reflection coefficient at the source side (near end of TL1) and at the termination of trace 2 (far end of TL2).

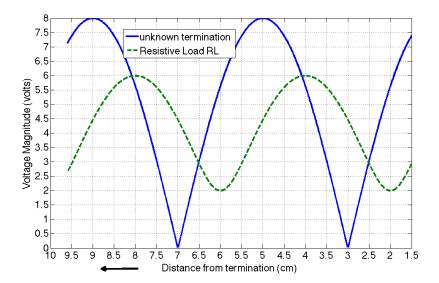

(c) Determine the voltage of the first outgoing wave on trace 1 (TL1).			
(d) Determine the source voltage, V_S .			
(e) Determine the voltage of the first outgoing wave on trace 2 (TL2).			
(f) Determine the transmission coefficient, ρ_{21} at the junction between TL1 and TL2.			
(g) Determine the reflection coefficient, ρ_{11} , at the far end of TL1.			
(h) Determine the value of resistor R connecting TL1 and TL2.			
(i) Determine the steady-state voltage across series resistor, R , and across load resistor, $R_L \to \infty$.			

2. (a) [3 pts.] For each pair of transmission lines (shown by the cross-sections), **explain** and clearly indicate which of the two has the **lower** characteristic impedance.



(b) [4 pts.] You would like to determine the characteristic impedance of a coaxial cable of length 50 meters. In your lab, you connect one end of the cable to a 50Ω pulse generator and leave the other end open, and then monitor the voltage at the input of the cable on your oscilloscope. The pulse duration is set to 10 milliseconds. The initial voltage you measure is 10V, and after 500 nsec you measure 18V at the input. (i) Determine the characteristic impedance of the coaxial cable assuming a lossless line. Hint: Draw a circuit diagram and a lattice diagram. (ii) If, instead, the cable is lossy and has characteristic impedance $Z_0 = 50\Omega$, what is the attenuation constant of the cable?


(c) [4 pts.] A series terminated digital driver is connected via a PCB trace to a set of two different loads. A schematic diagram of the transmission line circuit and the two different load circuits are shown below. The near-end and far-end responses for the two loads are also shown. Indicate in the box next to each response plot the corresponding load circuit (A-D).


Load circuits:

Step responses:

3. [11 pts.] A lossless transmission line with characteristic impedance $Z_0 = 50\Omega$ is terminated in a resistive load $\mathbf{R_L} > \mathbf{Z_0}$. A portion of the voltage standing-wave plot is shown below (dashed curve). The solid curve, also shown below, corresponds to an unknown termination and will be discussed later. An <u>optional</u> Smith chart is included after this problem.

- (a) What is the standing-wave ratio on the line for the resistive termination (dashed curve)?
- (b) Determine R_L (note: $R_L > Z_0$).

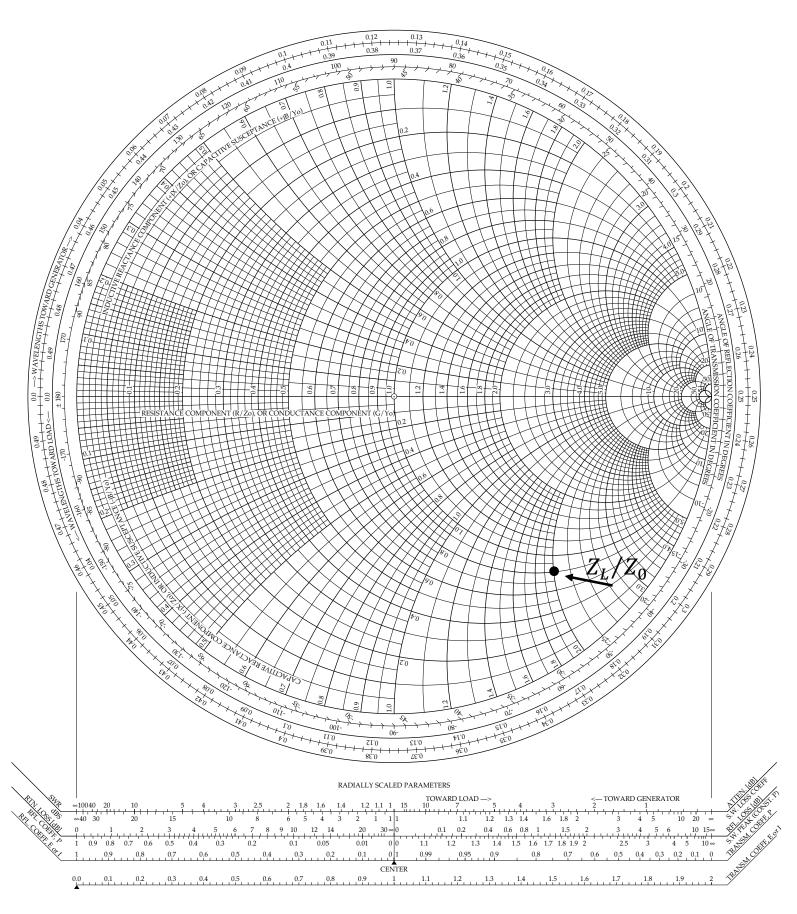
(c) Determine the voltage magnitude of the incident wave, $|V_0^+|$?

(d) Determine the wavelength on the line.

Now, the resistive load is replaced with unknown load impedance Z_T and a new standing-wave pattern is obtained (solid curve above).

- (e) Determine the standing-wave ratio on the line terminated in unknown load impedance $Z_T = R_T + jX_T$ (solid curve).
- (f) Determine the unknown terminating impedance $Z_T = R_T + jX_T$. Show all your steps.

Optional Smith Chart for Problem 3 Smith Chart



4.	[16 pts.] A lossless transmission line $(Z_0 = 100\Omega)$ is terminated in a complex load impedance Z_L . The normalized load impedance Z_L/Z_0 is shown on the attached Smith Chart. Use the Smith Chart to answer the following questions. Clearly mark your answers on the attached Smith Chart.
	(a) Specify the normalized load impedance and unnormalized load impedance Z_L in Ohms.
	(b) Using the Smith Chart, determine the reflection coefficient at the termination (specify both magnitude and phase in degrees).
	(c) Using the Smith Chart, determine the voltage standing-wave ratio on the line.
	(d) Using the Smith Chart, determine the normalized load admittance. Specify the load admittance in Siemens .
	(e) Using the Smith Chart, determine the electrical distance $z'_{i,min}/\lambda$ from the termination to the nearest current minimum.

Now, a lossless open-circuited stub of lengt $Z_0 = 100\Omega$ is connected in parallel (shunt) to the the termination.	
(f) Using the Smith Chart, determine the normal stub.	ized input admittance of the open-circuited
(g) Using the Smith Chart, determine the voltage the transmission line with the stub connected.	e-standing wave ratio on the source side of
(h) How does the voltage standing-wave ratio frequency is doubled?	found in part (g) change if the operating

Smith Chart for Problem 4

Smith Chart

