ECE 391: Transmission Lines

Spring Term 2020

Homework Assignment \#4

due Friday, May 22
0.

1. The following data are specified at $f=200 \mathrm{KHz}$ for a given transmission line.

$$
\begin{aligned}
Z_{0} & =(52-j 0.4) \Omega \\
\alpha & =5 \times 10^{-3} \mathrm{~dB} / \mathrm{m} \\
\beta & =8.3776 \times 10^{-3} \mathrm{rad} / \mathrm{m}
\end{aligned}
$$

Determine the per-unit-length R, L, G, C transmission line parameters, wavelength, and phase velocity.
2. (a) The voltage amplitude of a sinusoidal wave at the input of a 200 m long transmission line is $V_{i n}=5 \mathrm{~V}$. The far end of the line is matched (no reflected waves are excited) and the voltage is measured as $V_{\text {out }}=3 \mathrm{~V}$. What is the attenuation in (i) dB / m, (ii) Np / m ? (b) A coaxial cable has a specified attenuation constant of $\alpha=0.05 \mathrm{~dB} / \mathrm{m}$. Specify the attenuation constant in (i) $\mathrm{dB} / \mathrm{cm}$, (ii) Np / m, (iii) $\mathrm{dB} / 100 \mathrm{ft}$. How much is the voltage amplitude of a single traveling sinusoidal wave attenuated after 100 meters? Give your answer in $\%, \mathrm{~dB}$, and nepers.
3. A lossless 50Ω transmission line of length $z_{r}=50 \mathrm{~m}\left(v_{p}=30 \mathrm{~cm} / \mathrm{ns}\right)$ is terminated in (a) $Z_{T}=Z_{0} / 4$, (b) $Z_{T}=4 Z_{0}$, (c) $L=398 \mathrm{nH}$, (d) $C=79.6 \mathrm{pF}$. Using Matlab, plot the voltage and current standing-wave patterns on the line for $f=7.5 \mathrm{MHz}$ and specify the voltage standing-wave ratio for each of the cases (a)-(d). The amplitude of the incident wave is 10 V . Use one graph for all voltage plots and one for current plots.
4. A lossless 50Ω coax of length $z_{r}=5 \mathrm{~m}\left(\epsilon_{r}=2.25\right)$ is terminated in an impedance $Z_{T}=$ $(70-j 30) \Omega$. (a) What is the standing-wave ratio on the line? (b) Using Matlab, plot the voltage and current standing-wave patterns on the line for $f_{0}=10 \mathrm{MHz}$. (c) Determine the input impedance of the line if the operating frequency is (i) $f_{0}=10 \mathrm{MHz}$, (ii) $f_{0}=20 \mathrm{MHz}$, (iii) $f_{0}=30 \mathrm{MHz}$.
5. A lossless transmission line with characteristic impedance $Z_{0}=50 \Omega$ is terminated in a resistive load $R_{L}>Z_{0}$. A portion of the voltage standing-wave plot is shown below (dashed curve). (a) What is the standing-wave ratio on the line for the resistive termination (dashed curve)? (b) Determine R_{L}. (c) Determine the voltage magnitude of the incident wave, $\left|V_{0}^{+}\right|$. (d) Determine the wavelength on the line.

Now, the resistive load is replaced with unknown load impedance Z_{T} and the new standingwave pattern is obtained (solid curve above). e) Determine the standing-wave ratio on the
line terminated in unknown load impedance $Z_{T}=R_{T}+j X_{T}$ (solid curve). (f) Determine the unknown terminating impedance $Z_{T}=R_{T}+j X_{T}$.

