Name: \qquad
(Last name, first name)

Student ID: \qquad

ECE 391

TRANSMISSION LINES

Spring Term 2017

Midterm I

Exam is closed book, closed notes; one sheet (2 pages) of notes and formulas allowed; 50 minutes. Show all work on the pages provided. No extra pages (use back if necessary). Read each question very carefully.

Box your final answer and include units where appropriate. Number of points for each problem is given in parenthesis (40 points total).

Problem 1 (4 pts.)
Problem 2 (6 pts.)
Problem 3 (20 pts.) \qquad
Problem 4 (10 pts.) \qquad

Total (40 pts.)

1. [4 pts.] One of your colleagues was tasked to design a 60Ω microstrip transmission line of 1 nsec delay time on a PCB. After the PCB was fabricated, it was handed to you to be tested. You discover that the actual characteristic impedance of the fabricated microstrip line is 50Ω instead of the specified 60Ω. After further exploration, you find out that the fabricated microstrip trace has the wrong width. Explain, if the actual width of the microstrip is larger or smaller than the width specified in the design.
2. [6 pts.] A trace is placed on a PCB to route a digital signal from point A to point B, as illustrated in the figure below. At about half way down the trace, a stub of length $d=10 \mathrm{~mm}$ and characteristic impedance $Z_{0}=50 \Omega$ has been added for a possible connection to another device in the future. For now, the stub is left open circuit. The digital signal has rise and fall times of about 2 nsec. What effect does the open-circuited stub have on the main trace from A to B? Assume a velocity of propagation of $20 \mathrm{~cm} / \mathrm{ns}$ on the PCB traces.

3. [20 pts.] You have found a piece of 2 m long piece of coaxial cable of unknown characteristic impedance, Z_{0}. To characterize the cable, you connect one end of the cable to the TDR instrument in your lab and short-circuit the other end, as illustrated in the figure below. The open circuit voltage of the TDR system is $V_{0}=10 \mathrm{~V}$ and the output impedance is $R_{S}=50 \Omega$. The recorded step response $v_{\text {in }}(t)$ at the input of the coaxial cable is shown below for $-5 \leq t \leq 30 \mathrm{nsec}$ (dashed curve).

(a) Determine the delay time (TD) of the coaxial transmission line.
(b) Determine the propagation velocity on the coaxial cable.
(c) Determine the characteristic impedance of the coaxial cable.
(d) Determine the reflection coefficient at the source $\left(\rho_{s}\right)$ and the load $\left(\rho_{L}\right)$.
(e) Determine the capacitance per unit length of the coaxial cable.
(f) Determine the inductance per unit length of the coaxial cable.
(g) Add time scale and numerical values for voltage and current for the first 5 wave components in the lattice diagram below.

(h) Determine the voltage at the input of the coaxial cable, $v_{i n}$, at time $t=45 \mathrm{nsec}$.
(i) Determine the current into the coaxial cable (source side) at $t=5 \mathrm{nsec}$ and $t=25 \mathrm{nsec}$.
(k) What are the steady-state voltage and current at the input of the coaxial cable?
4. [10 pts.] Two transmission lines with different characteristic impedances are connected via a series combination of a resistor and an unknown lumped element, as shown below. Line 1 is matched at the source (near end) and line 2 is matched at the far end. At time $t=0$, a 12 V step voltage generator connected to line 1 is turned on, and the voltages at the input terminals of line 1 (at A-A') and across the load resistor R_{T} (at B-B') are observed on an oscilloscope over a finite duration of time (see below).

(a) Determine the delay times of line 1 and line 2, respectively.
(b) Determine the value of series resistance R connected between the two lines.
(c) Specify the type of lumped element E_{1} (see circuit above) to give the response as shown in the figure above?
(d) Determine the circuit value of the unknown element E_{1}.
