Test Date: 02/05/2020

Problems: 4
Total Pages: 6

Name: \qquad

1. (10 points) \qquad
2. (10 points) \qquad
3. (20 points) \qquad
4. (20 points) \qquad

Total (60 points) \qquad

Good Luck

Problem 1: (10 points) A surface mount resistor is 2 mm in length. Propagation velocity of the signal through this resistor is 0.6 c (where $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$). Up to what frequency can you consider this component as lumped parameter?

Note: Transit time effect can be safely ignored if the length of the transmission line is less than 1% of the signal wavelength.

Frequency = \qquad

Problem 2: (10 points) Parameters of a transmission lines are: $R=0.5 \Omega / \mathrm{m}$; $\mathrm{L}=0.237 \mu \mathrm{H} / \mathrm{m} ; \mathrm{G}=6.21 \times 10^{-4} \mathrm{~S} / \mathrm{m} ; \mathrm{C}=106 \mathrm{pF} / \mathrm{m}$; Calculate the characteristic impedance of the transmission line at 1 MHz and 10 GHz ?
$\mathrm{Zo}(1 \mathrm{MHz})=$ \qquad
Zo (10GHz) = \qquad

Problem 3: (20 points) Given the following transmission line:

(a) (5 points) Calculate the reflection coefficient at the generator side and load side:

Reflection Coefficient on Generator Reflection Coefficient on Load

$$
(\Gamma \mathrm{G})=
$$

\qquad
$(Г)=$ \qquad
(b) (10 points) Draw lattice diagram for up to 5 ns .
(c) (10 points) Plot $V_{A}(t)$ up to $6 n s$.

Problem 4: (20 points) Given the following transmission line and measurement of voltage near generator $\mathrm{V}_{\mathrm{A}}(\mathrm{t})$:

(a) (14 points) Calculate the impedance Z_{g} and $Z_{\text {L }}$.

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{G}}= \\
& \mathrm{Z}_{\mathrm{L}}= \\
& \hline
\end{aligned}
$$

(b) (6 points) Given the propagation velocity of the signal through this transmission line is 0.5 c (where $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$), calculate the length of the transmission line.

Length = \qquad

