ECE 391 Transmission Lines, Winter 2020
Test Date: 03/04/2020
Problems: 4
Total Pages: 7
Name:
1. (10 points)
2. (10 points)
3. (15 points)
4. (15 points)
Total (50 points)

Good Luck

Problem 1: (10 points) The following data are specified at f=1MHz for a given transmission line. Z_0 =(99.85 - j3.008) Ω ; α =4.345dB/m; β = 16.328×10⁻³rad/m. Determine the per-unit-length R, L, G, C transmission line parameters.

R = .	
L = _	
G =	
C =	

Problem 2: (10 points) <u>Circle the termination load</u> on the transmission line from the voltage standing wave <u>and give reason for your answer</u>.

Reason:

Reason:

 $Z_L=R; R>Z_0$ $Z_L=j\omega L$ $Z_L=R; R<Z_0$ $Z_L=1/j\omega C$ $Z_L=0$ $Z_L=R+1/j\omega C$ $Z_L=\infty$ $Z_L=R+j\omega L$

Reason:

(d) $Z_{L}=R; R>Z_{0} \qquad Z_{L}=j\omega L$ $Z_{L}=R; R<Z_{0} \qquad Z_{L}=1/j\omega C$ $Z_{L}=0 \qquad Z_{L}=R+1/j\omega C$ $Z_{L}=\infty \qquad Z_{L}=R+j\omega L$

Reason:

Problem 3: (15 points) Given the following transmission line:

(a) **(10 points)** Draw lattice diagram for up to 6ns.

(b) (5 points) Draw waveform of voltage on node X versus time for up to 6ns.

Problem 4: (15 points) A transmission line with characteristic impedance of $Z_0=50\Omega$ is terminated with an un-known load impedance Z_L . The voltage standing wave pattern along the transmission line as a function of distance is shown below.

(a) **(10 points)** <u>Calculate</u> VSWR, wavelength on the line, magnitude of outgoing wave |V⁺|, magnitude of maximum and minimum current.

(b) **(5 points)** <u>Calculate the phase</u> of the reflection coefficient at the load-end and <u>circle the load Z_L at the end of the transmission line.</u>

Phase =	Z _L =R; R>Z ₀	$Z_L = j\omega L$
	Z _L =R; R <z<sub>0</z<sub>	$Z_L=1/j\omega C$
	Z _L =0	Z _L =R+1/jωC
	Z _L =∞	$Z_L = R + j\omega L$