Colulous
Name: Soluhous (Last name, first name)
Student ID:
ECE 391
TRANSMISSION LINES
Spring Term 2017
Midterm II
Exam is closed book, closed notes; one sheet (2 pages) of notes and formulas allowed; 50 minutes Show all work on the pages provided. No extra pages (use back if necessary). Read each question very carefully .
Box your final answer and include units where appropriate. Number of points for each problem is given in parenthesis (40 points total).
Problem 1 (18 pts.)
Problem 2 (12 pts.)
Problem 3 (10 pts.)
Total (40 pts.)

1. (18 pts.) A transmission line of characteristic impedance $Z_0 = 50\Omega$ is terminated in an **unknown** load impedance Z_L . The voltage standing-wave pattern along the transmission line as function of distance from the termination is shown below.

(a) What is the standing-wave ratio on the line terminated in the unknown load impedance Z_L ?

$$VSWR = \frac{8V}{2V} = \boxed{4}$$

(b) Determine the wavelength on the line.

etermine the wavelength on the line.

$$2 = 5cm - 2cm = 3cm = 2cm$$

(c) Determine the voltage magnitude of the outgoing wave, $|V_0^+|$.

(d) Determine the reflection coefficient at the termination in magnitude and phase.

$$|T| = \frac{VSWR - 1}{VSWR + 1} = \frac{4 - 1}{4 + 1} = \frac{3}{5} = 0.6$$

$$distance to V_{max} = 2cm \stackrel{?}{=} \frac{2}{6} \pi = \frac{3}{3} \stackrel{?}{=} 120^{\circ}$$

$$\Rightarrow \frac{Q_{1}}{2} = 120^{\circ} \Rightarrow Q_{1} = 240^{\circ} = -120^{\circ} /$$
or distance to $V_{min} = 0.5cm = \frac{0.5}{6} \pi = \frac{7}{12} \stackrel{?}{=} 30^{\circ}$

$$90^{\circ} + \frac{Q_{1}}{2} = 30^{\circ} \Rightarrow \frac{Q_{1}}{2} = -60^{\circ} \Rightarrow Q_{2} = -120^{\circ} /$$

(e) Indicate the type of termination from the list shown below that produces the standing-wave pattern shown above.

Moving towards the source, l_{min} is seed find

—) Eapacitive (also: $0 \ge \theta_L \ge -180^\circ$) + $|T_L| \le 1$ =) desistive

open short R C L RC RL

(i) (ii) (iii) (iv) (v) (vi) (vii)

(f) Determine $|I|_{\text{max}}$ and $|I|_{\text{min}}$ on the line.

 $|I_{max}| = \frac{|V_{max}|}{20} = \frac{8V}{500} = \frac{|60mA|}{4}$ $|I_{min}| = \frac{|V_{min}|}{20} = \frac{2V}{500} = \frac{140mA|}{4}$

(g) Sketch the corresponding current standing-wave plot in the graph below.

(stlov) epniticular deposition (cm) (stlov) (s

- 2. (12 pts.) A low-loss 50Ω transmission line of 100m length is found to attenuate a sinusoidal wave traveling from one end to the other by 6dB. It is known that dielectric loss is negligible.
 - (a) What is the voltage magnitude across a matched load if the magnitude of the voltage across the input terminals of the line is 10V?

(b) Determine the attenuation constant in Np/m.

$$\alpha_{AB} = \frac{GdB}{100m} = 0.06 \frac{dB}{m} = 0.06 \frac{dB}{m} = 0.06 \frac{dB}{m} = 0.06 \frac{N_p}{8.686 m} = 0.0069 \frac{N_p}{m}$$

(c) Applying the low-loss approximation, determine the resistance per-unit-length, R, of the transmission line in ohms/meter.

$$\chi = \frac{R}{220} =) R = \chi_0 22 = 0.0069 \frac{1}{m} 2.5052$$

$$= [0.69 \frac{52}{m}]$$

(d) Applying the low-loss approximation, determine the remaining per-unit-length parameters L, C, and G (don't forget to specify the proper units). Assume a phase velocity of $v_p = 20$

cm/ns.
$$Z_{0} = \sqrt{\frac{1}{E}}, \quad V_{p} = \sqrt{\frac{2}{V_{E}}} = \sqrt{\frac{2}{V_{p}}} = \sqrt{\frac{50.52}{0.2 \, m/ns}} = 250 \frac{mA}{m}$$

$$C = \frac{1}{Z_{0} V_{p}} = \frac{1}{50.52 \times 0.2 \frac{m}{ns}} = \frac{1}{10} \sqrt{\frac{9}{m}} = \sqrt{\frac{1000 \, \text{PF}}{m}}$$

3. (10 pts.) An <u>unknown</u> resistive load R_T is connected through a transmission line section of length d and characteristic impedance $Z_{0,2} = 100\Omega$ to a $Z_{0,1} = 50\Omega$ transmission line, as shown below. At frequency f_0 , line length d corresponds to a quarter-wavelength $(d = \lambda/4)$.

(a) What is the physical length of the 100Ω line if $f = f_0 = 200 \,\text{MHz}$ and the effective dielectric constant of the transmission line is $\varepsilon_{r,eff} = 4$?

at
$$f = f_0$$
: $d = \frac{7}{4}$ $\lambda = \frac{V_P}{f} = \frac{3 \times 10^8 \text{M}}{1/4 \cdot 1/200 \times 10^6 \text{s}} = \frac{3}{4} \text{m} = 75 \text{cm}$

(b) Determine R_T if at $f = f_0$ the voltage standing-wave ratio on the 50Ω line is VSWR = 1.

line 1 sees a match

$$\Rightarrow 2_{\text{in}} = \frac{20.2}{R_T} = 20.1 = 50.52 \Rightarrow R = \frac{20.2}{20.1} = \frac{100^2 \,\Omega}{50} = \frac{1000}{1200}$$

(c) What is the voltage standing-wave ratio on the 50Ω line (with R_T from part b) if the frequency is doubled $(f = 2f_0)$?

$$if f = 2f_0 = 3d = \frac{3}{2} = 32i_H = R_T$$

$$T = \frac{R_T - 2_0}{R_T + 2_0} = \frac{200 - 50}{200 + 50} = \frac{150}{250} = \frac{3}{5} = 0.6 = 3 \text{ SWR} = \frac{1 + 0.6}{1 - 0.6}$$

$$0T: SWR = \frac{R_T}{30} = \frac{200}{50} = 4$$

(d) What is the voltage standing-wave ratio on the 50Ω line if the load resistor R_T is replaced with an inductor L=4 nH and the frequency is $f=f_0=200$ MHz?