ECE 580, HW-4 Solutions

Q
(a) $\quad V_{0}(z)=\frac{\left(V_{1}(z)-V_{2}(z)\right) z^{-1} c_{1}}{c_{1}+c_{2}\left(1-z^{-1}\right)}$
(b) Poles must be inside the unit circle $\left|\frac{c_{2}}{c_{1}+c_{2}}\right|<1$
This incint is unconditionally stable.
(c)

$$
V_{0(z)}=\frac{\left(V_{1}(z)-V_{2}(z)\right) z^{-1} c_{1}}{\left(\frac{A+1}{A}\right)\left(C_{1}+C_{2}\left(1-z^{-1}\right)\right)+\frac{C_{p}}{A}\left(1-z^{-1}\right)}
$$

$Q_{2} \quad V_{0}=\frac{2 c_{1}}{c_{2}}\left(\operatorname{Vin}-\frac{V_{N y}}{2}\right)$

$$
\text { Qu } \quad V_{0}=\operatorname{Vin}\left(\frac{c_{1}+c_{2}}{c_{1}}\right)
$$

