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Abstract—With ever increasing network speed, scalable and
reliable detection of network port scans has become a major
challenge. In this paper, we present a scalable and flexible
architecture and a novel algorithm, to detect and block port scans
in real time. The proposed architecture detects fast scanners
as well as stealth scanners having large inter-probe periods.
FPGA implementation of the proposed system gives an average
throughput of 2 Gbps with a system clock frequency of 100 MHz
on Xilinx Virtex-II Pro FPGA. Experimental results on real
network trace show the effectiveness of the proposed system in
detecting and blocking network scans with very low false positives
and false negatives.

I. INTRODUCTION

Internet started as an interconnection of trusted hosts, but
as the network grew, malicious users also became a part
of it. These malicious users, hackers and computer worms,
try to compromise remote hosts by exploiting the loopholes
present in the services running on them. Port scanning, a
reconnaissance operation, is performed to identify such vulner-
able services. Based on their methods of probing, port scans
can be categorized as vertical port scan, horizontal port scan
and stealth scan [1], [2]. According to the last available US-
CERT’s quarterly report [3], among the reported incidents, the
total number of scan probes and attempted access in FY09 Q1
is 73%. Increasing bandwidth, rise in the number of network
users, and the advent of new services have made matters
worse. Hence, there is a need to reliably detect network scans
without affecting the quality of service.

We can divide the ongoing research effort to detect network
scans into two broad categories. They are anomaly based
detection and signature or rule based detection. In anomaly
based detection systems [1],[4]-[7], a system is first trained
with the normal network behavior, and when deployed, any
deviation from the learned behavior is marked as an anomaly.
A clear advantage of anomaly detection systems is in detecting
new attacks [8] and detecting the modifications of the old ones.
However, a big challenge in these systems is to accommodate
the long term changes in the network traffic behavior.

In the domain of rule based scan detection systems, few
popular systems exist [9],[10]. Because of the rule based
approach, these systems are not very effective in detecting
attacks that spans over multiple packets such as network scans
and denial of service attacks. Another major limitation of these
algorithms is that they store all the states of the connections

passing through them, making them non-scalable with increas-
ing network speed. A middle approach between rule based
and anomaly based techniques is described in [11],[13]-[15].
These techniques look for abnormal behavior with precon-
figured threshold limits. However, these techniques need to
store the state of all connections which makes them non-
scalable. Using similar approach, [16],[18] have proposed a
scalable architecture which can detect port scans and few other
network attacks. The work in [16] uses Partial Configurable
Filters (PCF) to detect port scans by analyzing imbalance
in TCP connections; any source sending packets with more
SYN flags than FIN flags is detected as a scanner. These
architectures, however efficient, can only detect limited attacks
which have some imbalance in the flow of control packets as
in Distributed Denial of Service (DDoS) and port scans. The
issue of detecting stealth scans remains unaddressed.

In this paper, we propose an algorithm and a scalable
architecture to detect network scans in an aggregated fashion.
Our algorithm detects and mitigates port scans, based on
unique characteristics exhibited by the scanners. It also detects
stealth scans with a wide range of inter-probe period. The
flexible architecture makes it a suitable candidate for design-
ing a scalable Network Intrusion Detection System (NIDS).
Architectural decisions to reduce area and to increase the
throughput are also discussed in this paper. The proposed
Scan Detection System is implemented on Xilinx Virtex-II Pro
FPGA (XC2VP30). Results from test done with captured real
trace is used to validate the efficacy of the proposed system.
The implementation of the proposed architecture on FPGA
targets TCP scans, but UDP and ICMP scans can also be
detected with a similar approach.

The rest of the paper is organized as follows. Overview
of the architecture is presented in Section II. Section III
discusses characteristics of a typical scanner and the proposed
scan detection algorithm. Details of FPGA implementation is
presented in Section IV. Section V describes salient features
and design decisions of the proposed system. Results obtained
from the real trace is presented in Section VI. Section VII
concludes the paper.

II. ARCHITECTURE OVERVIEW

A conceptual view of the complete Network Intrusion
Detection System and block diagram of the proposed Scan
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Fig. 1. A conceptual view of Network Intrusion Detection System

Detection System’s architecture are shown in Fig. 1. Aggregate
List, Suspicion List, Hash Table, and Black List or Scanner
List form the basic building blocks and store all the required
information. This information is processed by various attach-
able units, to perform desired operation. In this paper only
the Scan Detection System (SDS) is discussed. However, the
aim of showing NIDS architecture is to emphasize the fact
that with minimal modifications to various lists, Deep Packet
Inspection and Distributed Denial of Service Attack Detection
units could be easily added to develop a complete network
security solution.

Based on programmable subnet masks, as in IP routing
tables, Aggregate List stores information for a group of IP
addresses. This group of IP addresses are monitored as a
whole for any malicious activities. Malicious activities such as
port scans, Denial of Service (DoS), worms and virus attacks
spans over multiple packets. Depending on the application
programs running on a network client, benign IP addresses
could also sometimes show such malicious behavior. Because
of this reason, a group of IP addresses is watched for the
occurrence of attack or malicious packets. Once the number
of such packets crosses a pre-configured threshold, the IP
address in the subnet, which is responsible for the last attack
packet, is tagged as suspicious. To avoid spoofing which may
happen when an attacker IP address deliberately makes benign
IP address to appear as scanner IP address to Scan Detection
System, aggregate of destination IP addresses are also stored
in the Aggregate List. This list helps in ensuring that the reply
to request packets originate from legitimate IP addresses.

Once the suspicious IP address is identified, its activity
is monitored separately in the Suspicion List. Size of the
Suspicion List increases linearly with the number of connec-
tions made by suspicious IPs. After confirming the suspicious
IP address as an attacker or a scanner, it is added to the
Black List or Scanner List. Any packet originating from and
going to IP addresses in the Black List are dropped. Hash

Fig. 2. Contents of various hardware lists

Table keeps track of the stealth scanners. This strategy of
first identifying suspicious IPs and check them individually
achieves a very small false positive and false negative, and
hence the quality of service does not degrade. Ability to store
minimal information while identifying suspicious IP addresses
makes this architecture highly scalable.

III. PROPERTIES OF A SCANNER AND SCAN DETECTION
ALGORITHM

Scanners, unlike benign users, exhibit abnormal behavior.
This section discusses such behavior and the proposed algo-
rithm which helps in detecting network scans.

A. Properties of a Scanner IP Addresses

Following are the characteristics exhibited by scanners:
1. If a scanner IP address sends a SYN packet to a closed

port on a remote host, as per TCP-IP protocol, the remote host
replies by a packet with RST+ACK flags set. Since, a scanner
attempting a scan, has only an a priori knowledge of open
ports on a remote host, it receives a lot of TCP packets with
RST+ACK flags set.

2. To perform OS finger printing on the remote host, scanner
IP address sends packets with invalid flags set in the TCP
packet header [17].

3. While performing TCP-SYN scan, scanners leave the
TCP connection half open [12],[19], resulting in incomplete
three way handshake. In this case, number of packets ex-
changed between scanner IP address and victim IP address
is two. Sometimes scanner IP addresses tear the half open
connection by a RST packet, making number of packets
exchanged equal to three.

4. Scanner IP address initiates a connection and completes
three way handshake, but does not transfer any data. This is
the most common “claim and hold” attack known as Naptha.
Though this is a class of Denial of Service (DoS) attack, port
scanning could also be performed this way. In this case, the
number of packets exchanged between the scanner and victim
are three. Some scanners even close the connection with a
normal FIN packet and receive FIN+ACK in response, making
the number of packets exchanged equal to five.

If the remote host has an inbuilt protection, then for any
SYN request on its closed port, it may choose to remain silent
or occasionally reply with a packet with RST+ACK flags set.
This approach could cause an imbalance in the number of
SYN request and RST or FIN reply packets in the network
[16]. In our algorithm, this imbalance is not used to detect



scans. However, the proposed architecture has the flexibility
to accommodate these behavioral changes in detecting scans.

B. Algorithm

The contents of Aggregate List, Suspicion List and Hash
Table are shown in Fig. 2.

The algorithm is as follows:
1. Source and destination IP address of every incoming

packet is checked across various lists. Action on this incoming
packet is decided depending on the list in which this IP is
found.

2. If the source/destination IP address is found in the
Scanner List, the packet is dropped.

3. Next, Hash Table is checked for the match. If hash of
this IP exists, Hash Table is updated and an entry of this IP
is made in the Suspicion List.

4. If the IP is found in the Suspicion List, then based on the
packet’s TCP header, the Suspicion List is updated. Similarly,
Aggregate List is updated if the packet’s IP is found in the
Aggregate List.

5. If, however, the IP is not found in any of the lists,
then based on the subnet mask, a new entry is made in the
Aggregate List.

6. In the Aggregate List, if an IP address shows first
two properties of the scanner (receives RST+ACK or send
invalid flags), AGGcount of the corresponding subnet is in-
cremented. When AGGcount reaches a configurable threshold
limit AGGTH , the last IP address which caused this increment
is added to the Suspicion List.

7. In the Suspicion List, the suspicious IP address is checked
for all four characteristics of the scanner, and SUSPcount, asso-
ciated with that IP address, is incremented accordingly. When
SUSPcount reaches a configurable threshold limit SUSPTH , the
suspicious IP address is added to the Scanner List.

8. Entries in the Aggregate List, Suspicion List and Hash
Table which are inactive for a configurable time interval are
timed-out and purged from the list. This operation helps in the
controlling the size of these lists.

9. Suspicious IP address which are timed-out from the Sus-
picion List are hashed in the Hash Table. Their corresponding
SUSPcount is added to HASHcount. When HASHcount reaches
a configurable threshold limit HASHTH , the last IP address
hashed is tagged as a scanner, and is added to the Scanner List.
This helps in detecting stealth scanners. Section V discusses
stealth scan detection in more detail.

IV. FPGA IMPLEMENTATION OF THE SCAN DETECTION
SYSTEM

The Scan Detection System is implemented on Xilinx
Virtex-II Pro XC2VP30 FPGA as an embedded system, as
shown in Fig. 3. The Scan Detection System Core is attached
to the On-Chip Peripheral Bus (OPB) as a peripheral. A hard-
core 32 bit PowerPC processor is used to initialize Ethernet
Media Access Controllers (EMAC) and configure the Scan
Detection System Core, by writing configuration inputs such
as threshold values. Two Xilinx soft-core EMACs attached to
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Fig. 3. Block diagram of hardware implementation of the Scan Detection
System on Xilinx Virtex-II Pro

OPB, perform the Ethernet MAC operations. Once, a complete
Ethernet frame is available in one of the MAC’s FIFOs, Direct
Memory Access (DMA) unit, in Transfer Engine, transfers the
complete frame to one of the empty memory banks. These
memory banks are implemented using FPGA’s Block RAM
(BRAM) modules.

Header extraction logic copies the header and stores it in the
header extraction registers and signals the Scan Detection Unit
to start the operation. Header Extraction Unit and Memory
Banks are part of the Transfer Engine. Aggregate List, Sus-
picion List, Hash Table, Scanner List and the Scan Detection
Unit are part of the Scan Detection Engine. Depending on
the decision of the Scan Detection Unit, the buffered frame is
either copied from the memory bank to the transmitting FIFO
of MAC, or it is dropped.

V. ARCHITECTURE AND FEATURES OF THE SCAN
DETECTION SYSTEM

This section elaborates detailed architecture, the key fea-
tures of the proposed Scan Detection System and discusses
architectural design decisions.

A. Small Area

Various lists shown in Fig. 2 is implemented using Content
Addressable Memory (CAM) for fast search operation. CAM
is a special type of memory in which data is given as an input
and address of the locations where input data matches the
stored data is given as output. CAM performs parallel search
operation across all the locations and produces result within
one or two clock cycles. It is implemented using Configurable
Logic Blocks (CLBs) of FPGA. When CAM is compared
with the dedicated BRAM modules available on FPGA, it
is relatively costly because of two reasons. Firstly, when the
width of CAM increases, it consumes a large number of
CLBs which otherwise could have been used for implementing
logic circuits. Secondly, when a large number of CLBs are
used to implement CAM, because of large interconnect delay,



Fig. 4. Hardware implementation of the Aggregate List and Time-out-purge state machine

time required for read and write operations increases. On
the other hand, depending on the depth, search operation in
BRAM modules requires multiple clock cycles. To address
this problem, CAMs were designed to store only IP addresses,
and these IP addresses act as a pointer to the BRAM where
the rest of the information is stored. This approach requires
few extra clock cycles but it saves precious CLBs. Fig. 4
shows the detailed implementation along with the essential
control signals. Source IP and Destination IP addresses of the
incoming packet is input to the CAM through DATA IN port
for search and write operation. Matched address is given to
the BRAM through ADDRESS -A port. This is used to update
Arrival time, AGGcount or to make a new entry in the BRAM.
Data path from DATA OUT-A to DATA IN -A forms the update
logic. Counter is used to access all the entries in the BRAM
to check for the time-out condition and purge the data from
CAM and BRAM.

B. High Throughput

Storing limited data in CAMs also helps in reducing the read
and write cycle time resulting in high system clock frequency.
For a given frequency, the number of cycles required to
process a packet’s header decides the throughput of the system.
Therefore, an efficient control logic is desirable to perform
this processing in limited cycles. As a common practice
in designing complex systems, signal exchange among state
machines at the same level of hierarchy is avoided. However,
In the proposed system, to save few clocks cycles, signals were
exchanged between state machines at same and at different
hierarchy.

Every entry in the Aggregate List, Suspicion List and Hash
Table have time-out counters, and time-out condition of all
the entries are checked periodically. The duration when this
check is triggered is a configurable parameter for all the three
lists. When the time-out condition of a particular entry in a
list is being checked, read or write operation on that list, for
incoming packets, cannot be performed. The number of cycles

required by the time-out state machine depends on the depth
of the list, and is relatively large as compared to the number
of cycles required to process a packet. Stalling the normal
packet processing operation during time-out operation affects
the system’s throughput. To overcome this problem, the time-
out control logic, associated with every list in the architecture,
is designed to operate in the cycle stealing mode. In this
mode, whenever a normal operation is not being performed
in a particular clock cycle, the time-out control logic kicks-in
and checks every entry for time-out condition and updates or
purges it accordingly. Read and write operation for purging an
entry in the BRAM is done by Time-out-purge state machine,
shown in Fig. 4, on port-B and hence does not require any
synchronization with other operations. Deletion in CAM and
BRAM is synchronized using the busy signal of the CAM -
cam busy. Hence, apart from storing limited data in CAMs
which reduced read and write cycle time, bypassing control
hierarchy and cycle stealing operation increase the overall
system’s throughput.

C. Detection of Stealth Scanners

In order to avoid detection, stealth scanners scan the net-
work with a very large inter-probe period. Assuming the stealth
scanner is present with other active benign IPs in the subnet,
active benign IPs make sure that the arrival time in the subnet
entry in the Aggregate List is updated on a regular basis. As a
result the subnet entry will not be purged and AGGcount will
cross AGGTH due to the scanner’s behavior. Consequently, the
stealth scanner present in the Aggregate List will be tagged as
suspicious.

In the Suspicion List, if the inter-probe period of scan is
large, stealth scanner’s entry is timed-out and the scanner IP
address is purged from the Suspicion List and it is hashed
to the Hash Table. The SUSPcount associated with that IP
address is added to the corresponding HASHcount. Next time,
if the scanner IP address sends a scan probe with invalid
flags set, or receives a RST+ACK packet, then it is directly



TABLE I
XC2VP30-FPGA RESOURCE UTILIZATION

Logic Utilization Used Available Utilization

No. Slices 10227 13696 74%
No. Slice Flip Flops 8347 27392 30%
No. of 4 input LUTs 15213 27392 55%
No. BRAMs 134 136 98%

added to the Suspicion List and the corresponding HASHcount

is incremented by one. If the above mentioned action is
repeated, the HASHcount associated with the stealth scanner’s
IP address will eventually cross the configurable threshold and
the scanner IP address will be added to the Scanner List.
The Time-out period of the Hash Table is large compared
to the Aggregate List and the Suspicion List. This ensures that
the hashed entry of the stealth scanner is not purged even
if it remains inactive for a long duration of time. With the
appropriate values of thresholds and time-out periods, scanners
with arbitrarily long inter probe period could be detected.

D. Scalability and Flexibility

In the proposed architecture, scalability is achieved by
keeping information of a group of IP addresses in a single row
of the Aggregate List. This group of IP addresses are grouped
together through a configurable subnet mask which need not
be contiguous. With this flexibility, the Aggregate List can
be populated in a very controlled way. For example, a group
of untrusted users could be grouped together in a separate
group. With little modification, a new column can be added
to the Aggregate List which stores the AGGTH value for the
corresponding row. This means that for the ith row, AGGi

count

must cross the AGGi
TH for the scanner IP to be added in

the Suspicious List. By keeping a low value of AGGTH for
rows having untrusted hosts, fast scanner detection could be
achieved.

Scan detection rate can also be traded with capacity of the
Aggregate List. For example, if the subnet mask is changed
to accommodate more IP addresses in each subnet of the
Aggregate List, the possibility of finding more than one
scanner IP address in that particular subnet will also increase.
As a result, AGGcount of that particular subnet must build up
above AGGTH for two or more times so as to add scanners to
the Suspicion List. This repeated build up of AGGcount could
lead to a possible delay in detecting a scanner.

VI. TEST SETUP AND RESULTS

FPGA implementation of Scan Detection Core achieved
an average throughput of 2 Gbps with a system clock of
100 MHz. This calculation is made by observing the average
cycles required by the Scan Detection Core to process a packet.
Throughput of the entire system, limited by the slow On-Chip
Peripheral Bus (OPB) and Soft EMAC cores, is 100 Mbps.
OPB and soft EMAC were chosen because 100 Mbps speed
is sufficient to test the system on our network as a proof
of concept. However, this speed limitation can easily be
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Fig. 5. Test setup to replay captured packets and evaluate the Scan Detection
System

overcome by using Gigabit EMAC cores and a dedicated bus.
Table I shows the resource utilization of Xilinx Virtex-II Pro
XC2VP30 FPGA having 128 rows each in Aggregate List and
Suspicion List, 256 rows in Hash Table and 64 rows in Scanner
List. BRAM usage of 98% also includes the memory of Power
PC.

Performance of system was evaluated by testing it against
live network traces. We collected 30 minutes trace from one
network gateway of our Institute using Tcpdump [20]. This
benign trace, with a diverse range of traffic, consists of more
than 200 active benign IP addresses having more than 3000
TCP flows. This trace was then engineered by assigning new
source IP and destination IP addresses to every TCP flow.
This modification was done to make the captured benign trace
to look like 3000 active benign IP addresses. An alternative
way could be to collect 10 such 30 minute traces and then
different IP addresses could be assigend to each of these 30
minute traces to get 2000 different active benign IP addresses.

A trace of 38 scanners scanning hosts inside the institute
network was captured separately by running network scan
tool NMAP [19] with default vertical SYN scan option. The
number 38 does not carry any special significance, and was
chosen to simulate a network condition with more than 1%
scanners. Captured traces, of both benign users and scanners,
help in ensuring similar network condition while testing the
Scan Detection System with different configurable parameters.
Subnet mask in the Aggregate List is chosen to divide all the
benign IP addresses, passing through Scan Detection System,
into 64 subnets. Scanner IP addresses are assigned randomly
to these subnets.

A. Evaluation for Normal Scans

To study the effect of configurable parameters on the
accuracy of detection i.e. false positives and false negatives,
captured traces were replayed using Tcpreplay [21] with dif-
ferent set of configurable parameters in a test setup, as shown
in Fig. 5. Fig. 6 shows the results obtained with different set of
AGGTH and SUSPTH . For these set of tests, HASHTH was set
to 8. Results show that the false positive decreases rapidly as
AGGTH and SUSPTH are increased. From the results we can
also observe that there is no false positive when both AGGTH

and SUSPTH are set to a high value. During the complete
duration of testing, all scanner IP addresses were detected by
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the system and their traffic was blocked before they could
complete their respective scans.

B. Evaluation for Stealth Scans

To test the effectiveness of the system in detecting stealth
scans and to study the impact of HASHTH , a trace consisting
of more than 500 benign users, generated from the captured
3000 TCP flows, and 20 stealth scanners was given to the Scan
Detection System. The trace of benign IPs was engineered
such that every benign IP either receive a RST+ACK packet
or have an invalid flag set in one of its packet’s TCP header.
This manipulation of benign IP flow was done to ensure that
few benign IPs land in the Suspicion List and eventually in
the Hash Table. This helps in studying the impact of HASHTH

on the number of false positive. For this experiment, AGGTH

and SUSPTH values were kept at 5. Fig. 7 shows the observed
false positives as the HASHTH is increased. False negative in
this experiment was zero, i.e. all stealth scanner IP addresses
were detected. From these results it can be observed that as the
configurable threshold values are increased, the false positive
decreases.

VII. CONCLUSION AND FUTURE WORK

This paper introduced a flexible, scalable architecture and
a new algorithm to detect and block network port scans.
Scalability is achieved by storing information of a subnet
rather than keeping states of individual flows. Accuracy is
achieved by identifying scanner IP address from its unique
network characteristics and separately analyzing suspicious

IP addresses. Ability to detect stealth scans is achieved by
hashing suspicious IP addresses with long inter-probe pe-
riod. FPGA implementation of the proposed architecture has
achieved an average throughput of 2 Gbps with 100 MHz
system clock. We obtained satisfactory results during tests
with real network traces. An appropriate follow-up to the work
presented here is to perform rigorous analytical investigation
into the set of configurable parameters, to achieve optimal
performance.
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