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Abstract— This paper presents a 25nW-2.4µW switched-

capacitor based energy harvester. The proposed harvester avoids 

charging and discharging of top and bottom plate parasitic 

capacitors by switching both the terminals of energy source as 

opposed to switching just one terminal. As a result, the energy lost 

in switching the top and bottom plate parasitic capacitors is zero 

joules, which helps to achieve highly efficient switched capacitor 

architecture for harvesting sub 1μW energy. The proposed 

harvester achieves an efficiency of 80% while delivering 1μW 

output and achieves a peak efficiency of 80.66% at 2.4µW output. 

It occupies an area of 1.95mm2 in 180nm CMOS. 
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I. INTRODUCTION  

Smart cities will need several mm size wireless sensor nodes 
powered by energy harvesters with the aim of deploying in an 
unobtrusive and concealed manner. Size limited sensor nodes 
limit photovoltaic cell to few millimeters in dimension, which 
limits the power that can be harvested. Since, several of these 
sensor nodes will be deployed in houses, offices, or subways, 
this restricts the photovoltaic (PV) cell usage to ambient light 
conditions (less than 200 lux). As a result, only 10s of nano-
watts to a couple of microwatts power is available from the PV 
cell. Switched capacitor based harvester architecture is an 
attractive alternative to inductor-based harvester due to the 
absence of a large external inductor. However, conventional 
switched capacitor-based harvesters suffer from low energy 
efficiency when the harvested power is at sub-microwatt level 
[1-2]. 

 Inefficiency in switched capacitors is primarily due to (a) 
charge redistribution loss and (b) parasitic switching loss of the 
charge pump. Both these losses must be reduced to achieve high 
efficiency. Charge redistribution loss can be reduced by (a) 
increasing the switching frequency or (b) increasing the 
capacitor size. Increasing the switching frequency increases the 
switching losses. On the other hand, increasing the size of the 
switched capacitor increases both top and bottom plate parasitic 
capacitors proportionally, which further increases the parasitic 
switching loss. This fundamental trade-off prevents the 
conventional switched capacitor architectures from achieving 
high energy-efficiency. For example, the energy efficiency for 
harvesting power levels of less than 1μW is approximately 50% 
[1-2]. 

The proposed switched source + capacitor architecture 
breaks this trade-off by eliminating the losses due to top and 
bottom plate parasitic capacitor switching. This allows to 
increase the capacitor size to reduce the charge redistribution 
loss without increasing losses in top and bottom plate parasitic. 

As a result, the proposed harvester can achieve ~30% higher 
efficiency than prior sub-microwatt switched capacitor 
architectures [1-2] and 3-13% higher efficiency than inductor-
based harvesters [3-4] while harvesting 1µW output power. 

The paper is organized as follows: Section II presents the 
concept of the switched source. Section III presents the system 
architecture, details of the MPPT and voltage regulation. Section 
IV presents the measured results followed by conclusion. 

II. PROPOSED SWITCHING CONCEPT 

Figure 1 shows the proposed parasitic insensitive switched 
source + capacitor converter concept and comparison with the  
two conventional switched capacitor architectures. In a 1:2 
conventional series-parallel and cross-coupled switched 
capacitor architectures, the capacitors are switched to different 

voltages in the two phases (Փ1 and Փ2). This causes the top and 

bottom plate parasitic capacitors (CT1, CT2, CB1, CB2) to charge 
and discharge with a voltage difference of VIN (source voltage). 
As a result, the energy lost in every clock cycle in a series- 
parallel architecture is defined as: 

 

Fig. 1. Proposed parasitic insensitive switched source + capacitor concept and 

comparison with conventional switched capacitor architectures. 
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                      𝐸𝐿𝑜𝑠𝑠−𝑆𝑃  =  
1

2
(𝐶𝐵2  +  𝐶𝑇2)𝑉𝐼𝑁

2                       (1) 

While a cross-coupled architecture the loss is defined as: 

𝐸𝐿𝑜𝑠𝑠−𝐶𝐶  =  
1

2
(𝐶𝐵1  +  𝐶𝑇1 + 𝐶𝐵2  +  𝐶𝑇2)𝑉𝐼𝑁

2            (2) 

In a conventional switched capacitor architecture, this loss 
limits the size of the charge pump capacitance. For instance, 
using a hybrid MIM + fringe capacitance of 400pF would result 
in a combined top and bottom plate capacitance of 15.2pF 
capacitors. Switching this parasitic capacitor at 1V would result 
in energy loss of 7.6pJ and 15.2pJ per cycle for series-parallel 
and cross-coupled architectures, respectively. 

 In the proposed switched source + capacitor architecture, 
instead of switching the capacitors alone, the voltage source is 
also switched to different terminals of the capacitors, as shown 
in Fig. 1. Consequently, the voltage at the capacitor terminals 
remains constant in both phases. As a result, the top and bottom 
plate parasitic capacitors are neither charged nor discharged, and 
the energy lost in parasitic switching is 0 joules.  

 Despite removing the parasitic switching losses in top and 
bottom plate parasitic capacitors, the parasitic switching loss 
exist in the source terminals. This is because the source 
terminals are floating, and the terminal voltage changes by VIN 

step at each clock phase. This results in losses in the parasitic 
capacitor from source terminal to ground. Fortunately, this 
parasitic capacitance is approximately 200x smaller than top and 
bottom plate capacitance and it depends on the switch sizes and 
pad capacitance, which can be minimized with careful design.  

 The proposed switched source + capacitor scheme 
differentiates itself from prior switched PV cell [5] on the fact 
that [5] uses multiple energy sources in series to get the desired 
boosted output voltage, whereas the proposed approach uses 
only one energy source. While this work harvests solar energy, 
the proposed switched source + capacitors can be leveraged to 
harvest from other ambient sources as well.  

III. PROPOSED HARVESTER ARCHITECTURE 

The block diagram of the harvester is shown in Fig. 2. It 
consists of a programmable switched capacitor boost converter 
which can boost the input from 1x to 5x, a 7-stage VCO based 
clock generator generating 6 output phases, common mode level 
shifters for clock phases, battery charger with digitally 
programmable current sources, and an MPPT + voltage 

regulation FSM. An on-chip storage capacitor (CVCO) is charged 
to the input voltage during one of the six phases and this 
capacitor acts as a supply to the oscillator. The proposed 
harvester has 3 degrees of freedom (1) conversion ratio (CR), 
(2) switching frequency and (3) current to charge the external 
battery. MPPT is achieved by controlling the conversion ratio 
and switching frequency, the output voltage regulation is 
achieved by controlling the amount of charge provided to the 
external battery.  

On-chip comparators are used to verify that the output 
voltage is within the specified window of regulation. A Dickson 
based cold-start circuit is used to provide the supply voltage for 
these comparators and static level shifters that are used to 
program static switches. 

A. Reconfigurable Charge Pump 

Detailed schematic of x1-to-x5 switched source + capacitor 
converter is shown in Fig. 3(a). It consists of 5 x 400pF 
capacitors to reduce the charge redistribution loss and it requires 
5 non-overlapping clock phases. Since the peak voltage of the 
harvester output is 1.8V, in a conventional scenario, the non-
overlapping clock phases, required to turn on/off harvester 
switches, must have a 1.8V swing. However, rail-to-rail level 
shifters consume a significant amount of power. Moreover, 
parasitic losses in a clock distribution network for 1.8V clock 
signal swing are significant. Therefore, in the proposed 
harvester, switches are designed in such a way that only DC-
shifted clock phases with a maximum voltage swing of VIN is 
required. Fortunately, VIN could be 5x smaller than 1.8V. This 
helps to exponentially reduce the losses in clock distribution. 

The proposed switch consist of series NMOS and PMOS 
transistors. Turning off the switch requires turning off only one 
of the two transistors (either NMOS or PMOS). An example of 
source +ve terminal (VIN+) connection to C3 top plate and 
disconnection from C2 top plate (C3 bottom plate) is shown in 

Fig. 3(b). During Փ3, VIN- = 2VIN because it is connected to top 

plate of C2 resulting in VIN
+ = 3VIN. PMOS (P1) gets 2VIN at its 

gate while NMOS (N1) gets 4VIN at its gate. This turns both N1 
and P1 on and connects VIN

+ to C3 top plate. Simultaneously, 
PMOS (P2) gets 2VIN at its gate while NMOS (N2) gets 2VIN at 
its gate. This turns off N2 and disconnects VIN

+ from C2 top 
plate. Fig. 3 (c) shows the detailed waveforms of all the switches 
with regards to time and voltage levels. An ultra-low power 
(1nW) common mode shifter is designed to provide the DC 
shifted clocks. For higher DC shift, cascading stages are used to 
provide higher DC shift with 1VIN swing. The values of the 
common mode values are taken from the top plates of the charge 
pump capacitors which are VIN, 2VIN, 3VIN, 4VIN and 5VIN.  

There are two types of parasitic capacitances associated with the 
energy source (a) coupling capacitance between the two inputs 
of the ambient source (CC), and (b) parasitic capacitance to 
ground from the terminals of the input source (CP1 and CP2), as 
shown in Fig 3(a). Coupling capacitance between the two inputs 
does not contribute to switching losses because both terminal 
voltages change with the exact same amount. The on chip 
parasitic capacitance from source terminals to ground is very 
small (37fF in this chip), which results in insignificant switching 
loss. Parasitic capacitance on the PCB is minimized by careful 
PCB design.  

 

Fig. 2. Block diagram of the proposed energy harvesting system. 
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B. MPPT and Voltage Regulation 

The proposed MPPT + voltage regulation FSM, algorithm and 
timing diagram is shown in Fig. 4. With a fixed output load 
resistance, the power harvested is maximized by maximizing the 
power going to charge the battery. Therefore, the aim of the 
proposed MPPT is to charge the battery with maximum current. 
The MPPT is initialized with values for the frequency code and 
CR code, which are set to their minimum values. Regulation 
starts with changing the regulation code (i.e charger current) till 
the output voltage is within two reference voltage levels (VREF-H 

> VOUT > VREF-L). If the regulation fails, the switching frequency 
is incremented. Upon success of voltage regulation, the value of 
the regulation code (charger current) is checked and compared 
to the maximum value of regulation code from previous 
regulation attempts. The maximum value is saved in a register 
based on the result of this comparison. After all CR and 
frequency combinations are tested, the algorithm loads CR, 

frequency and regulation code configuration which corresponds 
to the maximum charger current (maximum output power). By 
using digital battery charger as a means to monitor the harvester 
power, power hungry current sensing circuits are avoided, 
which helps to further improve the harvester efficiency. 

IV. MEASUREMENT RESULTS 

The proposed harvester is implemented on a 180nm CMOS 
technology and occupies an area of 1.95mm2. Figure 5 shows 
die micro-graph. Most of the area is occupied by the charge 
pump capacitors to achieve the maximum possible efficiency by 
reducing the charge redistribution loss. A hybrid of MIM + 
fringe capacitor structure (MIM on top of metal cap) is used to 
achieve the maximum capacitance density.  

    Figure 6 shows the transient MPPT + voltage regulation 
FSM settling behavior with an input light source of 144 lux 
using 2 solar cells of combined area of 38.7mm2. After the VOUT 
is settled to 1.8V at 1.52µW output power, the harvester has a 
peak-to-peak ripple of 90mVp-p with an output capacitance of 
510pF (external). After MPPT settling, voltage regulation ability 
is measured by applying the current step. For a current step of 
30nA, the proposed harvester recovers to 1.8V with a voltage 
droop of 250mV, as shown in Fig. 6 (b).  

Figure 7(a) shows the measured end-to-end energy 
efficiency of the harvester. The efficiency is measured as output 
power/ (maximum possible harvestable input power + harvester 
losses). The proposed harvester achieves peak end-to-end 
efficiency of 80.66% while delivering 2.4µW at 1.8V with the 
input voltage of 0.67 V. The harvester achieves efficiency >70% 
while harvesting >200nW and achieves ≥80% efficiency while 
harvesting ≥1 µW. At VIN of 0.45V, resistance of the switches 
increases, which limits the power efficiency at high power levels 
as higher frequencies are needed. This leads to reaching the fast 

 
       Fig. 3. (a) Schematic of the proposed programmable charge pump. (b) Switching example and common mode voltage shifter. (c) Associated clock waveforms. 

 

Fig. 4. Proposed MPPT and voltage regulation state machine and timing 
diagram 
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switching limit of the converter. Figure 7(b) shows the harvester 
power vs. input lux using two and three 4.3mm x 4.5mm solar 
cells as a source. A comparison is made with prior state-of-the-
art and shown in Table I. The proposed harvester achieves ~30% 
higher efficiency while harvesting 1µW in comparison with the 
prior switched capacitor harvester architectures[1][2]. 

V. CONCLUSION 

      This paper presents a switching approach that helps to break 

the trade-off between the charge redistribution loss and top/ 

bottom plate switching loss in a switched capacitor harvester. 

With the proposed approach, the top/bottom plate switching 

loss is eliminated and charge redistribution loss is reduced to 

achieve an efficiency of 80% while harvesting 1µW power. 
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TABLE I.   COMPARISON WITH STATE-OF-THE-ART HARVESTERS 
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Fig. 5. Energy harvester die micrograph  
 

 
Fig. 6 Measured transient results for (a) MPPT and voltage regulation, (b) 

load regulation with the current step of 30n A and (c) output voltage ripple 

in steady state with the output power of 1.52µW and 144 lux input light 

 
 
Fig. 7. (a) Measured energy efficiency versus harvester output power and 
(b) measured harvester output power versus light intensity.  
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