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Abstract 

The influence of landscape, geologic history, and geomorphic disturbance legacies can have a 

large impact on streamflow characteristics in mountain catchments. While it can be difficult to 

elucidate subsurface catchment properties using LiDAR, past studies have shown that 

measurable topographic indices like surface roughness can reflect relative differences in 

unconsolidated colluvium and soil depth. The HJ Andrews Experimental Forest (HJA) provides a 

unique opportunity to explore how physiography influences streamflow because within its 

borders lay a wide range of catchment types and sizes. The geologic history of the HJA is well 

documented through multiple historical surveys and streamflow data has been collected at 

numerous experimental watersheds for decades. This rich dataset, combined with the unique 

physiographic characteristics of the region, make for easy comparisons between catchments. 

Here we seek to determine if mean annual suspended sediment yield (SSY) can be estimated 

using metrics of topography and erosion rate as measured by LiDAR in 10 experimental 

catchments. Our analysis found that while there is a relationship between some of our metrics 

and mean annual SSY, linear models alone cannot make accurate predictions at all scales. Using 

these models, we predicted mean annual SSY in 4 ungauged basins characterized by different 

terrain and geomorphic disturbance legacies. Larger catchment (>5km2) predictions were more 

accurate with all models tested. The results suggest a need for further analysis with a wider range 

of catchment sizes and a way to quantify landscape and climate disturbance legacies.  

 

Background 

Headwater streams are critically important for the health of downstream ecosystems. Sediment in 

these streams provides habitat for many freshwater faunas, such as salmon and salamanders. The 

size of the sediment load can greatly impact the ability of these creatures to spawn. Salmon, for 

example, only lay eggs in beds with specific size distributions of sediment. Any disruption to 

these already sensitive populations could prove disastrous for local biodiversity. Sediment supply 

also works to shape downstream channel morphology, shaping the rivers we all know so well. 

They may look the same day by day, but at larger time scales, their shapes are dynamic.  

 

Looking at sediment yield at the headwater scale can be difficult because the variability can often 

be extremely high from year to year. Yet it is still valuable to have an estimate of what these 

small catchments may produce in an average year. Since rivers are the sum of headwaters, 

understanding the sediment production processes in these small systems will also work to 

educate us about the inputs to larger rivers.  

 

LiDAR technology has evolved rapidly over the past few decades. Aerial surveys using this 

technology have proven to be a useful tool for answering various questions regarding sediment 

load and yield at different scales (Pavelsky and Smith, 2009; Anderson and Pitlick). Change 

analysis is a tool that is often used to determine how landscapes have changed through time 

(DeLong et al., 2022). By integrating high resolution LiDAR from two different acquisitions, 12 

years apart, we hope to use change analysis as a means of predicting relative erosion rate in a 

given catchment.  

 

Previous studies have shown a connection exists between topography, discharge, and suspended 

sediment yield (Bywater-Reyes et al., 2018) in small mountain catchments. Building on this 



3 
 

analysis, we will seek to determine if metrics derived entirely from LiDAR can be used to make 

predictions of SSY in the same mountain catchments. 

 

Study Site 

The HJ Andrews Experimental Forest is a research forest located in the Western Cascade 

Mountains of Oregon. It makes up the entirety of the Lookout Creek Watershed (64km2) and 

empties into Blue River Reservoir, which drains to the McKenzie River (Fig 1).  

 
Fig 1. A map of the HJA with the stream network and outer boundary highlighted.  

 

Lookout Creek is a 5th order stream and drains a 64km2 catchment. The climate of the region is 

Mediterranean, characterized by dry, hot summers and cool, wet winters. The Andrews Forest is 

made up of primarily Old-growth trees: Douglas‐fir(Pseudotsuga menziesii) and western 

hemlock (Tsuga heterophylla) at lower elevation and noble fir(Abies procera) and Pacific silver 

fir(Abies amabilis) at upper elevations. The elevation gradient is steep (430->1600m.a.s.l) and 

the terrain is marked by both steep, V-shaped valleys and large, U-shaped valleys carved out by 

glaciation. The region is underlain by volcanic bedrock, which can be separated into 3 distinct 

periods (Fig 2). 
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Fig 2. A map illustrating the geologic history of the HJA (Swanson, 2005).  

 

In the lowest elevations (Little Butte Fm.) lays the oldest bedrock. It is composed of highly 

weather pyroclastics and ash-flow tuffs. The middle elevations (Sardine Fm.) are composed of a 

layer of ash-flow tuffs and a layer of lava flows. This elevation is significantly less weathered 

than the lower region. The highest elevations (Pliocene) are underlain by lava flows and forms a 

thick cap of porous basalt on the ridgelines.  

 

Established in 1948, the forest was meant to improve our understanding of how different logging 

practices influence old growth forests and headwater stream hydrology. Ten experimental 

watersheds were established, and experiments were carried out. 
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Fig 3. The ten experimental watersheds established by the HJA to study the impacts of logging.  

 

In 1980, the site became a charter member of the NSF funded Long Term Ecological Research 

(LTER) Network. The region has been impacted by many large disturbances throughout the past 

8 decades. Two major floods in 1964 and 1996 wreaked havoc on HJA infrastructure and moved 

enormous amounts of sediment and large wood, triggering many debris slides and flows. In 

2020, the Holiday Farm Fire touched the edges of the forest, burning parts of the lower 

experimental watersheds.  

 

Ongoing work at the HJA focuses on interactions between different parts of the forest (climate, 

hydrology, ecology, disturbance impacts). The region was mapped with aerial LiDAR in 2008 

and 2020, generating bare Earth Digital Elevation Models (DEM) for each data acquisition (1m 

resolution).  

 

Objectives 

1. Utilize ArcGIS Pro to create shapefiles for the watersheds of interest using watershed 

delineation workflow. 

2. Use zonal statistics to extract topographic and hydrologic metrics from each watershed. 

3. Evaluate the difference in data derived from DEMs created using LiDAR collected in 

2008 and 2020.  

4. Utilize change analysis to calculate change in elevation as a proxy measure of relative 

erosion rate.  

5. Utilize linear regression modelling to determine if measures of topography and relative 

erosion rates can estimate the spatial variability in mean annual suspended sediment 

yield.  
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Methods and Processing  

This analysis relied heavily on ArcGIS Pro tools to develop shapefiles for previously ungauged 

and unmeasured basins in the HJA. To create the shapefile, the DEM of elevation created from 

the 2020 flight acquisition (hereafter DEM20) was uploaded to GIS. DEM20 was chosen for 

watershed delineation because it has a much higher point cloud density than the DEM created in 

2008 (hereafter DEM08). Fig 4 shows the steps that were applied to the DEM and resulting 

rasters to delineate the watersheds of interest.  

 

 
Fig 4. Steps used in ArcGIS Pro to delineate watersheds. 

 

However, this processing failed to successfully delineate any watersheds. The issue stems from 

the road network present at the HJA, which at 1m resolution is assumed to be a flow path for 

water by GIS (Fig 5). This resulted in flow accumulation lines flowing down the roads, contrary 

to reality. The roads at the site were build with good drainage and frequent sluice pipes. They are 

also built with a slight slope so that water continues flowing over them and down the hillslope.  
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Fig 5. This snapshot highlights how the roads led to artificial rivers being formed by GIS 

software.  

 

To navigate this issue, a resampling was completed on the DEM to see if a coarser resolution 

would remove the influence of the roads while retaining general valley and terrain characteristics 

to still delineate watersheds. This was completed for 5, 10, 20 and 30m. The 30m resolution 

DEM was found to have a good balance of meeting these two objectives. Fig 6 shows the new 

steps used to delineate the watersheds.  

 

 
Fig 6. Steps used in ArcGIS Pro to delineate watersheds and avoid the artificial influence of 

roads. 

 

Aside from resampling the data, the other step that required fine tuning was setting the flow 

accumulation limit. Values spanning a long range were tested until the streams generally lined up 

with our field knowledge of the site and the original stream layer developed with DEM08. The 
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original stream layer could have been used for this analysis, but it has a few glaring errors where 

it has placed streams in the wrong location. In general, it is a good reference and was an easy 

way to assess the new stream layer, shown in Fig 7.  

 

 
Fig 7. The stream layer created as part of the watershed delineation process in the HJA.  

 

There are four primary watersheds of interest in this catchment that were up to this point, never 

delineated: McRae Creek, Cold Creek, Longer Creek, and Nostoc Creek. These creeks are of 

much interest to our research group as they all have very different characteristics, as outlined in 

Table 1. 

 

Watershed Order Vegetation Geology Topography 

McRae Creek 

(MC) 

4th order stream Primarily old 

growth, some 

legacy 

harvesting in 

small patches 

Ash-flow tuffs 

and lava 

flows, 

unglaciated 

Variable 

slope, thick 

colluvial 

deposits 

Longer Creek (LC) 3rd order stream Old growth Ash-flow tuffs 

and lava 

flows, drains 

to glaciated 

valley 

Variable 

slope, 

drains 

active 

Earthflow 
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Nostoc Creek (NC) 3rd order stream Primarily old 

growth, some 

legacy 

harvesting in 

patches 

Ash-flow tuffs 

and lava 

flows, 

glaciated 

Variable 

slope, 

drains long, 

inner ridge 

Cold Creek (CC) 2nd order stream Old growth Lava flows, 

drains to 

glaciated 

valley 

Steep slope, 

spring fed 

perennial 

stream 

Table 1. Watersheds that we are trying to delineate and their characteristics.  

 

Two of these watersheds (CC, LC) performed well in their delineations. Nostoc Creek had one 

problem. If the pour point was placed too close to the confluence of the stream with Lookout 

Creek, it delineated the watershed to include upstream Lookout. Instead, the pour point was 

moved upstream until a close approximation of drainage area was achieved. This is highlighted 

in Fig 8, where the large white delineation is the entirety of upper lookout upstream of Nostoc 

Creek. The light green delineation is the approximation of Nostoc after moving the pour point.  

 

 
Fig 8. Two delineations overlayed on the HJA DEM. These were both produced by placing a 

pour point closer to the confluence of Lookout Creek (white) and further upstream Nostoc Creek 

(green). 

 

Once the approximation was produced, the vertices were editing manually by following the 

contours to complete the delineation (Fig 9).  
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Fig 9. Manually editing shapefile vertices in GIS to complete the watershed delineation of 

Nostoc Creek. 

 

These steps allowed a complete delineation of three of the watersheds (LC, NS, CC). McRae 

Creek failed to produce a watershed no matter where the pour point was placed. It is unclear 

what was leading to the failure of the GIS tool. Instead of automatic delineation, we are 

including a version of McRae delineated manually using a 10m contour from previous work. 

Finally, we added in the shapefile containing experimental watershed catchments and combined 

the shapefiles into a single file.  

 

Topographic wetness index (TWI) was calculated across the rasters as well. TWI is a measure of 

steady-state wetness and is calculated with the following equation: 

 

TWI = ln(SCA/tanb) 

 

Where SCA is the specific catchment area, or the contributing area per unit contour, and b is the 

slope in radians. We hope TWI will provide a topographic metrics with hydrologic ramifications, 

providing information about how much of the rock surface is subjected to erosion by the forces 

of water movement.  

 

To estimate relative erosion rate in each catchment, raster calculations were used to subtract 

DEM20 from DEM08. The resulting raster contained the difference in elevation at each cell. The 

literature suggested that anything under ~2m was within error for LiDAR in a forested catchment 

(Edson and Wing, 2015). Everything less than 2m was given a value of zero, leaving total loss in 
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elevation at every cell in the raster. An example of a location where there was loss is shown in 

Fig 10. 

 

 
Fig 10. The results from the change analysis in a section of Mack Creek, showing loss of 

elevation in red. 

  

The last step in ArcGIS was to extract our topographic and erosion rate metrics. The provided 

raster files containing slope and aspect were added. Zonal statistics were used to extract metrics 

from each catchment, as determined by the shapefile. This was performed with raster files and 

TWI calculations from the 2008 and 2020 LiDAR acquisitions as well as the raster of change in 

elevation. 

 

Once the metrics were extracted for each watershed, they were evaluated using linear regression 

models to determine the best model for predicting mean annual SSY. The data used for this part 

of the analysis is shown in the Fig 11 (see data sources for more information). The metrics were 

also compared between DEM08 and DEM20 to see how they differ. This portion of the analysis 

was completed in Microsoft Excel. 
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Fig 11. The suspended sediment data used for the linear model analysis (Bywater-Reyes et al., 

2018). 

 

Results 

The results of the delineations for LC, NC, CC, and MC are shown in Fig 12 and the four new 

watersheds combined with the old shapefile is shown in Fig 13. The latter figure also shows a 

starker hillshade, to highlight the elevation gradient between and within the catchments. 

 

 
Fig 12. The results of the four watershed delineations in the HJA.  
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Fig 13. A map showing all catchments of interest, with elevation gradient shown in a hillshade 

(red = highest points, white = lowest).  

 

Most of our work in the past has been completed using metrics derived from DEM08. The recent 

addition of DEM20 to our toolbox begs the question: how much do the DEMs differ? Table 2 

below shows the results of correlating the metrics between each DEM. 

 

Metrics R2 

Slope 0.999 

Surface Roughness 0.998 

Drainage Area 1.00 

Topographic Wetness Index 0.987 

Mean Elevation 1.00 

Table 2. Topographic metrics derived from two DEMs were compared to see how much variance 

existed between the two models. 

 

All of our metrics were almost a 1:1 match between the two DEM data sources. For the purposes 

of this analysis, this is close enough to assume the DEMs both provide a good assessment of 

topographic metrics. For the remainder of this analysis, metrics from DEM20 will be utilized. 

The metrics used for the linear modelling are shown in Table 3. These were tabulated for 
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watersheds feeding into the linear model – the HJA experimental watersheds. The final column, 

the sum of the change in elevation (ΣΔz), is the result of the change analysis – our proxy 

measure of relative erosion rate. 

 

Watershed Drainage Area 

(m2) 

Z Mean 

(m) 

Slope 

Mean 

Slope Std 

Dev 

(Roughness) 

Mean 

TWI 

Max 

TWI 

ΣΔz (m) 

1 1011651 708 33.17 8.97 5.37 12.64 362 

2 799592 748 31.75 9.63 5.61 12.63 259 

3 954529 763 31.16 11.26 5.63 16.33 0 

6 120071 948 17.13 6.47 6.23 9.73 0 

7 124146 1003 18.17 6.07 6.19 9.56 17 

8 160320 1075 20.1 8.87 6.19 10.4 2 

9 71629 558 34.45 5.23 5.62 8.74 18 

10 114454 592 32.15 8.44 5.22 8.96 12073 

Mack 5786605 1193 27.47 9.27 5.9 14.5 76860 

Lookout 62403044 979 24.42 11.18 6.18 19.48 362 

Table 3. Topographic metrics and proxy erosion rate for each experimental watershed.  

 

The results of the linear modelling are shown in Table 4. A selection of model setups is shown, 

but in total over 20 variable combinations were analyzed. 

 

Model # Y X1 X2 X3 R2 p-value 

1 SSY Max TWI - - 0.860 <0.05 

2 SSY DA - - 0.695 =0.05 

3 SSY ΣΔz - - 0.702 =0.05 

4 SSY Roughness - - 0.462 =0.05 

5 SSY MaxΔz - - 0.756 >0.05 

6 SSY Max TWI ΣΔz - 0.883 >0.05 

7 SSY Max TWI DA - 0.888 >0.05 

8 SSY Max TWI ΣΔz DA 0.882 >0.05 

9 SSY Max TWI ΣΔz Roughness 0.864 >0.05 

Table 4. The results of a selection of model runs. Green models indicate statistically significant 

p-values, yellow indicate inconclusive results, and red indicates poor statistical significance.  

 

Based on the results of this analysis, it was decided that the top three models would be used to 

estimate mean annual SSY in the ungauged catchments delineated for this analysis. The 

topographic metrics used in the models for these four catchments are shown in Table 5. 
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Watershed Max TWI Drainage Area 

(m2) 

ΣΔz (m) 

Nostoc Creek 14.44 1919700 13580 

Longer Creek 15.46 2640600 19091 

Cold Creek 11.81 696600 4485 

McRae Creek 16.59 15577914 15819 

Table 5. Topographic metrics for predicting mean annual SSY in ungauged basins using linear 

models. 

 

The results of the final model runs are shown below in Table 6. This shows the results of the 

modelling for the ungauged basins as well as the experimental watersheds.  

 

Predictor → Max TWI Drainage Area ΣΔz  

Watershed 

Predicted SSY 

(t/km2) 

Predicted SSY 

(t/km2) 

Predicted SSY 

(t/km2)  

Nostoc Creek 90.41 37.86 66.08  

Longer Creek 108.73 40.21 80.41  

Cold Creek 43.17 33.89 42.43  

McRae Creek 129.03 82.28 71.90 

Actual Mean 

Annual SSY 

(t/km2) 

1 53.94 34.91 31.71 97.1 

2 50.17 34.22 31.44 17.7 

3 127.77 34.73 35.10 108.2 

6 0.05 32.01 30.77 5.5 

7 5.62 32.03 30.77 2.5 

8 32.75 32.14 30.81 5.3 

9 -15.75 31.85 30.77 3.3 

10 -4.08 31.99 30.82 10.3 

Mack 95.08 50.44 62.16 67.7 

Lookout 203.40 234.56 230.61 231.3 

Table 6. The results of the top three linear models. Model input data is shown on the far right for 

the experimental watersheds to compare results. Watersheds delineated as part of analysis are 

bolded. 

 

It is clear from these results that topography alone is not enough to predict mean annual SSY in 

these small catchments. The models performed the best in the largest catchments, Mack and 

Lookout Creeks. In the smaller creeks the results were poor and variable. Max TWI, the 

strongest predictor in the models, overestimated some sites, underestimated others, and 

calculated negative SSY in the two smallest catchments. Drainage area and ΣΔz both gave 

similar results for all small catchments. The poor results for the smallest catchments could be 

driven by many things. First, the data used to calculate SSY was calculated with the entire 

available record for all sediment data, which is different for every watershed. The lack of 

temporal synchronicity can skew results as short events can move a lot of sediment. The HJA has 

a history of large disturbance events that have moved significant quantities of sediment and 

restructured channels. The floods of 1964 and 1996 are examples of this (Goodman et al. 2023).  
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Another cause for potential error is the lack of a quantification of past harvesting and 

underlaying bedrock. Multiple attempts were create a scale of relative difference between the 

sites, but the exercise failed to produce a good relationship with SSY.  

 

The change analysis may still be a good measure of relative erosion rate in a catchment, but the 

addition of other information may also be needed to provide predictions of sediment yield. 

Discharge has a proven relationship with SSY, but not every catchment has gauging systems or 

the capital to invest in them. Potential error in this portion of the analysis could be driven by 

higher than assumed error in the bare earth DEMs derived from LiDAR in a heavily forested 

area. This would have led to a lot more uncertainty in the change values.  

 

The results may also have been skewed by the range of catchment sizes used in the study. The 

ability for these metrics to perform well at predicting SSY in the larger catchments may mean 

that the model needs more data.  

 

Lastly, we used a linear model for this analysis. Linear models, while powerful and easy to use, 

do not always perform well when working with complex interactions. More complex models that 

consider other functions and the inclusion of time series data would likely find more reliable 

predictors.  

 

Conclusions 

Predicting mean annual suspended sediment yield is complex. While LiDAR derived metrics of 

topography may be able to help make these predictions at large scales, small scale modeling 

remains challenging. Topography alone cannot predict the interactions occurring at the 

headwater scale that control sediment movement.  

 

Topographic wetness index, drainage area, and our proxy measure of erosion rate were all able to 

explain the variance in our data using linear modelling. Topographic wetness index represents a 

measure of steady-state wetted surfaces and should be a good proxy in lieu of discharge data. We 

hypothesize that TWI is able to explain variance well because it relates to the amount of water 

flowing overland in a catchment. If a catchment has more water flowing over more material, this 

should result in a higher sediment yield.  

 

Using change analysis between multiple aerial LiDAR acquisitions provided a measure of 

erosion rate that was also able to explain the spatial variability in mean annual SSY. not a strong 

predictor of SSY at all scales. 

 

The promise of the results in the larger catchments could indicate a need for further research and 

the inclusion of geologic information and disturbance legacies to truly understand sediment flow 

in these steep volcanic catchments. Further analysis will be necessary with the possible including 

of a wider range of catchment types and the use of more complex modeling. 

 

Next Steps 

One thing worth note is that the old shapefiles of the experimental basins does not perfectly 

match up with the new stream network in every location. Noticeable variations exist in 

watersheds 6, 7, and 8. To correct this, we will first check further resampling resolutions between 
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20m and 30m to balance landscape resolution with road resolution for flow direction. This way, 

we might find a better resolution capable of being used to determine flow. The next step will be 

to visit the site and ground truth the layer in the field. If the new stream network is correct, we 

will need to then delineate the old experimental watersheds again to correct them.  

 

My dissertation is focusing on understanding landscape/geology/streamflow interactions in the 

HJA. I am trying to understand water flow paths and catchment storage potential using water 

stable isotopes and other tracers. The metrics derived from this project will allow me to 

investigate storm response at the catchment scale as it relates to physiography. I will also use 

these metrics within Spatial Stream Network models to investigate drivers of spatial variability 

in isotope ratios in surface water.  

 

Data Sources 

Hydrologic Data: https://andlter.forestry.oregonstate.edu/data/abstract.aspx?dbcode=HF004 

 

Utilized mean annual SSY as calculated by Bywater-Reyes et al., 2018. They utilized long term 

SSY data in the experimental watersheds and calculated mean annual values from the long term 

data. Samples are collected in composite three weeks samples at each watershed, in addition to 

sporadic storm samplings at various watersheds. All of the data was provided by the HJ Andrews 

Experimental Forest (Johnson, 2019). 

 

LiDAR DEM Data: https://andrewsforest.oregonstate.edu/data/aerial 

 

Titles – GI010 (2008 DEM) (Spies, 2016) 

Data type: Raster 

Projection: UTM Zone 10  

Units: Meters  

Resolution: 1m 

We also have access to the 2020 DEM, though it is still in the process of being added to the 

database. It was created using the same projection and units as the 2008 DEM. The 2020 DEM 

created by David Bell (USFS). 

Raster files provided for each DEM: Elevation, Slope, Aspect, Hillshade 
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