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Introduction 
 

Background 

 

Landslides present a significant risk to the safety, reliability, and robustness of human 

infrastructure and operations that occupy their geographic space. Landslides occur when the 

gravitation forces acting downslope exceed the strength, or frictional forces of the soils/materials 

that compose the slope. Common triggers of landslides include: heavy precipitation, changes in 

ground water, erosion at the base of the landslide, earthquakes, and human disturbances.  

Many infrastructures such as road networks traverse landslides. Highway 101 traverses nearly 20 

miles landslides in Oregon alone (ODOT, 2014). Repairing existing high priority landslides 

would cost an estimated $592 million determined in a recent ODOT public report (ODOT, 

2012). This cost only accounts for repairs of sites that have 1) been identified and 2) been 

assigned a high priority. It is also worth noting that repairs on large bodied landslide are rarely a 

permanent fix, rather techniques often used, such as drainage installation, retaining walls, and 

buttressing often begin to fail over time often 15 to 20 years after they were installed.  

Given that many of the landslides on the Oregon Coast are “coastal landslides” (the toe of the 

landslide occurs in the coastal zone), climate change may be an additional factor effecting the 

rate, movement and impact of these landslides. A recent study by Leshchinsky et al, 2019 

showed a correlation between the erosion rate and displacement rate of simulated coastal 

landslides as shown in Figure 1. The exact increase in horizontal movement varied depending on 

the geometry and assumed frictional strength of each landslide but in some cases a 10% increase 

in erosion rate lead to a 30% increase in landslide displacement (Leshchinsky et al, 2019). 

Due to the factors outlined above, including: the high cost of remediation efforts, failing repairs, 

and potential increase in landslide displacement due to climate change identifying, it is 

imperative that transportation agencies such as ODOT (Oregon Department Of Transportation) 

create frameworks to actively monitor these active landslides in order to prioritize remediation 

efforts.  

 



 

Figure 1: Modeled landslide movements for 3 different landslide over the next 20 years for 

varying baseline erosion scenarios. Taken from Leshchinsky et al, 2019. 

 

 

 

 

 



Objectives 

 

The objectives of this research is to create a monitoring framework that can be implemented 

along an important corridor such as HWY 101 to identify and monitor risk and hazard. A 

successful monitoring framework will consider the following factors: 

 

1. Consistent 

a. In order to successfully compare the risk factors associated at various sites along 

the coast, the created monitoring frameworks needs to evaluate these sites on 

consistent basis so that a fair and even comparison can be conducted. 

2. Quantitative 

a. Due to the scale and number of sites, the created monitoring framework must be 

based on quantitative comparisons to ensure consistency and allow for the best 

engineering decisions to be made. 

3. Implementable 

a. The created monitoring framework must be implementable across multiple sites. 

To achieve this, the monitoring framework must be affordable both in terms of 

cost and in terms of time. 

 

This class report will consist of an evaluation of a potential semi-automated technique for 

extracting landslide displacements known as PIV (Particle Image Velocimetry). 

 

Particle image Velocimetry 

 

PIV (particle image velocimetry) is a method of flow visualization commonly used to derive 

velocity measurements of particles within a moving body of air or fluid in lab experimentation 

(such as a wind tunnel). By taking repeated images from the same location particles can be 

tracked as they move across the camera using image correlation techniques to identify common 

patterns and features across images thereby allowing particles to be tracked through time. Given 

that digital images are a form of raster these techniques can be applied to other raster products 

assuming: 1) The images occupy the same space, that is they are geo-referenced. 2) The raster 

cell size represents the same area in both raster datasets. Given this, accurately geo-referenced 

terrestrial lidar derived DEMs make a potentially suitable candidate for this technique which will 

be explored in this final project. 

PIV uses a 2D image cross-correlation technique, a simplified demonstration of this technique is 

illustrated in Figure 2. A pixel (or cell) and its neighboring pixels are selected from one of the 

raster datasets often as a 3x3 or 5x5 window. This “window” of pixels is then iteratively 

compared to every possible “window” of pixels from the compared raster dataset. To compare 



these windows, the 2D cross-correlation of these windows is calculated using pixel values 

(elevation, RGB, intensity etc) using matrix math with the following formula: 
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Where: 

n = number of pixels 

x = x coordinate 

y = y coordinate 

f = matrix or window 1 

t = matrix or window 2 

 

The cross correlation comparison between the two windows that yields the highest correlation 

value is determined to be the same pixel in each image and thus the horizontal displacement 

between the two locations can be calculated.  

 

Figure 2: Visual illustration of the 2D image cross correlation process. Each color represents a 

unique pixel value. In example A the window does not match the window of raster two so it 

calculates a low correlation value. In Example B the window does match the window of raster two, 

so it calculates a high correlation value, this would be perceived as a match.  



Study Site 

 

To test this analysis out, a landslide in southern Oregon was chosen for analysis. During March 

of 2019, this site experienced 130ft of displacement over the period of 1 week, during this time, 

repeat terrestrial lidar surveys (TLS) where carried out capturing the displacement of the road 

while the landslide was actively moving. This data was chosen for use for the following reasons: 

1. The TLS setups occurred in the same locations giving a consistent field of view. 

2. The displacement of the road was rigid, that is there was little deformation that may 

obscure results. 

3. The displacement was consistent across the small area, so accurate statistics of 

comparison could be computed. 

4. Good point spacing was collected across this section with little in the way of data 

occlusions.  

Figure 3 shows imagery map of the site section that was chosen to be used and Figure 4 shows 

the RGB colored point cloud of that section collected using the TLS. 

 

 

Figure 3: Imagery map of the test site, the black polygon highlights the area used during 

the experiment. 

B) 



 

Figure 4: Point cloud of the test site, the black polygon highlights the area used during the 

experiment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Methodology 
 

The first step in this analysis was to take the georeferenced terrestrial lidar derived point clouds 

and create a validation dataset. To do this, the raw georeferenced point cloud was loaded into a 

point cloud viewing software and displacements of similar objects were manually measured as 

shown in Figure 5. Figure 6 shows all of the manually measured displacements measured at the 

test site, 20 measurements were made in total. 

The next step was to remove the non-ground (vegetation and noise) points from the point cloud. 

To do this, large pieces of noise and vegetation were first removed using manual cropping, and 

then the point cloud was ran through a vegetation filter algorithm outlined in Olsen et al, 2015 to 

achieve a bare earth model of the point cloud. Next, a DEM (digital elevation model) was created 

from the point cloud using the bin n grid software created by Michael Olsen. A cell size of 0.1m 

was chosen as this allowed a for high resolution analysis while limiting the number of holes 

present in the DEM surface. Similar rasters where also created using the lidar intensity (strength 

of return) as the raster pixel value.    

Next, the DEM was taken into ArcGIS pro and a hillshade model was created using the DEM’s 

created in the step above. A high pass Gaussian filter was then applied to both the DEM and 

intensity raster using the code shown in Appendix A. This was applied in order to exaggerate the 

changes in elevation/intensity. 

PIV analysis was conducted on each raster type comparing the each of raster types one by one. 

To do this the open source software PIVLAB was used. A mask was set around the boundary of 

the DEM to limit erroneous edge effects and the following settings as highlighted below were 

used. These settings were chosen for numerous reasons including: the pixel size of the raster, the 

observed displacement, and empirical experimentation.  

These settings were maintained for each raster type experiment in order to keep each comparison 

consistent. Once the PIV analysis was conducted, the resulting displacements for each window 

size were exported as an asci text file and converted displacement in pixels (u & v) to total 

displacement magnitude and orientation using the python script shown in Appendix B. Basic 

statistics were calculated to compare the results of each raster type with the results from manual 

extraction. 

Table 1: PIV LAB settings used during this experiment. 

Pass # Interrogation 

area 

Sub pixel 

estimator 

Algorithm type 

1 64 Gauss 2x3-point FIT window 

deformation 

2 32 Gauss 2x3-point FIT window 

deformation 

3 16 Gauss 2x3-point FIT window 

deformation 



 

Figure 5: Example of manual measurement of a displaced object between two point clouds 

derived from different lidar survey epochs (before and after landslide failure).  

 

Figure 6: Distances found using manual extraction methods across the test site. Distances 

labeled are 3D distances and were transformed into 2D distances for use in this experiment.  



Results and Discussion 
 

Across the test site, using the manual extraction method there was a mean displacement 

magnitude of 0.854m (0.039m std dev) with a mean orientation (from north) of 216.5° (8.0° std 

dev) with a total of 20 measurements made. Table 2 shows the statistical results using the five 

different raster types. The hillshade raster had the closest results to the manual extraction method 

with a mean displacement and orientation of 0.868m (∆ +0.014m) and 215° (∆ -1.5°) 

respectfully. These results are showed graphically in Figure 7. In comparison, the DEM raster 

types (with and without the high pass gaussian filter) over predicted the displacement with 

results of 1.006 (∆ +0.152m) and 1.007 (∆ +0. 153m) respectfully. The intensity raster types, 

with and without the high pass gaussian filter, under predicted the displacement with results of 

0.718m (∆ -0.136m) and 0.638m (∆ -0.216m) respectfully. 

 

Figure 7: Plot showing the displacement vectors from using the PIV algorithm on two hillshade 

rasters at the site overlaid on one of the hillshades. Vectors (green arrows) are drawn to scale. 

 

These results show the limitations of this technique when using a DEM raster applied to flat 

surfaces (surfaces with a low slope value). When a surface is flat the numerical values that make 

up a DEM for example stay constant over a larger window size. This requires a larger window 

size to be used for the analysis and thus a greater displacement to take place in order to 

accurately measure the displacement using a PIV technique. The intensity raster likely failed due 

to a similar reason (pixel values remaining consistent over a larger window) due to the test area 

being composed of a single material (asphalt). The success of the hillshade raster type likely 

stems from the subtle local changes in slope causing changes in the shadow. Due to the cracks in 

the road at this site, this was likely enough to be picked up by the algorithm, by looking in 

smoother areas of the test site you can see where even this raster type began to struggle.   



Table 2: Statistical results (mean and standard deviation) of the displacement and 

orientation using the five different raster types in comparison to the manual extraction 

method. 

Method Mean 

Displacement (m) 

Displacement 

(Std dev m) 

Mean 

Orientation 

(from north) 

Orientation 

(from north) 

(Std dev m) 

Manual Extraction 0.854 0.039 216.5 8.0 

DEM 1.007 0.503 211.7 94.2 

DEM (high pass 

gaussian  filter) 

1.058 0.485 208.6 70.67 

Hillshade model 0.868 0.142 215.7 13.5 

Intensity 0.638 0.667 216.6 71.4 

Intensity (high 

pass gaussian  

filter) 

0.718 0.502 232.4 54.4 

 

 

Conclusion 
 

In conclusion, the PIV 2D cross correlation technique demonstrated above shows potential use 

when applied to areas with high/varied slope values. Raster types directly display the local slope 

value (such as a slope map, or hillshade) show the most promise and performed the best in this 

analysis. RGB raster types, such as orthomosaic photographs from photogrammetric based UAS 

(unmanned airborne systems) may provide additional valuable data that can be used in flat 

textured areas. A potential hybrid approach using a slope based lidar derived raster and an RGB 

based photogrammetric UAS derived rasters may provide a solution allowing for a data fusion 

approach by utilizing the strong characteristics of both systems.  
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Appendix A 
 

% read 16-bit rasters 
Raster1 = 

'F:\CoastalProject\Hooskanaden\Analysis\pivLab\CC_dem\baseline_16bit.tif'; 
Raster2 = 

'F:\CoastalProject\Hooskanaden\Analysis\pivLab\CC_dem\moved_16bit.tif'; 
Raster13m = imread(Raster1); 
Raster23m = imread(Raster2); 
% create 8-bit highpass filtered images of the original 16-bit images 
h = fspecial('gaussian',5,5); 
Raster1_hp = double(Raster13m)-(imfilter(double(Raster13m), h, 'replicate')); 
low = prctile(Raster1_hp(:), 1); 
high = prctile(Raster1_hp(:), 99); 
Raster1_hp = uint8(mat2gray(Raster1_hp, [low high])*255); 
imwrite(Raster1_hp, 

'F:\CoastalProject\Hooskanaden\Analysis\pivLab\CC_dem\baseline_hp.tif'); 
Raster2_hp = double(Raster23m)-(imfilter(double(Raster23m), h, 'replicate')); 
low = prctile(Raster2_hp(:), 1); 
high = prctile(Raster2_hp(:), 99); 
ncalm3m_hp = uint8(mat2gray(Raster2_hp, [low high])*255); 
imwrite(Raster2_hp, 

'F:\CoastalProject\Hooskanaden\Analysis\pivLab\CC_dem\moved_hp.tif'); 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix B 
 

import pandas as pd  

from matplotlib import pyplot as plt 

import numpy as np 

import os 

file = 'PIVlab_V7_output.txt' 

os.chdir('E:\\andrew\\CLASS\\Winter2020\\CE560-

AdvancedGIS\\Final\\pivAnalysis') 

df = pd.read_csv(file) 

df = df.dropna() 

df['pxDistance'] = np.sqrt((df['u']*df['u'])+(df['v']*df['v'])) 

df['ditanceMeters'] = df['pxDistance']*0.1 

 

meanDistance = df['ditanceMeters'].mean() 

minDistance = df['ditanceMeters'].min() 

maxDistance = df['ditanceMeters'].max() 

stdDistance = df['ditanceMeters'].std() 

medianDistance = df['ditanceMeters'].median() 

print('mean displacement accross the area is: ', meanDistance) 

print('standard deviation of displacements accross the area is: ', std

Distance) 

 

df['orientation'] = np.arctan2(df['u'], df['v']) * 180/np.pi 

df['orientation'] = -df['orientation']+180 

 

meanOrientation = df['orientation'].mean() 

minOrientation = df['orientation'].min() 

maxOrientation = df['orientation'].max() 

stdOrientation = df['orientation'].std() 

medianOrientation = df['orientation'].median() 

print('mean orientation accross the area is: ', meanOrientation) 

print('standard deviation of orientations accross the area is: ', stdO

rientation) 

 
 


