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Introduction  
Catchment subsurface storage provides water to streams during periods of low 
precipitation and creates a time-lagged buffer that absorbs and reduces storm-induced 
runoff. Quantifying the total storage of an aquifer continues to remain a challenge, but 
significant progress has taken place to assess fluctuations in mobile and dynamic 
storage (McGuire and McDonnell, 2006; Staudinger et al., 2017). Mobile storage is the 
water within an aquifer that can move between pore spaces in the substrate. Dynamic 
storage includes the water that directly influences stream processes (including water 
involved in evapotranspiration) (Staudinger et al., 2017). While the influence of storage 
is recognized, the temporal and spatial dynamics that drive its variability are not well 
understood. The variables that affect subsurface storage can be separated into two 
categories: inherit and external characteristics (Heidbüchel et al., 2013). The inherit 
variables are the physical attributes of the catchment, such as curvature, soil type and 
depth, surface roughness, and forest age and composition. The external variables 
include variations in the inputs to the system, such as precipitation intensity, duration, 
and type. The overall goal of this research is to examine groundwater storage dynamics 
in several small, temperate watersheds. We expect that the temporal variability of 
storage will relate climatic changes, while the spatial variability of storage will relate to 
the physical attributes of the catchments. GIS based analysis may help to determine 
what combinations of physical attributes determine the relative volume of subsurface 
storage from catchment to catchment. 
 
In addition to the spatial data, we turn our attention to the long-term 25-year record of 
hydrometric and meteorological records and provide an estimate of dynamic storage 
using a water balance approach (Sayama et al., 2011). We acknowledge that the 
evapotranspiration estimates have limited accuracy, so we also examine water 
partitioning by isolating the two unknowns (storage and evapotranspiration) and 
examine changes in runoff coefficient (area weighted total annual discharge/ total 
annual precipitation) across the landscape and through time as a metric to track 
variability in water partitioning. Each watershed has a unique total average storage and 
average annual runoff coefficient. 
 
Using these two approaches (spatial analysis and examining the hydrometric record) we 
attempt to learn more about groundwater storage dynamics through time and space. 
This project seeks to address the role of the spatial, inherent characteristics in driving 
the variability in groundwater storage we see in several temperature catchments over 
an averaged 25 year record.  
  
Objective  
This study incorporates several spatial datasets to understand storage dynamics at the 
catchment scale, with the ultimate goal of assessing the vulnerability of groundwater 
storage to climatic induced changes (external characteristics, i.e. changes in type, 
intensity, and timing of precipitation), and the role of inherit characteristics (i.e., timber 
harvesting, slope, and surface roughness) in minimizing that vulnerability. Several 
spatial analyses will be performed and used to calculate the integrative moisture index 
of the small watersheds in the H.J. Andrews Experimental Forest. The integrative 



moisture index has primarily been used to understand potential available soil water for 
plants. This index has successfully been related to forest compositions, as different 
forest types require more or less water (Peters et al., 2010; Iverson et al., 2004; Iverson 
et al., 1997). The index is a function of the aspect, flow accumulation, curvature, and 
available water capacity of the soil columns. This project uses this same index in a new 
setting to determine if similar variables are driving soil moisture storage in the Western 
Cascades. 
  
Site Description  
The H.J. Andrews Experimental Forest (HJA) is located in the Western Cascades in 
Central Oregon, close to the town of Blue River (Fig. 1). The Cascades produce a rain 
shadow effect in this area, and because of this, HJA experiences large amounts of 
seasonal rainfall, averaging around 220 cm a year. The precipitation has a significant 
seasonal pattern with the majority of the precipitation occurring between October and 
April during long-duration, low intensity frontal storms (Swanson and Jones, 2002), and 
extremely sparse precipitation occurring in the summer months. The high elevations of 
HJA (>800m) develop seasonal snowpacks that can persist from November to late April 
(CenMet) or June (VanMet, UplMet) (Swanson and Jones, 2002; Harr and McCorison, 
1979; Perkins and Jones, 2008). HJA incorporates several snow transition zones, 
leading watersheds to be located in the transient (WS 09, WS 10), transient to seasonal 
(WS 01, WS 02, WS 03) to seasonal (WS 06, WS 07, WS 08) snow zones within the 
Lookout Creek and Blue River basins (Jones and Perkins, 2010). 
 
The geology of HJA is predominately igneous (Fig. 2) with formation positions largely 
following elevation lines. Areas lower than 760m are underlain with hydrothermally 
altered volcanoclastic rocks Oligocene to early Miocene in age (Little Butte Formation: 
massive, reddish and buff-colored tuffs and breccias derived from mudflows and 
pyroclastic flows). The middle to late Miocene Sardine Formation occurs between 760-
1200m and consists of two units: The lower unit is similar to the underlying Little Butte, 
except less altered, consisting of greenish tuffs and breccias and welded and non-
welded ash flows. The higher elevation unit is andesitic lava flows (Swanson and 
James, 1975). The Pilocascade Formation, is composed of Pliocene aged basaltic and 
andesitic lava flows. The southeastern portion of the forest, much of which incorporates 
the Mack Watershed, is riddled with glacial landforms (cirques and U-shaped valleys) 
and glacial till is exposed at the surface (Swanson and Jones, 2002). Steep valley walls 
now frequently experience debris slides. Several areas throughout the forest are 
subjected to deep-seated (>5m thickness) and slow moving (generally <1m/yr) 
earthflows resulting in irregular terrain with slopes of 5-10° (Fig. 3) (Swanson and 
Swanston, 1977; Pyles et al., 1987). 
  
Data presented in this study were collected from several watersheds within HJA: 
Watersheds 02, 03, 07, 08, Mack, and Lookout (Fig. 4). The watersheds differ in 
physical attributes and have experienced different forest management applications. 
 



 
Figure 1: Location map of the H.J. Andrews Experimental Forest. Figure from Heaston 
et al., 2017. 
 



 
Figure 2: Geological map of the H.J. Andrews Experimental Forest. 
 

 
Figure 3: Slope stability map. 



 
Figure 4: Watershed location map. Watersheds are colored by their forest management 
history where brown indicates a past clearcut, yellow indicates patch cuts, and green 
indicates that it is a reference, old growth area. 

 
Data Description 
To separate out the influence of climate and the influence of physical attributes, data 
were used from the small catchments throughout HJA (Fig. 4), as these catchments are 
variable in physical attributes (forest management history, slope, lithology, and area) but 
experience similar climatic inputs. 
 
Datasets included:  
1. 1m resolution Lidar derived DEM (Raster. Datum: NAD 1983) 
2. Gauged watershed boundaries shapefile (Vector. Datum: NAD 1983) 
3. Soil survey shapefile (Fig. 5) (Vector. Datum: NAD 1983) 
 



 
Figure 5: Soil survey shapefile data. 
 
Methodology  
Integrated Moisture Index 
Much of the methodology associated with determining the integrated moisture index 
(IMI) focused on creating raster files from the digital elevation model, and then 
manipulating these rasters so that we could weight them appropriately when calculating 
the index. All of the methodology steps are outlined graphically (Fig. 6) and explained in 
more detail below. 
 



 
Figure 6: Graphical representation of the necessary steps to calculate the integrated 
soil moisture index. 
 

1. Fill the Lidar derived 1m grid cell digital elevation model (gi010010_fill) 
2. Produce flow direction raster (FlowDir) from the filled DEM (gi010010_fill) 
3. Produce flow accumulation raster (FlowAcc) from the flow direction raster 

(FlowDir) 
4. Standardize the output of the flow accumulation raster (FlowAcc) from 0 to 100 

using the raster calculator (Fig. 7) 
 



 
Figure 7: Standardized flow accumulation raster. 
 
5. Define streams (Streams) from the flow accumulation raster (FlowAcc) using the 

raster calculator (here a stream threshold of 20,000 was assigned) 
6. Produce hillshade raster (Hillshade) from the filled DEM (gi010010_fill) using the 

spatial analyst toolbox and, using the raster to float tool, ensure all values are 
floats 

7. Standardize the output of the hillshade raster (Hillshade) from 0 to 100 using the 
raster calculator (Fig. 8) 

 



 
Figure 8: Standardized hillshade raster. 
 
8. Produce aspect raster (Aspect) from the filled DEM (gi010010_fill) 
9. Calculate curvature (Curvature) from the aspect raster (Aspect) 
10. Standardize the output of the curvature raster (Curvature) from 0 to 100 using the 

raster calculator (Fig. 9) 
 



 
Figure 9: Standardized curvature raster. 
 
11. Using the soil vector shapefile, calculate the percent plant available water (field 

capacity – wilting point) for each soil textural class using lab derived estimates 
(Table 1) 

 
Table 1: Lab derived estimates of percent available water for common soil textural 
classes. Table from Easton and Bock, 2016. 

 



12. Calculate the average soil depth for each polygon 
13. Calculated available water capacity by multiplying the percent plant available 

water by the depth of the soil 
14. Using the polygon to raster tool, convert the vector available water capacity 

(SoilWCapVect) to a raster (SoilWCapRast) 
15. Standardize the output of the soil raster (SoilWCapRast) from 0 to 100 using the 

raster calculator (Fig. 10) 
 

 
Figure 10: Standardized available water capacity raster. 
 
16. Create stream links using the delineated stream network (Streams) and convert 

this layer to a vector using the Streams to Feature function 
17. Create a buffer of 4 meters around the vector stream network (Stream_Vect) to 

focus on soil moisture estimation for the hillslopes rather than areas that are 
saturated or within the hyporheic zone 

18. Make the vector buffered area into a raster using the Feature to Raster tool 
19. Delete buffered area from all rasters (Hillshade, Curvature, FlowAcc, 

SoilWCapRast), creating (HillshadeB, CurvatureB, FlowAccB, SoilWCapRastB) 
using the Set_Null expression in the raster calculator 

20. Calculate the Integrate Moisture Index (IMI) using the Raster Calculator 
 
IMI = [Hillshade * 0.4] + [Curvature(ɵ) * 0.1] + [FlowAcc * 0.3] + [SoilWCapRast * 
0.2] 



 
The resulting index will vary between 0 and 100, with 100 being areas with the 
largest amount of moisture, and therefore the highest soil moisture storage (Fig. 
11) 

 

 
Figure 11: Standardized integrated moisture index raster. 
 

21. Using zonal statistics determine the mean IMI for each of the small watersheds 
using the gauged watershed boundary shapefile (wsheddem) 

 
Water Balance and Runoff Coefficients 
Using the 25 year long hydrometric record, two more metrics were calculated to 
compare to the IMI to assess the accuracy of this tool. Using the water balance 
approach (Sayama et al., 2011) where: 
 
Changes in Storage = Precipitation – Area Weighted Discharge – Evapotranspiration 
 
estimates of groundwater storage were calculated for Watersheds 02, 03, 06, 07, 08, 
and Mack. Evapotranspiration was estimated using the Hamon method, a temperature 
based evaluation. Because plants in this region are water limited in the summer, rather 
than radiation or temperature limited, the Hamon method may over estimate 
evapotranspiration. To avoid this issue, a second metric, annual average runoff 



coefficient, was also calculated. For this analysis, our two unknowns of 
evapotranspiration and storage are lumped together.  
 
Annual Average Runoff Coefficient = Total Annual Area Weighted Discharge/ Total 
Annual Precipitation 
 
This metric assesses water partitioning on the catchment scale, as we are able to see 
what percentage of the input is sectioned off to discharge. 
 
Results 
In order to summarize the results, the IMI values were average across the small 
watersheds using zonal statistics. The standalone IMI values do not provide us with 
much information, but when the values are compared between watersheds we are able 
to see which watersheds have more potential for soil moisture storage. IMI values are 
lowest for Watersheds 06, 07, and 08, while Watersheds 02, 03, and Mack have higher 
potentials (Fig. 11; Table 2). 
 
Watersheds 06 and Mack have the lowest average annual storage, while Watersheds 
08 and 07 have the highest (Table 2). The lowest annual average runoff coefficients are 
observed in Watersheds 07 and 03, while Watersheds 06 and Mack have the highest 
(Table 2). These results follow the expected trend, as watersheds with high annual 
storage have low runoff coefficients (Fig. 12). Any deviations from this trend are due to 
the evapotranspiration estimates. However, the water balanced based storage values 
and the average annual runoff coefficient values do not follow the trend that is observed 
in the IMI values, meaning watersheds with high annual storage and low runoff 
coefficients do not necessarily have the highest IMI values (Fig. 13; Fig 14). 
 
Table 2: Summary of the three metrics used to evaluated mobile, dynamic storage 

 
 



 
Figure 12: Comparison of the average annual storage and average annual runoff 
coefficient metrics. There is a significant relationship between the two, with deviations 
from this relationship arising from inaccurate evapotranspiration calculations. 
 

 
Figure 13: Comparison of the average annual storage and IMI metrics. There is no 
significant relationship. 
 



 
Figure 14: Comparison of the average annual runoff coefficient and IMI metrics. There 
is no significant relationship. 
 
Discussion and Conclusions 
The IMI did not replicate relative subsurface storage results that were determined 
through other metrics. Previously, the IMI has been used predominately in Ohio to 
determine forest composition (Peters et al., 2010; Iverson et al., 2004; Iverson et al., 
1997). This project suggests that the IMI in its current form is not applicable at the 
catchment scale in the Western Cascades. It is possible that with some adjustments 
(changing the weighting factors or adding a variable for surface roughness), the IMI 
could be a tool to understand the dynamic, mobile storage variability caused by the 
physical attributes of these catchments. 
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