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 Early advocates of dataflow computers predicted that the characteristics of 
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I. INTRODUCTION 

 The dataflow model of computation offers many attractive properties for 

parallel processing.  First, the dataflow model of execution is asynchronous, i.e., 

the execution of an instruction is based on the availability of its operands.  

Therefore, the synchronization of parallel activities is implicit in the dataflow 

model.  Second, instructions in the dataflow model do not impose any constraints 

on sequencing except the data dependencies in the program.  Hence, the dataflow 

graph representation of a program exposes all forms of parallelism eliminating 

the need to explicitly manage parallel execution of a program.  For high speed 

computations, the advantage of the dataflow approach over the control-flow 

method stems from the inherent parallelism embedded at the instruction level.  

This allows efficient exploitation of fine-grain parallelism in application programs. 

 Due to its simplicity and elegance in describing parallelism and data 

dependencies, the dataflow execution model has been the subject of many 

research efforts.  Since the early 1970s, a number of hardware prototypes have 

been built and evaluated [24, 44] and simulation studies of different architectural 

designs and compiling technologies have been performed [5, 46].  The experience 

gained from these efforts has led to progressive development in dataflow 

computing.  However, the question still remains as to whether the dataflow 

approach is a viable means for developing powerful computers to meet today’s 

and future computing demands.   

 Studies from past dataflow projects have revealed a number of 

inefficiencies in dataflow computing [17, 49].  For example, the dataflow model 

incurs more overhead in the execution of an instruction cycle compared to its 

control-flow counterpart due to its fine-grained approach to parallelism.  The 

overhead involved in the detection of enabled instructions and the construction 

of result tokens will generally result in poor performance in applications with low 
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degree of parallelism.  Another problem with the dataflow model is its inefficiency 

in handling data structures (e.g., arrays of data).  The execution of an instruction 

involves consuming tokens at the input arcs and generating result token(s) at the 

output arc(s).  Since tokens represent scalar values, representing data structures, 

which are collections of many tokens, poses serious problems. 

  In light of these shortcomings, a renewed interest has emerged in the area 

of dataflow computing.  This revival is facilitated by a lack of developments in the 

conventional parallel processing arena, as well as a change in viewpoint on the 

actual concept of dataflow and its implementation.  The foremost change is a shift 

from the exploitation of fine- to medium- and large-grain parallelism.  This allows 

conventional control-flow sequencing to be incorporated into the dataflow 

approach alleviating the inefficiencies associated with the pure dataflow method.  

In addition, the recent proposals to develop efficient mechanisms to detect 

enabled nodes, utilizes advantages offered by both dataflow and control-flow 

methods.  Finally, there is also a viewpoint that the dataflow concept should be 

supported by an appropriate compiling technology and program representation 

scheme, rather than with specific hardware support.   This allows existing control-

flow processors to implement the dataflow model of execution.  The 

aforementioned developments are accompanied by experimental evidence that 

the dataflow approach is very successful in exposing substantial parallelism in 

application programs [14, 24].  Therefore, issues such as allocation of dataflow 

programs onto processors and resource requirements are important problems to 

resolve before the dataflow model can be considered a viable alternative to the 

conventional control-flow approach for high-speed computations.  The objective 

then, of this article is to survey the various issues and developments in dataflow 

computing. 
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 The organization of this article is as follows:  Section II reviews the basic 

principles of the dataflow model.  The discussion includes the language support 

for dataflow and its major attributes.  Section III provides a general description of 

the dataflow model of execution based on the pioneering works of research 

groups at MIT and the University of Manchesternamely, the Static Dataflow 

Machine, Tagged-Token Dataflow Architecture, and Manchester Machine.  Major 

problems encountered in the design of these machines will be outlined.  Section 

IV surveys current dataflow projects.  The discussion includes a comparison of the 

architectural characteristics and evolutionary improvements in dataflow 

computing.  Section V outlines the difficulties in handling data structures in a 

dataflow environment.  A brief overview of the methods proposed in literature for 

representing data structures will be provided.  This will be supplemented by 

various issues required to handle data structures in a dataflow environment.  

Section VI addresses the issue of program allocation.  Several proposed 

methodologies will be presented and the various issues involved in program 

allocation will be discussed.  Finally, Section VII discusses the resource 

requirements for dataflow computations. 

 

II.  DATAFLOW PRINCIPLES 

 The dataflow model of computation deviates from the conventional 

control-flow method in two basic principles; asynchrony and functionality.  First, 

dataflow operations are asynchronous in that an instruction is fired (executed) 

only when all the required operands are available.  This is radically different from 

the control-flow model of computation in the sense that the program counter, 

which is used to sequentially order the instruction execution, is not used.  A 

dataflow program is represented as a directed graph, G ≡ G(N, A), where nodes (or 

actors) in N represent instructions and arcs in A represent data dependencies 
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between the nodes.  The operands are conveyed from one node to another in data 

packets called tokens. 

 Second, the functionality rule of dataflow implies that there are no side- 

effects.  Any two enabled instructions can be executed in either order or 

concurrently.  This implicit parallelism is achieved by allowing side-effect free 

expressions and functions to be evaluated in parallel.  In a dataflow environment, 

conventional language concepts such as "variables" and "memory updating" are 

non-existent.  Instead, objects (data structures or scalar values) are consumed by 

an actor (instruction) yielding a result object which is passed to the next actor(s).  

The same object can be supplied to different functions at the same time without 

any possibility of side-effects. 

 

Dataflow Graphs 

 The basis of dataflow computation is the dataflow graph.  In dataflow 

computers, the machine level language is represented by dataflow graphs.  As 

mentioned previously, dataflow graphs consist of nodes and arcs.  The basic 

primitives of the dataflow graph are shown in Figure 1.  A data value is produced 

by an Operator as a result of some operation, f.  A True or False control value is 

generated by a Decider (a predicate) depending on its input tokens.  Data values 

are directed by means of either a Switch or a Merge actor.  For example, a Switch 

actor directs an input data token to one of its outputs depending on the control 

input.  Similarly, a Merge actor passes one of its input tokens to the output 

depending on the input control token.  Finally, a Copy is an identity operator 

which duplicates input tokens. 
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Figure 1:  Basic primitives of the dataflow graph. 
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 In order to illustrate the capability of the dataflow primitives mentioned 

previously, consider the dataflow graph shown in Figure 2 which computes the 

following expression: 

  

  
sum = f (i )!

i = 1

N

 

The control inputs to the Merge actors are set to False for initialization.  The input 

values i and sum are admitted as the initial values of the iteration.  The predicate 

i ≤ N is then tested.  If it is true, the values of i and sum are routed to the TRUE 

sides of the Switch actors.  This initiates the firing of the function f as well as 

incrementation of i.  Once the execution of the body of the loop (i.e., the 

evaluation of f, summation, and i=i+1) completes, the next iteration is initiated at 

the Merge actors.  Assuming the body of the loop is a well-behaved graph, the 

iteration continues until the condition i ≤ N is no longer true.  The final sum is 

then routed out of the loop and the initial Boolean values at Merge actors are 

restore to False. 

 Note the elegance and flexibility of the dataflow graph for describing 

parallel computation.  In this example, all the implicit parallelism within an 

iteration is exposed.  Furthermore, suppose that the function f requires a long 

time to execute (compare to the other actors in the graph).  The index variable i, 

which is independent of the function f, will continue to circulate in the loop 

causing many computations of f to be initiated.  Thus, given sufficient amount of 

resources, N iterations of function f can be executed concurrently. 

 

Dataflow Languages 

 There is a special need to provide a high-level language for dataflow 

computers since their machine language, the dataflow graph, is not an 



8 

 

 

 

 

 

 

 

T F T F

T F T F

+1

f

+

≤N

i = 1 sum = 0

...

...

Final sum

F F

 

 

 

Figure 2:  A dataflow graph representation of sum = f (i )!
i = 1

N

.
 



9 

appropriate programming medium.  They are error-prone and difficult to 

manipulate. 

 There are basically two high-level language classes which have been 

considered by dataflow researchers.  The first is the imperative class.  The aim is 

to map existing conventional languages to directed graphs using dataflow analysis 

often used in optimizing compilers.  For example, the Texas Instruments group 

used a modified Advanced Scientific Computer (ASC) FORTRAN compiler for their 

dataflow machine [31].  Compiler techniques for translating imperative languages 

have also been studied at Iowa State University [6]. 

 Programming dataflow computers in conventional imperative languages 

would tend to be inefficient since they are by their nature sequential.  Therefore, 

a number of dataflow or applicative languages has been developed to provide a 

more efficient way of expressing parallelism in a program [47].  The goal is to 

develop high-level dataflow languages which can express parallelism in a program 

more naturally and to facilitate close interaction between algorithm constructs 

and hardware structures.  Examples of dataflow languages include the Value 

Algorithmic Language (VAL), Irvine Dataflow language (Id), and Stream and 

Iteration in a Single-Assignment Language (SISAL) which have been proposed by 

dataflow projects at MIT [1], the University of California at Irvine [47], and 

Lawrence Livermore National Laboratories [32], respectively. 

 The goal of the dataflow concept is to exploit maximum parallelism 

inherent in a program.  There are several useful properties in dataflow languages 

which allow sequencing of instructions constrained only by the data dependencies 

and nothing else.  These properties are:  

• Freedom from side-effects - This property is necessary to ensure that the 

data dependencies are consistent with the sequencing constraints.  

Dataflow model of execution imposes a strict restriction by prohibiting 
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any variables from being modified.  This is done by using "call-by-value" 

rather than "call-by-reference" scheme.  A call-by-value procedure copies 

rather than modifies its argument which avoids side-effects. 

• Single assignment rule - This offers a method to promote parallelism in a 

program.  The rule prohibits the use of the same variable name more 

than once on the left-hand side of any statement.  The single assignment 

rule offers both clarity and ease of verification, which generally outweigh 

the convenience of reusing the same name.   

• Locality of effect - This means that instructions do not have unnecessary 

far-reaching data dependencies.  This is achieved by assigning every 

variable a definite scope or region of the program in which it is active 

and carefully restricting the entry to and exit from the blocks that 

constitute scopes. 

 The aforementioned properties of dataflow language allow high 

concurrency in a dataflow computer by easily exposing parallelism in a program.  

Moreover, it supports easier program verification, enhancing the clarity of 

programs, and increasing programmer productivity [4]. 

 

III.  DATAFLOW ARCHITECTURES 

 In this section, a general description of dataflow machines is provided.  

Although there have been numerous dataflow proposals1, the discussion is based 

on three classical dataflow machines: Static Dataflow Machine [16], Tagged-Token 

Dataflow Architecture (TTDA) [10], and Manchester Machine [24].  These projects 

represent the pioneering work in the area dataflow and the foundation they 

                                            

1 A good survey of these machines can be found in [44, 46]. 
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provided has inspired many of the current dataflow projects.  The major 

shortcomings of these machines is also discussed.   

 In the abstract dataflow model, data values are carried by tokens.  These 

tokens travel along the arcs connecting various instructions in the program graph 

where the arcs are assumed to be FIFO queues of unbound capacity.  A direct 

implementation of this model however is an impossible task.  Instead, the 

dataflow execution model has been traditionally classified as either static or 

dynamic.  The static approach allows at most one instance of a node to be enabled 

for firing.  A dataflow actor can be executed only when all of the tokens are 

available on its input arcs and no tokens exist on any of its output arcs.  On the 

other hand, the characteristics of the dynamic approach permit activation of 

several instances of a node at the same time during run-time.  To distinguish 

between different instances of a node, a tag is associated with each token that 

identifies the context in which a particular token was generated.  An actor is 

considered executable when its input arcs contain a set of tokens with identical 

tags. 

 The static dataflow model was proposed by Dennis and his research group 

at MIT [16].  The general organization of the Static Dataflow Machine is depicted 

in Figure 3.  The Program Memory contains instruction templates which represent 

the nodes in a dataflow graph.  Each instruction template contains an operation 

code, slots for the operands, and destination addresses (Figure 4).  To determine 

the availability of the operands, slots contain presence bits (PBs).  The Update 

Unit is responsible for detecting the executability of instructions. When this 

condition is verified, the Update Unit 
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sends the address of the enabled instruction to the Fetch Unit.  The Fetch Unit 

fetches and sends a complete operation packet containing the corresponding 

opcode, data, and destination list to the Processing Unit and also clears the 

presence bits.  The Processing Unit performs the operation, forms a result packets, 

and sends them to the Update Unit.  The Update Unit stores each result in the 

appropriate operand slot and checks the presence bits to determine whether the 

activity is enabled. 

 The dynamic dataflow model was proposed by Arvind at MIT [5] and by 

Gurd and Watson at the University of Manchester [24].  The basic organization of 

the dynamic dataflow model is shown in Figure 5.  Tokens are received by the 

Matching Unit, which is a memory containing a pool of waiting tokens.  The basic 

operation of the Matching Unit is to bring together tokens with identical tags.  If a 

match exists, the corresponding token is extracted from the Matching Unit and 

the matched token set is passed on to the Fetch Unit.  If no match is found, the 

token is stored in the Matching Unit to await a partner.  In the Fetch Unit, the tags 

of the token pair uniquely identify an instruction to be fetched from the Program 

Memory.  A typical instruction format for the dynamic dataflow model is shown in 

Figure 6.  It consists of an operational code, a literal/constant field, and 

destination fields.  The instruction together with the token pair forms the enabled 

instruction and is sent to the Processing Unit.  The Processing Unit executes the 

enabled instructions and produces result tokens to be sent to the Matching Unit. 

 Note that dataflow architectures can also be classified as centralized or 

distributed systems based on the organization of their instruction memories.  In a 

centralized organization, the communication cost of conveying one token from 

one actor to another is independent of the actual allocation instruction in the 

program memory.  In a distributed organization, the instructions are 



14 

 

 

Fetch

Unit

Program

Memory

Processing

Unit

Matching

Unit

Data

Tokens

Matched

Token Set

Enabled

Instructions

 

 

Figure 5: The basic organization of the dynamic dataflow model. 

 

 

 

Opcode

Literal/Constant

Destination s

Destination s

1

n

...

s:

 

 

 Figure 6: An instruction format for the dataflow model. 



15 

distributed among the processing elements (PEs).  Therefore, inter-PE 

communication costs are higher than intra-PE communication costs.  Static 

dataflow machine and the Manchester machine both have centralized memory 

organization.  MIT’s dynamic dataflow organization is a multiprocessor system 

where the instruction memory is distributed among the PEs.  The choice between 

centralized and distributed memory organization has direct affect on the issue of 

program allocation (see Section VI).       

 The static dataflow model has inherently simplified mechanism for 

detecting enabled nodes.  Presence bits (or a counter) are utilized to determine 

when all the required operands are available.  However, the static dataflow model 

has a drawback concerning performance when dealing with iterative constructs 

and reentrancy.  The attractiveness of the dataflow concept is due to the fact that 

all independent nodes can execute concurrently.  It should be noted that in the 

case of reentrant graphs, strict enforcement of the static firing rule is required; 

otherwise, it can lead to nondeterminate behavior [46]. 

 To guard against nondeterminacy, Dennis proposed the use of 

acknowledge signals [16].  This can be implemented by the addition of extra arcs 

(e.g., acknowledge arcs) from a consuming node to a producing node.  These 

acknowledge signals ensure that no arc will contain more than one token.  The 

acknowledge method can transform a reentrant code into an equivalent graph 

that allows the execution of consecutive iterations in a pipeline fashion.  However, 

this transformation comes at the expense of increasing the number of arcs and 

tokens. 

 The major advantage of the dynamic over the static dataflow model of 

computation is the higher performance that can be obtained by allowing multiple 

tokens to exist on an arc.  For example, a loop is dynamically unfolded at run-time 

by creating multiple instances of the loop body and allowing the execution of the 



16 

instances concurrently (see Section II).  Although the dynamic dataflow model can 

provide greater exploitation of parallelism, the overhead involved in matching 

tokens has been a major problem.  To reduce the execution time overhead of 

matching tokens, dynamic dataflow machines require associative memory 

implementation.  In practice, because of the high cost of associative memory in 

the past, pseudo-associative matching mechanism was used that typically requires 

several memory accesses [24].  This increase in the number of memory accesses 

will reduce the performance and the efficiency of dataflow machines.   

 A more subtle problem with the token matching is the complexity involved 

in allocation of resources (i.e., memory cells).  A failure to find a match implicitly 

allocates memory within the matching hardware.  In other words, when a code-

block is mapped to a processor, an unspecified commitment is placed on the 

matching unit of that processor.  If this resource becomes overcommitted, the 

program may deadlock [35].  In addition, due to the hardware complexity and 

cost, one cannot assume this resource is so plentiful it can be wasted.  The issue of 

resource requirements in dataflow is discussed more in detail in Section VII. 

 

IV. A SURVEY OF CURRENT DATAFLOW PROPOSALS 

 In this section, a number of current dataflow projects will be overviewed.  

The dataflow architectures surveyed here consist of Monsoon, Epsilon-2, EM-4, P-

RISC and TAM.  These proposals represent the current trend in dataflow 

computing.   
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IV.1 Current Dataflow Proposals 

Monsoon 

 Monsoon is a dataflow multiprocessor under development at MIT in 

conjunction with Motorola [35].  The formulation of the Monsoon began as an 

outgrowth of the MIT Tagged-Token Dataflow Architecture (TTDA).  It is a 

dynamic dataflow architecture, however, unlike the TTDA, the scheme for 

matching tokens is implemented more efficiently. 

 The architecture of the PEs in the Monsoon multiprocessor is based on the 

Explicit Token Store (ETS) model which is a greatly simplified approach to 

dataflow execution.  The basic idea of the ETS model is to eliminate the expensive 

and complex process of associative search used in previous dynamic dataflow 

architectures to match pairs of tokens.  Instead, presence bits are employed to 

specify the disposition of slots within an activation frame which hold data values.  

The dynamic dataflow firing rule is realized by a simple state transition on these 

presence bits.  This is implemented by dynamically allocating storage for tokens 

in a code-block.  The actual usage of locations within a block is determined at 

compile-time, however, the actual allocation of activation frames is determined 

during run-time (this is similar to the conventional control-flow model).  For 

example, when a function is invoked, an activation frame is allocated to provide 

storage for all the tokens generated by the invocation. 

 A token in the ETS model consists of a tag and a value.  A tag consists of a 

pointer to an instruction (IP) and a pointer to an activation frame (FP).  An 

instruction pointed to by the IP specifies an opcode, an offset (r) in the activation 

frame where the match will take place, and one or more displacements (dests) 

which define the destination instructions that will receive the results.  Each 

destination is also accompanied by an input port (left/right) indicator which 

specifies the appropriate input arc for a destination actor. 
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 To illustrate the operation of the ETS model, consider an example shown in 

Figure 7 of a code-block invocation and its corresponding instruction and frame 

memory.  As a token arrives at an actor (e.g., ADD), the IP part of the tag points to 

the instruction which contains an offset r as well as displacement(s) for the 

destination instruction(s).  The actual matching process is achieved by checking 

the disposition of the slot in the frame memory pointed to by FP+r.  If the slot is 

empty, the value of the token is written in the slot and its presence bit is set to 

indicate that the slot is full.  If the slot is full, the value is extracted, leaving the 

slot empty, and the corresponding instruction is executed.  The result(s) 

generated from the operation is communicated to the destination instruction(s) 

by updating the IP according to the displacement(s) encoded in the instruction 

(e.g., execution of the ADD operation produces two result tokens <FP.IP+1, 3.55> 

and <FP.IP+2, 3.55>L).   

 Monsoon multiprocessor consists of a collection of PEs, which are based on 

the ETS model, connected to each other by a multistage packet switching network 

and to a set of interleaved I-structure memory modules.  Each PE consists of eight 

pipeline stages which operate as follows (Figure 8): The Instruction Fetch stage 

fetches an instructionin the form of <opcode, r, dests>from the local 

Instruction Memory according to the IP part of the incoming token.  The 

calculation of the effective address (FP+r) of a slot in the Frame Store where the 

match will take place occurs in the Effective Address stage.  The presence bits 

associated with the Frame Store location are then read, modified, and written 

back to the same location.  In the Frame Store Operation stage, depending on the 

status of the presence bit, the value part of 
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20 

 

Instruction
Fetch

Instruction
Memory

Effective
Address

Presence
Bits

Presence
Bits

Memory

Frame Store
Operation

Frame
Store

ALUCompute
Tag

Form Token

To Multistage
Packet Switching

Network

From Multistage
Packet Switching

Network

    

 

 

Figure 8:  Organization of a PE for the Monsoon. 



21 

the appropriate Frame Store location is ignored, read, written, or exchanged with 

the value on the token.2  

 The ALU consists of three stages and operates concurrently with the 

Compute Tag stage.  In the first stage of the ALU, the value from the token and the 

value extracted from the Frame Store are sorted into left and right values 

according to the input port indicator of the incoming token.  In the last two 

stages, the operands are processed by one of the functional units.  The tag 

generation occurs in conjunction with the ALU processing.  Finally, the Form 

Token stage creates result tokens by concatenating the computed tag with the 

result from the ALU.  

 A single PE Monsoon prototype has been operational since 1988 and a 

second prototype is currently under evaluation.  The prototype PE was designed 

to process six million tokens per second.  In spite of serious memory limitation, 

some large codes have been executed on Monsoon and the preliminary results are 

very encouraging [35].  Currently, the research group at MIT is working with 

Motorola to develop Monsoon multiprocessor prototypes.  The new PEs are 

expected to be faster (10 million tokens per second) with larger frame storage. 

 

EM-4 Dataflow Multiprocessor 

 The EM-4 dataflow multiprocessor is under development by the research 

group at the Electrotechnical Laboratories in Japan [39, 49].  The EM-4 is a highly 

parallel dataflow multiprocessor with a target structure of more than 1000 PEs 

based on the SIGMA-1 project [45].  Its design goals are to (1) simplify the 

architecture by a RISC-based single-chip design and a direct matching scheme, 

                                            
2 These operations facilitate the handling of loop constants, I-

structures, and accumulators [35]. 
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and (2) introduce and utilize strongly connected arc model to enhance the 

dataflow model. 

 The EM-4 dataflow multiprocessor utilizes a strongly connected arc model 

to optimized dataflow execution.  In this model, arcs in the dataflow graph are 

divided into normal arcs and strongly connected arcs.  A dataflow subgraph 

whose nodes are connected by strongly connected arcs is called the strongly 

connected block.  Figure 9 shows two examples of a strongly connected block (A 

and B).  The execution strategy for strongly connected blocks is that once the 

execution of a block begins, the PE would exclusively carry out the execution of 

the nodes of the block until its completion.  Therefore, a strongly connected block 

acts as a macro node which includes several instructions and is executed as if it 

was a single basic node, i.e., a thread.  Simple nodes falling on critical paths of a 

dataflow graph are often used to form strongly connected blocks [49]. 

 There are several advantages to the strongly connected arc model.  First, a 

simple control-flow pipeline can be utilized.  Second, the instruction cycle can be 

reduced by utilizing a register file to store tokens in a strongly connected block.  

This is possible since data in the register file are not violated by any other data.  

Third, the communication overhead is reduced because there are no token 

transfers in a strongly connected block.  Fourth, the matching can be realized 

much more easily and efficiently in an intra-block execution because at each 

moment only one activation of a strongly connected block is executed (i.e., it is 

not necessary to match function identifiers). 

 Note that token matching for normal nodes of a dataflow graph is still 

needed.  The EM-4 employs a direct matching scheme which is similar to the 

frame organization of the Monsoon.  Whenever a function is invoked, an 
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Figure 9:  An example of a strongly connected block. 
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instance of storage, called an operand segment, is allocated to this function.  The 

matching is implemented by checking the stored data in the operand segment and 

storing the new data if its partner is absent.  For each instruction within a code-

block, there is a corresponding entry in the operand segment which is used to 

store its operand.  Therefore, the address of the instruction can be used to access 

its operand in the operand segment.  The compiled codes for the function are 

stored in another area which is called a template segment.  The binding of an 

operand segment and a template segment is also performed at the time function is 

invoked. 

 The PE of the EM-4 prototype consists of a memory module and a single 

chip processor called EMC-R.  Figure 10 shows the block diagram of a PE.  The 

Switching Unit controls the flow of tokens within the PE, to and from the 

communication network as well as to neighboring PEs.  The Input Buffer Unit is a 

buffer for tokens waiting for execution.  The Fetch and Matching Unit performs 

matching operations for tokens, fetches enabled instructions, and sequences 

operations in strongly connected blocks.  Moreover, it controls the pipelines of a 

PE by integrating two types of pipelines (register-based advanced control pipeline 

and token-based circular pipeline).  The Execution Unit employs a RISC-based ALU 

for high-speed processing.  The Memory Control Unit arbitrates memory access 

requests from the Input Buffer Unit, the Fetch and Matching Unit, and the 

Execution Unit and communicates data between the Off-Chip Memory and the 

EMC-R. 

 The pipeline organization of the EMC-R is presented in Figure 11.  It 

basically consists of a four-stage pipeline.  When a token arrives, the 

corresponding template segment number is fetched from the Off-Chip Memory in 

the first stage (TNF).  The number is stored at the beginning of the operand 

segment when the function is invoked.  If an incoming token does not require 
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matching, the first stage is bypassed.  The second stage is the matching stage.  If 

the token is for a single-operand instruction, it is sent to the next stage.  If the 

matching is with an immediate value, an immediate fetch (IMF) occurs.  If the 

token is for a two-operand instruction, the corresponding data in the operand 

segment is read (RD).  If a match exists, the flag for the data is cleared (EL) to 

signal the firing of the instruction; otherwise, the token is written (WR) into the 

operand segment to await its partner.   

 The third stage fetches and decodes the instruction.  The fourth stage is 

the execution stage.  If the next instruction is strongly connected with the current 

instruction, the result is written in the register file.  The execution of the third 

and fourth stage is overlapped until there are no executable instructions in the 

concerned strongly connected block.  Therefore, the organization of the EMC-R 

allows the integration of a token-based circular pipeline and register-based 

advanced control pipeline. 

 The EMC-R has been fabricated on a chip which contain 50,000 CMOS gates 

and 256 signal lines.  Each PE has a peak processing performance of more than 12 

MIPS.  Currently, EM-4 multiprocessor which contains 80 PEs is being constructed.  

It will consist of 16 processor boards, each containing 5 PEs and a mother board 

which will contain the communication network.  The total peak performance of 

the prototype is expected to be more than 1 GIPS. 

 

Epsilon-2 Multiprocessor  

 The Epsilon-2 dataflow multiprocessor was proposed by Grafe and Hoch at 

Sandia National Laboratories [22].  The design of the Epsilon-2 is based on the 

dynamic dataflow model and evolved from the Epsilon-1 project [21, 23].  Two 

prototypes of the Epsilon-1 have already been built and demonstrated sustained 
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uniprocessor performance comparable to that of commercial mini-

supercomputers [21].   

 The basic organization of the Epsilon multiprocessor is shown in Figure 12.  

The system is a collection of Processing Modules communicating with each other 

via a Global Interconnect.  Each module consists of a PE, a Structure Memory, and 

an I/O port connected to each other by a 4×4 Crossbar Switch.  Tokens in the 

system are of fixed length containing a target and a data portion.  The target 

portion of the token represents the tag and consists of an instruction and a frame 

pointer pair <IP.FP>.  Both target and data portions are augmented with type 

fields.  The type field of the target portion points to a particular resource in the 

system (e.g., a PE, a Structure Memory, an I/O, etc.).  On the other hand, the type 

field of the data portion defines the type of information which the token carries 

(e.g., a floating point, an integer, a pointer, etc.). 

 The basic organization of an Epsilon-2 PE is depicted in Figure 13.  Tokens 

arriving at the PE are buffered in the Token Queue.  Tokens are read from the 

Token Queue and the instruction pointer IP of the tag field is used to access the 

Instruction Memory.  An Epsilon-2 instruction word is shown in Figure 14.  It 

contains two offsets for accessing operandsthe operand mode determines the 

item of selection, e.g., current activation frame, a constant, or a register.  The 

match offset field is used to select a rendezvous point in the Match Memory for 

pair of tokens.  The actual synchronization is performed by reading the value in 

the selected location in the Match Memory.  If the value equals the match count 

encoded in the opcode, the instruction is enabled for execution and the match 

count is reinitialized to zero.  If the value does not equal the match count, the 

value is incremented and written back to the match location. 
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 The ALU combines two operands specified by the opcode.  Results generated 

from operations are written into a register directed by the result register field of 

an instruction word.  These registers can be reference by any succeeding 

instructions.  Note that register contents are not necessarily preserved across grain 

boundaries; therefore, registers serve as buffers for intermediate values within a 

grain.  Finally, the Target Calculation Unit (TCU) is responsible for generating the 

target portion of output tokens.  Targets local to the current frame retain the 

current frame pointer and a new instruction pointer is generated by adding the 

target offset from the instruction word to the current instruction pointer.  

  The Epsilon-2 processor also contains a Repeat unit which is used to 

generate repeat tokens.  Repeat tokens efficiently implements data fanout in 

dataflow graphs and significantly reduces the overhead required to copy tokens.  

The repeat offset in the instruction word is used to generate a repeat token.  This 

is done by adding the repeat offset to the current token’s instruction pointer to 

generate a new token.  Thus, the Repeat unit basically converts a tree of Copy 

operations (where the leaves represent the instructions) to a linked list of 

instructions.  The Repeat unit is also used to schedule a grain of computation.  This 

is achieved by representing a thread of computation as a linked list and utilizing 

registers to buffer the results between instructions.       

 As mentioned previously, the design of the Epsilon-2 Multiprocessor is 

based on the Epsilon-1 project.  Despite the fact that the Epsilon-1 processor is a 

single board, wire-wrap, 10 MHz CMOS prototype based on the static dataflow 

model, it showed experimental evidence that a dataflow computer can provide 

better performance than comparable control-flow processors.  Based on this 

experience, many refinements have been made in the development of the Epsilon-

2.   
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P-RISC 

 P-RISC (or Parallel-Reduced Instruction Set Computer) was proposed by 

Nikhil and Arvind at MIT [33].  The basic idea behind P-RISC is strongly influenced 

by Iannucci’s dataflow/von Neumann hybrid architecture [28].  P-RISC takes 

existing RISC-like instruction set, generalize it to be multithreaded to achieve a 

fine-grained dataflow capability.  Since it is an extension of the von Neumann 

architecture, it can exploit conventional as well as dataflow compiling technology.  

More important, it can be considered as a dataflow machine that provides 

complete software capability with conventional control-flow machines. 

 P-RISC multiprocessor consists of PEs and Structure Memory Elements 

connected by an interconnection network.  The organization of a P-RISC PE is 

shown in Figure 15.  The Local Memory contains instructions and frames.  In 

order to support fine-grained interleaving of multiple threads, a thread of 

computation is completely described by an instruction pointer (IP) and a frame 

pointer (FP).  The pair of pointers, <FP.IP>, is regarded as a continuation and it 

corresponds to the tag part of a token (terminology used in TTDA).  The 

Instruction Fetch and Operand Fetch units fetch appropriate instructions and 

operands pointed to by the <FP.IP> part of the incoming tokens.  The Function 

Units perform the general RISC operations and the Operand Store is responsible 

for storing results in the appropriate slots of the frame.  Notice that for most part, 

the P-RISC executes instructions in the same manner as conventional RISCs.  For 

example, an arithmetic/logic instruction generates a 



32 

 

 

 

 

 

 

Instructions
Instruction Fetch

Operand Fetch

Function Units

Operand Store

Frames

Load/Store

Start

Token
Queue

Local
Memory

Messages
to/from
memory and 
other PEs

 

 

 

Figure 15:  Organization of a P-RISC PE. 
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continuation which is simply <FP.IP+1>.  For a Jump x instruction, the 

continuation is <FP.x>.       

 To initiate new threads and to synchronize two threads, P-RISC contains 

two special instructionsFork and Join.  It is important to note that these are 

simple instructions which are executed within the normal processor pipeline and 

are not operating system calls.  Fork x is similar to a Jump in the conventional 

RISC semantic except that two tokens, <FP.x> and <FP.IP+1>, are generated as 

continuations.  Join x, on the other hand, toggles the contents of the frame 

location FP+x.  If the frame location FP+x is empty, it produces no continuation.  If 

it is full, it produces <FP.IP+1>.  Note that the Join operation can be generalized to 

support n-way synchronization, i.e., the frame location x is initialized to n-1 and 

different join operations decrement it until it reaches zero. 

 Currently, efforts are under way to take existing RISC implementation and 

extended it to realize P-RISC while maintaining software compatibility.  

 

Threaded Abstract Machine 

 Threaded Abstract Machine (TAM) was proposed by Culler et al. at 

University of California, Berkeley [15].  The basic idea behind TAM is to place all 

synchronization, scheduling, and storage management requirements for execution 

of fine-grain parallelism explicit and under compiler control.  This relieves the 

overwhelming demands placed on the hardware, gives the compiler the 

responsibility for scheduling low-level program entities, and optimizes the use of 

critical processor resources, e.g., such as high-speed register storage. 

 In TAM, the basic storage resources are code-blocks and frames.  A code-

block consists of a collection of threads where each thread represents a sequence 

of instructions.  Whenever a code-block is invoked, a frame is allocated.  Each 

frame contains slots for depositing argument values associated with the invoked 
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code block.  Instructions may reference slots within the current frame or registers.  

It is the responsibility of the compiler to statically determine the frame size for 

each code-block as well as correctly using the slots and registers.  The compiler 

also allocates a portion of the frame as a continuation vector which is used to 

hold the pointers to enabled threads.     

 To provide synchronization among the threads, a frame slot contains the 

entry count for the thread.  Each fork to such a thread causes the entry count to 

be decremented.  When the entry count reaches zero, the thread is initiated and 

executes to completion.  A Fork operation causes additional threads to be 

scheduled for execution.  An explicit Stop instruction signals the end of a thread 

execution and initiates another enabled thread.  Conditional flow of execution is 

supported by a Switch, which forks one of two threads depending on a Boolean 

value. 

 Since all the activations of a program cannot be maintained in high speed 

processor storage, TAM provides a storage hierarchy.  In order to execute a thread 

from an activation, it must be made resident on a processor.  Only those threads 

which are resident have access to processor registers.  Once an activation is made 

resident, all enabled threads within the activation execute to completion.  The set 

of threads executed during a residency is called a quantum.  The processor 

registers are considered as an extension to the frame with a lifetime of a single 

quantum.  They carry operands between instructions within a thread or between 

threads within a quantum.  Inter-frame interactions are performed by having a set 

of inlets with each code-block that defines its external interface.  An inlet is a 

simple sequence of instructions which receives the corresponding message, stores 

values into the specified frame slots, and inserts a thread in the corresponding 

continuation vector. 



35 

 A prototype TAM instruction set, TL0 (Threaded Language Version 0), has 

been developed at the University of California at Berkeley.  Id programs are first 

compiled to generate TL0, then to the native machine code, using C.  Preliminary 

studies have shown that a dataflow language can be compiled to execute with 

performance which is comparable to conventional sequential language on stock 

hardware [15].          

   

IV.2 Architectural Trend of the Current Dataflow Machines 

 Table 1 outlines the main architectural features of current dataflow 

proposals discussed in the previous subsection.  Observations of current dataflow 

projects show that there is a trend towards adopting the dynamic dataflow model.  

This is due to the emergence of a novel and simplified process of matching 

tagsdirect matching.  In previous dynamic dataflow machines, tags contained all 

the information associated with activity names.  An activity name uniquely 

identifies the particular instance of computation in which the token was 

generated. In a direct matching scheme, storage (e.g., activation frame) is 

dynamically allocated for all the token pairs generated by an activation.  For 

example, "unfolding" a loop body is achieved by allocating an activation frame for 

each loop iteration.  Thus, matching pair of tokens generated within an iteration 

has a unique slot in the activation frame in which to converge.  The actual 

matching process involves checking the disposition of the slot in the frame 

memory.  Another major architectural change observed is the integration of the 

control-flow sequencing with the dataflow model. Dataflow architectures which 

are based on the pure dataflow model, such as the TTDA and the Manchester 

dataflow machine, provide well-integrated synchronization at a very basic level, 

i.e., at the instruction level.  A typical dataflow instruction cycle involves 

detection of enabled nodes by matching tokens, computing the results, and 
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generating and communicating the result tokens to appropriate target nodes.  

However, it is clear that characteristics of the pure dataflow model are not 

efficient.  For example, consider the synchronization requirements of the 

instructions with in a procedure.  It should not be necessary to generate and 

match tokens for scheduling every instruction within the body of a procedure.  It 

is intuitively obvious some of this responsibility can be assigned to the compiler 

and instead a simpler control-flow sequencing can be employed.  Moreover, the 

overhead of construction and communication of result tokens can be reduced by 

introducing a fast processor register which is used to temporary hold data.  The 

incorporation of control-flow sequencing and registers appear in almost all of the 

current dataflow projects; e.g., the EM-4, the Epsilon-2, and TAM. 

 In contrast to dataflow proposals discussed thus far, TAM provides a 

conceptually different perspective on the implementation of the dataflow model 

of computation.  In TAM, the execution model for fine-grain parallelism is 

supported by an appropriate compilation strategy and program representation 

rather than through elaborate hardware.  By assigning the synchronization, 

scheduling, and storage management tasks to the compiler, the use of processor 

resources can be optimized for the expected case, rather than the worst-case.  In 

addition, since the scheduling of threads is visible to the compiler, TAM allows a 

more flexible use of registers across thread boundaries.  Since the basic structure 

of TAM is similar to a number of dynamic architectures discussed in this article, it 

could be directly realized in hardware.  However, the concept of TAM is currently 

used to study the type of 
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TABLE 1: A comparison of the architectural features. 

Architecture Key features 

Monsoon • Direct matching of tokens based on the Explicit Token Store 

concept. 

EM-4 • The use of strongly connected arc model to enhance the dataflow 

model. 
• Use of registers to reduce the instruction cycle and the 

communication overhead of transferring tokens. 
• Integration of a token-based circular pipeline and a register-based 

advanced control pipeline. 
• Direct matching of tokens. 

• RISC-based processing element. 

Epsilon-2 • Direct matching of tokens. 

• Repeat fan-out mechanism to reduce the overhead in copying 

tokens. 
• Control-flow type of sequencing and use of registers. 

• Load balancing (adaptive routing). 

P-RISC • Utilization of existing RISC-like Instruction set and its 

generalization for parallel-RISC.  Can use both conventional and 

dataflow compiling technologies. 
• Application of multithread using a token queue and circulating 

thread descriptors. 
• Introduction of Fork and Join instructions spawn and synchronize 

multiple threads. 
• Synchronization of memory accesses through the use of I-structure 

semantics. 

TAM • Placing all synchronization, scheduling, and storage management 

responsibility under compiler control that allows execution of 

dataflow languages on conventional control-flow processors. 
• Providing a basis for scheduling a number of threads within an 

activation as a quantum while carrying values in registers across 

threads. 
• Having the compiler produce specialized message handlers as 

inlets to each code-block. 
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architectural support needed for full-scale parallel programs on large parallel 

machines.          

 

V. DATA STRUCTURES 

 As discussed in Section II, the main implication of the functionality 

principle of dataflow is that all operations are side-effect free, i.e., when a scalar 

operation is performed, new tokens are generated after the input tokens have 

been consumed.  However, if tokens are allowed to carry vectors, arrays, or other 

complex structures in general, the absence of side-effects implies that an 

operation on a structure element must result in an entirely new structure.  

Although this solution is acceptable from a theoretical point-of-view, it creates 

excessive overhead at the level of system performance.     

 In order to provide a facility to handle data structures while preserving the 

functionality of dataflow operations, a number of schemes have been proposed.  

There are two basic approaches to representing data structures, such as arrays: 

direct and indirect access [19].  A direct access scheme treats each array element 

as individual data tokensthe notion of array is completely removed at the lowest 

level of computation.  The tokens are identified by their tags which carry 

information about the relative location of the element within an array.  In an 

indirect access scheme, arrays are stored in special memory units and their 

elements are accessed through explicit "read" and "write" operations.    

 

V.1 A Survey of Data Structure Handling Schemes 

 The various proposed solutions to the problem of handling data structures 

is now presented.  The characteristics of each scheme will be outlined and the 

major shortcomings of each method will be identified and analyzed. 
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V.1.1 Direct Access Method 

Token Relabeling Scheme 

 The token relabeling scheme was proposed by Gaudiot [18, 19].  Its basic 

idea is to provide direct data forwarding between a producer and a consumer of 

an array by relabeling the tag associated with each token.  This is possible since 

the information in the tag indicates the token’s origin in the program and in 

particular the iteration in which the element was created; therefore, the iteration 

number can usually be directly interpreted as the index of the array element.  

This eliminates the need to maintain the notion of an array at the lowest level of 

execution and hence an array is represented by a set of individual tokens. 

 The basis of the token relabeling scheme can be illustrated by the scatter 

and gather operation corresponding to the following Fortran code [19]: 

 DO 1 i = 1, n 

1 C(i) = B(i) + A(F(i)) 

The corresponding graph implementation is shown in Figure 16.  In each 

iteration, array elements B(i) and A(F(i)) are tagged with an index number i and 

F(i) (denoted as B(i)[i] and A(F(i))[F(i)]), respectively.  In order to match the pair 

of tokens, the tags of elements in array A must be mapped from F(i) to i.  This 

requires a relabeling function F-1 which is usually unknown and difficult to obtain 

at compile-time.  In the token relabeling scheme, the effect of F-1 is simulated by 

the following technique.  A relabeling actor δr is used to extract the tag value in 

B(i)[i] and produces i[i].  This is mapped to F(i)[i] through the given access 

function F.  Another relabeling function χ swaps the 
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Figure 16:  Token relabeling of the Gather operation. 



41 

data value and the tag value of F(i)[i] to obtain iF(i).  This matches with 

A(F(i))[F(i)] at the third relabeling function δw to generate the A(F(i))[i]. 

 Since the direct access method is compatible with the dataflow principles 

of execution, it leads to the use of a more homogeneous architecture (i.e., no 

complex structure controller is required) and a better speedup factor since data 

tokens need not transit through a separate structure controller.  However, the 

direct access method has the following shortcomings:  First, preserving the 

dataflow semantics of side-effect free operation implies that entire data structures 

must be passed from one node to the next or duplicated among different nodes.  

Since tokens are treated as scalar elements, floating in the system and stored in 

the token matching unit, a large storage space for these array copies will be 

required in the matching storage.  Second, in many applications, the notion of 

array as a single entity cannot be completely done away withe.g., as in table 

look-up applications.   

 

V.1.2 Indirect Access Approach   

Heaps 

 In MIT Static Dataflow Machine, arrays are represented as directed acyclic 

graphs stored in a separate auxiliary memory [2].  Directed acyclic graphs consist 

of a set of <selector:value> pairs where the "selector" is an integer or a string and 

the "value" is any data value including another substructure.  Directed acyclic 

graphs (or heaps) always form a tree having one root node with the property that 

each leaf of the graph can be reached by a directed path from the root node.   

 The actual representation of arrays is accomplished by tokens carrying 

pointers only to the root nodes of the structures.  This avoids the communication 

overhead involved in sending a large token containing the entire array to a 

requesting actor.  An example of the tree representation of an array is shown in 
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Figure 17.  The major motivation behind the use of heaps is to alleviate excessive 

copying by allowing the common substructures to be shared among several 

structures.  In order to keep track of the number of pointers created and 

destroyed during the course of a program execution, a reference count is 

associated with each node.  When the reference count of a node becomes zero, the 

node is inaccessible and is placed on a free storage list for future usage. 

 SELECT and APPEND are exclusive operations devoted to manipulating the 

trees.  A value can be retrieved from a structure by a SELECT operation.  

Depending on the selector argument, the corresponding value from the input 

structure is placed on the output arc.  An APPEND operation creates a new 

structure which is a version of the input structure containing the modified 

component.  This is illustrated in Figure 18.  As can be seen, the APPEND creates a 

structure (A’) which is a version of the input structure (A) containing the new or 

modified component.  Note that elements are shared between the two structures 

A and A’.  Thus, no existing structure is ever modified, rather a new and different 

structure is constructed. 

 Although tree structures are capable of representing complex data 

structures, several disadvantages have been identified when arrays are 

represented as trees.  First, unlike sequentially stored arrays, accessing an 

element in a tree requires O(logn) time.  Therefore, depending on the depth of the 

tree, representing arrays as trees may degrade the performance.  Second, 

operations can only be performed on individual array elements due to the low 

level at which the dataflow model of sequencing is applied.  Therefore, 

performing two independent append operations on an array still requires 

sequential execution (e.g., restrained or strict structure).  As a result, even 
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Figure 18:  An append operation. 
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simple operations, such as setting a column or a row of a matrix to zero, require 

the creation of intermediary structures that significantly degrades the 

performance [17].  Finally, the garbage collection process of unused nodes is a 

difficult and an expensive procedure in the tree representation [2].  This is due to 

the fact that when the reference count of a node is reduced to zero, the reference 

counts of the nodes indicated by the pointers in the reclaimed node must also be 

decreased (i.e., recursion). 

 

I-structures 

 I-structures were proposed by Arvind and Thomas to provide a data 

structuring mechanism for the TTDA [9, 12].  I-structures are asynchronous array-

like structures with constraints on their creation and access, i.e., an I-structure is 

defined once and each of its elements can be written at most once.  An I-structure 

is asynchronous in the sense that the construction of arrays is not strictly 

ordered; therefore, it is possible for a part of a program to attempt to select an 

element before that element is appended (e.g., unrestrained or non-strict 

structure). 

 In order to implement the concept of "consumption before complete 

production," each storage cell contains presence bits to indicate that the cell is in 

one of three possible states (Figure 19): 

(a) PRESENT - The cell contains a valid data that can be read as in 

conventional memory. 

(b) ABSENT - No data has been written into the cell since it was last allocated. 

(c) WAITING - No data has been written into to the cell; however, at least one 

attempt has been made to read it.  Such a request is deferred in a 
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linked list called the deferred read request list.  When the data is eventually 

written into the cell, all deferred reads are serviced. 

 Despite improvements over the tree structure method, such as reduced 

access time and storage requirement, some problems are associated with the I-

structures.  Although I-structures are useful in large class of program constructs 

where array operations are performed in parallel (e.g., loops), they are not 

suitable for every programming environment.  First, due to the non-strictness of I-

structures, problems arise when modeling certain classes of problems which 

require the mode of production to be stricte.g., termination of accumulation 

[41].  In addition, since I-structure elements are appended (written) at most once, 

there is a potential for race conditions for APPENDs [18]. 

  

University of Manchester Approach 

 The data structure representation in the prototype Manchester Dataflow 

Machine was proposed by the research group at the University of Manchester 

[41].  The implementation combines the concept of streams (i.e., a sequence of 

values communicated between two portions of a code [41]) with conventional 

arrays.  However, in contrast to streams, the size of the structure must be known 

at the time it is created.  Thus, in this approach a finite component, defined as a 

collection of a finite sequence of elements, is regarded as the "unit" on which the 

basic storage operations are performed.     

 There are special operations exclusively used to handle finite component 

structures.  A STORE operation converts a token stream into a stored component 

and returns a pointer to the component.  Note that the STORE operation, which 

releases the pointer immediately, is unrestrained.  A FETCH is the inverse of STORE; 

it converts a component back into a token stream.  The combination of STORE and 

FETCH operations is used to communicate elements of a data structure between 
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processes.  A SELECT operation can be used to randomly access an element of a 

component.  A COLLECT operation is used to determine when all the elements of a 

component have arrived.  This restrained operation ensures that the pointer 

token is not released until all the elements of a component have been created.  An 

INCREMENT/DECREMENT operation, associated with the reference count scheme, is 

concerned with garbage collection.  

 The University of Manchester design offers advantages brought forth by 

combining the concept of streams with conventional arrays.  However, 

modification of any element(s) in an array still requires copying the entire array 

[40, 41]. 

 

EXtended MANchester Approach 

 In this approach, an enhanced array structure is used to extend the basic 

Manchester machine [36].  The machine, referred to as the EXtended MANchester 

(EXMAN) computer, alleviates the problem of memory overhead by having token 

pointers pointing to the starting location of the array and increases the access 

speed by utilizing conventional random access structures. 

  Initially an array is sequentially stored as a random access structure.  To 

perform an APPEND operation on an array, a new node is created with its value 

and index field appropriately filled.  The node is then linked to the array and a 

pointer referencing the new node is returned.  This is performed by an APPEND 

operator with three inputs, namely, the array pointer, the index, and the modified 

value.  A SELECT operation is performed by taking the pointer reference given at 

the input and traversing the linked list until the input index matches the index 

field of a node.  When a match is found, the value field of this node is returned at 

the output.  Otherwise, the required element is obtained from the original array 
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with one more access.  A reference count is associated with each node to perform 

a run-time garbage collection on the unused appended nodes.   

 Figure 20 illustrates a series of APPEND operations on array A.  The first 

APPEND operation results in a modified array with the first element changed.  

Similarly, repeated APPEND operations result in a linked list shown in Figure 21.  A 

SELECT operation is performed by taking the pointer reference given at the input 

and traversing the linked list until the input index matches the index field of a 

record.  When a match is found, the value field of this node is returned at the 

output.  For example, the select operator in Figure 20 requires the traversal of the 

nodes 3 and 2 in Figure 21.   If a match is not found in the linked list, the 

required element is obtained from the original random access array. 

 To perform a run-time garbage collection on the unused appended nodes, 

each node contains four fieldsindex, value, reference count and array number.  

A reference count indicates the number of references pointing to the node.  With 

each select operation, the array reference pointer is absorbed  

and the reference count of the node is decreased by one.  When the reference 

count reaches zero, the node is garbage collected and is returned to the free 

storage list.  The select operation in Figure 23 will therefore absorb the array 

reference pointers S and R and the reference count of node 1 will be decreased to 

one.  

 The EXMAN approach avoids excessive copying by utilizing dynamic 

pointers with conventional random access structures.  This in turn leads to a gain 

in memory space; however, disadvantages still exist.  The most obvious problem is 

the number of append operations to an array which consequently affects the 

search time for a select operation. 
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execution of the dataflow graph in Figure 20. 
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Hybrid Scheme 

 The hybrid scheme was proposed by Lee and Hurson [30, 25].  The basic 

idea behind the hybrid scheme is to associate a template, called the structure 

template, with each conceptual array.  For selective updates, this minimizes 

copying by allowing only the modified elements to be appended to the new array.   

 The basic representation of an array in the hybrid scheme is shown in 

Figure 22.  Each array is represented by a hybrid structure which consists of a 

structure template and a vector of array elements.  A structure template is 

subdivided into three fields.  The reference count field (RC) is an integer 

indicating the number of references to the array.  The location field (LOC) 

contains a string of 1's and 0's where the length of the string equals the total 

number of elements in the array.  Each location bit determines whether the 

desired array element resides in the vector indicated by either the left ("0") or the 

right ("1") pointer.   

 When an array is initially created, the status bit (S) is initialized to “0” 

indicating that the vector contains the original array.  Whenever a modification is 

made to an array with more than one reference, a new hybrid structure is created 

(the status bit set to “1”) where all the modified elements can be accessed from 

the vector pointed by the right pointer.  The sharing of array elements between 

the original and the modified array is achieved by linking the left pointer of the 

modified hybrid structure back to the original hybrid structure.  The location bits 

in the structure template can then be used to access the desired element, i.e., the 

ith location bit having a value of "0" or "1" indicates that the corresponding array 

element can be found in the vector linked to the left or right pointer, respectively. 
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 An example of a simple operation, B[i] = f(A[i]), is illustrated in Figure 23.  

Initiation of this operation first requires the selection of the element ai from array 

Ai.e., SELECT.  After performing the required function f, an APPEND operation 

then generates a new hybrid structure with its right pointer pointing to a vector 

containing only the modified element bi and its left pointer pointing back to the 

original hybrid structure.  If an append operation is performed on a modified 

array (status bit equal to “1”), all the existing elements in the modified array are 

copied to the new hybrid structure before the element is appended.  In the cases 

where the reference counts of arrays to be modified are ones, append operations 

are simplified since the elements cane be “modified-in-place” without introducing 

any side-effects. 

 The hybrid scheme also handles non-strict operationssuch as in I-

structures.  As discussed before, I-structures exploit producer-consumer 

parallelism by allowing the selection of elements before the entire structure is 

constructed.  In order to preserve the determinacy property of the dataflow 

model, the synchronization of SELECTs and APPENDs is provided by the use of 

presence bits.  In the hybrid scheme, the same kind of information is embedded 

in the structure template when an array is defined.  Therefore, whenever the 

compiler detects a construct which is suitable as an I-structure producer or 

explicitly declared by the programmer as non-strict, a structure template  is 

defined with the status bit set to zero, location bits all set to 1's, and an empty 

vector linked to the left pointer.  Once an I-structure is allocated, the pointer 

token is immediately released.  As the elements are appended to the I-structure, 

the corresponding location bit is reset to zero indicating the availability of datum.  

The synchronization between a producer and a consumer is provided by 

examining the status bit S and the location bit i to determine how the element i is 

accessed and whether it is ready for consumption (see Table 2).  If there is a 
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request to select an element which has not yet been appended, the request is 

deferred to a linked-list. 

 

TABLE 2:  The meaning of the S and i bits. 

Bits Meaning 

00 The element is in the vector pointed to by the left pointer 

01 The element has not yet been appended (the request is deferred).  

10 The element is in the hybrid structure pointed to by the left pointer  

11 The element is in the vector pointed to by the right pointer 

 

 Note that every APPEND operation to an array with a reference count 

greater than one requires the allocation of an entirely new array.  This is 

appropriate if a) the arrays are small, or b) all or most of the allocated vector 

elements are eventually used to hold the new valuese.g., updating an entire row 

or column of an array.  Unfortunately, this is not always the case; it is obviously 

impractical in terms of memory requirements to allocate the entire array for a 

single random append.  Therefore, the hybrid scheme allows array elements to be 

partitioned into blocks and then an access table is used to keep a list of pointers 

to all the blocks associated with a modified array.  By utilizing an access table, a 

search operation for a block which contains the desired element takes a constant 

time.  In addition, the concept of "allocation as required" is employed to reduce 

the memory overhead.   

 

V.2 Issues in Handling Data Structures  

 In the previous subsection, various data structure representations were 

surveyed.  Despite the advantages brought forth by each method, it is apparent 

that no single proposed method succeeds in handling data structures for all 

instances of program constructs.  All the proposals have succeeded in preserving 
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functionality, which is crucial to the dataflow model of computation.  However, in 

pursuing the optimum data structure representation, several implementation 

choices can be characterized. 

 A comparison between direct and indirect access schemes can be made 

based on several implementation issues.  Most important, in many program 

constructs, a better speedup can be obtained due to the simplification of access 

pattern since data tokens need not transit through a separate structure controller.  

In addition, the elimination of a structure storage reduces the overall hardware 

complexity as well as the communication network load.  Only a careful design in 

the compiler is needed to generate the relabeling functions. 

 However, the aforementioned advantages do not totally overshadow the 

importance of indirect access schemes.  There are desirable properties for having 

data structures temporarily stored in a separate storage.  First of all, retaining the 

concept of arrays as a single entity (at least conceptually) is important in order to 

maintain programmability.  Second, in many applications, the replication of 

arrays is often needed and the structure storage provides the opportunity for 

performing multiple reads.  Third, storing large arrays in a separate storage 

reduces the resource requirement for a frame store (see Section VII).  Finally, one 

of the attractiveness of the dataflow model of execution is the ability to tolerate 

long latency incurred during a structure operation.  Therefore, given sufficient 

amount of parallelism to keep the processor busy, these latencies can be masked 

by other independent computations (i.e., context switching).        

 The indirect access approach, however, is not free of obstacles.  When 

array elements are stored in a separate storage, in order to preserve the 

functionality principle of dataflow, even a simple operation which modifies an 

element of an array requires, at least conceptually, copying the entire array 

except for the element specified by the index.  This results in excessive processing 
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and storage overhead.  As a result, one major implementation issue is how can 

copying be reduced without violating the functionality principle of dataflow? 

 The indirect access schemes surveyed here attempt to alleviate complete 

copying while preserving the semantics of the program during array update 

operations.  Rather than copying elements which have not been updated, they are 

shared between the original and the updated structure.  Heaps attempt this by 

having common substructures to be shared.  The EXMAN approach and the 

Hybrid Scheme provide an overlapping effect of array elements which are not 

modified.  Only the updated array elements are made distinct; the EXMAN 

approach uses linked-lists while the Hybrid Scheme utilizes arrays.  In general, 

these approaches reduce the amount of copying and storage requirements.   

 Another important issue, which directly affects the performance of data 

structure operations, is the comparison between strict and non-strict structures.  

According to the dataflow principles, no element of a structure can be accessed 

before its creation.  This means that the pointer token is not released until all the 

elements of a structure are constructed.  Although the strictness property 

conforms well to dataflow semantics, in many cases it reduces the potential 

parallelism.  Non-strict operations, on the other hand, improve performance by 

allowing an element of a structure to be consumed before its complete 

production.  This type of structure is especially useful in exploiting parallelism 

between the producer and the consumer of an array.  One inherent problem with 

non-strict structures is that in many situations an element is accessed before it is 

actually stored.  Handling the deferred accesses is expensive in terms of the 

hardware overhead as well as performance.   

 The choice between strict and non-strict structure still remains a difficult 

one.  Although strict operations decrease parallelism, they make collection of 

termination signals easier [40].  From a performance point of view, unnecessary 
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delay should be avoided whenever possible.  Thus, a data structure handling 

scheme should be flexible so that both strict and non-strict structures can be 

implemented. 

 Finally, one problem which is common to all the methods based on the 

indirect access scheme is the issue of memory management.  Due to its fully 

distributed nature, implementation of data structure in a dataflow environment 

requires a memory system capable of handling concurrent accesses.  This requires 

careful considerations of issues such as memory organization, dynamic memory 

allocation, and garbage collection.  Another issue which greatly influences the 

overall performance is the partitioning and the distribution of data structure 

elements among the structure memory.  The distribution of data structures is 

strongly influenced by the organization of the target machine (e.g., the type of 

interconnection network), the program characteristics, and the program 

allocation scheme used to partition and assign subgraphs to processors.  It is clear 

that the solution to the problem of distributing data structures remains a difficult 

one and therefore requires better knowledge of concrete program 

characteristicsthe amount and kind of parallelism in a program and the type of 

structure accesses performed during program execution.  
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VI.  PROGRAM ALLOCATION 

 Similar to the conventional multiprocessors, the issue of program 

allocation is also of major interest to dataflow multiprocessors.  The proper 

allocation of tasks to processing elements (PEs) has direct effect on the overall 

performance of dataflow computers.  Therefore, in this section the issues involved 

in developing an allocation scheme that maximizes the utilization of parallelism 

embedded in the dataflow model of computation are discussed.   

 Two major issues in allocation of programs can be identified as partitioning 

and assignment [27].  Partitioning is the division of an algorithm into procedures, 

modules and processes.  Assignment, on the other hand, refers to the mapping of 

these units to processors.  The ultimate goal is to develop an efficient allocation 

scheme which avoids processor contention and at the same time reduces the 

overall network communication.  However, since these two goals are in direct 

conflict with each other, the problem is not a trivial one.  The allocation problem 

is further complicated due to the existence of variety of architectural differences 

as well as interconnection topologies.  Therefore, a single allocation scheme which 

achieves high performance for all classes of dataflow computer is a difficult if not 

an impossible task. 

 There are two main approaches to allocating subtasks of a dataflow graph: 

static and dynamic [27].  In static allocation, the tasks are allocated at compile-

time to processors using global information about the program and system 

organization.  The allocation of a given program is done only once even though it 

may be executed repeatedly.  However, one major drawback of the static 

allocation policies is that they are inefficient when estimates of run-time 

dependent characteristics are inaccurate.  A dynamic allocation policy, on the 

other hand, is based on measuring loads at run-time depending on the program 

behavior and assigning activated tasks to the least loaded processor.  The 
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disadvantage of a dynamic scheme is the overhead involved in determining the 

processor loads and allocation of tasks at run-time. 

 

VI.1 Proposed Allocation Schemes 

 In light of the discussion presented previously, it is apparent that there are 

two common goals in the allocation of programs: maximizing the inherent 

concurrency in a program graph by minimizing contention for processing 

resources.  It has been shown that obtaining an optimal allocation of a graph with 

precedences is NP-complete problem [37].  Therefore, heuristic solutions are the 

only possible approach to solving the allocation problem. 

 A number of heuristic algorithms have been developed for the allocation 

problem based on critical path list schedules [1, 30].  The basic idea behind the 

critical path list scheduling is to assign each node of a directed graph a weight 

that equals the maximum execution time from that node to an exit node (i.e., 

critical path).  An ordered list of nodes is constructed according to their weights, 

which is then used to dynamically assign nodes with highest weights to processors 

as they become idle.     

 One major problem with critical path list schedules is a result of 

communication delays among the nodes.  Enforcing only critical path scheduling, 

without considering the communication overhead associated with the 

predecessor-successor nodes assigned to different processors, will not necessarily 

minimize the overall execution time.   

 In response to this shortcoming, a number of allocation schemes have been 

proposed which considers the effects of communication costs.  One such a 

scheme, which is a variation of the critical path list scheduling, was proposed by 

Ravi et al. [38].  In this method, rather than simply choosing the topmost node on 

the list, several top candidates whose critical paths fall within a certain range are 
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considered for allocation.  From this set of candidates, a node is selected which 

maximizes savings in communication time.  To determine the actual execution 

time (i.e., computation and communication time) of a node, the program graph is 

reversed.  This procedure allows the correct communication costs to be associated 

with particular nodes, since a node is allocated after its actual successors. 

 It is important to note that the effectiveness of the scheme depends 

primarily on the range chosen for selection of a node.  It has been shown that, 

when the deviation is chosen to be very large, the scheduling of nodes no longer 

conforms to the critical path and the nodes are allocated based only on the 

minimization of communication delays.  On the other hand, when the set of 

candidates is chosen to be very small, the effectiveness of minimizing the 

communication costs diminishes [38].  Therefore, the success of this algorithm 

relies on a parameter which is difficult to generalize for arbitrary program graphs 

and their implementations on different underlying architectures. 

 To determine the proper compromise between computation and 

communication costs, Lee et al. proposed the Vertically Layered (VL) allocation 

scheme [31].  The VL allocation scheme consists of two separate phases: 

separation and optimization phase.  The basic idea behind the separation phase is 

to arrange nodes of a dataflow graph into vertical layers such that each vertical 

layer can be allocated to a processor.  This is achieved by utilizing Critical Path 

(CP) and Longest Directed Paths (LDP) heuristics.  These heuristics give the 

highest priority to the critical path for allocation and then recursively determine 

the vertical layers by finding longest directed paths emanating from the nodes 

which have already been assigned to vertical layers.  A density factor is then used 

to determine how the longest directed paths are assigned to vertical layers.  

Therefore, the CP and LDP heuristics minimize contention and inter-processor 



60 

communication time by assigning each set of serially connected nodes to a single 

PE.    

 The separation phase initially attempts to minimize the inter-PE 

communication costs by identifying as many longest directed paths as possible for 

allocation to PEs.  Unfortunately, this is done with very little information about 

the communication overhead.  Once the initial allocation is completed, more 

information regarding the relative assignment of predecessor-successor nodes and 

their inter-PE communication costs is known.  Therefore, the Communication to 

execution Time Ratio (CTR) heuristic algorithm utilizes this information to 

optimize the final allocation.  This is done by considering whether the inter-PE 

communication overhead offsets the advantage gained by overlapping the 

execution of two subsets of nodes in separate processing elements.   

 To apply the CTR heuristic algorithm, the execution time of a new critical 

path which includes the effects of inter-PE communication costs is determined.  

The type of communication behavior which resulted in the new critical path is 

then considered.  If an improvement results after applying the CTR heuristic, the 

nodes are combined into a single PE.  Since combining two parallel subsets of 

nodes into a single processing element forces them to be executed sequentially, a 

new critical path may emerge from the optimization process.  Therefore, this 

process is repeated in an iterative manner until no improvement in performance 

can be obtained by combining two subsets of nodes associated with the critical 

path. 

 To illustrate the VL allocation scheme, consider a dataflow graph shown in 

Figure 24 which is to be allocated to two PEs with inter-PE communication cost of 

5 time units.  The bold letters indicate the execution times of the nodes  After 

performing the partitioning phase using CP and LDP heuristics, the 
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Figure 24: An example of a dataflow graph.  Bold letters indicate the execution 

times of the nodes. 
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following vertically layered graph is obtained (see Figure 25.a).  Note that the 

critical path length has changed due to the inter-PE communication costs from 

nodes 2 to 3 and nodes 3 to 7.  If the node 3 is merged together with the node 5 

using CTR heuristic, the overall execution time is improved (Figure 25.b).  Note 

that no further improvements can be made and therefore the algorithm 

terminates   

 Performance analysis indicates that the proposed scheme is very effective 

in reducing the communications overhead.  For comparison, the VL allocation 

scheme showed considerable improvement over the critical path list schedule in 

the presence of inter-PE communication delays [31].  However, one potential 

drawback exists in the VL allocation scheme.  When the number of available PEs is 

small, the VL allocation scheme assigns a number of LDPs to the same PE without 

considering the interaction between the LDPs.  Although, the VL allocation scheme 

succeeds in balancing the load among the PEs, it may not always reduce the total 

execution time. 

 A more general approach to program allocation was proposed by Sarkar 

and Hennessy [42].  This method also involves determining a partition that 

minimizes the critical path length of a program graph.  However, in contrast to 

the VL allocation scheme which utilizes the CTR heuristic algorithm to reduce 

communication costs, the scheme uses a greedy approximation algorithm.  The 

algorithm begins with the trivial partition that places each node in a separate 

block.  A table which represents the decrease in the critical path length obtained 

from merging a pair of blocks is maintained.  It then iteratively merges the pair of 

blocks that results in the largest decrease in the critical path length.  The 

algorithm is terminated when no remaining merger could possibly reduce the 

critical path length. 
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Figure 25.a:  Vertically Layered graph of Figure 24 on two PEs with inter-PE 

communication delay of 5 time units.  The new critical path length 

is 39 time units. 
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Figure 25.b:  After merging nodes 3 and 5 on the same PE using CTR heuristics.  

The new critical path length is 36 time units (worst case). 
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VI.2 Issues in Program Allocation      

 Although a number of proposed allocation schemes has been reviewed, one 

major problem still remains unresolvedthe issue of handling dynamic 

parallelism.  As discussed in Section II, the dynamic dataflow model of execution 

permits simultaneous firing of multiple instances of a node.  In theory, this 

increases both the asynchrony and parallelism of dataflow graphs.  For example, 

consider the implementation of a loop schema.  A dynamic architecture unfolds 

the loop at run-time by generating multiple instances of the loop body and 

attempts to execute the instances concurrently.  However, since a single PE does 

not allow two simultaneous executions of a node, mapping the source dataflow 

graphs to processors without special provisions results in the inability to fully 

exploit the maximum parallelism.   

 One solution is to provide a code-copying facility, where an instruction 

within a code block is duplicated among the available resources.  Arvind has 

proposed a mapping scheme in which the instructions within a code block (called 

the logical domain) are mapped onto available PEs (called the physical domain) 

based on a hashing scheme [11].  For example, if a physical domain consists of n 

PEs, then the destination PE number can be PEbase + i mod n, where i is the 

iteration number.  This will distribute the code uniformly over the physical 

domain.  Since each of the n PEs has a copy of the code, n iterations may be 

executed simultaneously.  However, since not all program constructs can be 

unfolded in this manner, the question still remains as to how effectively dynamic 

parallelism can be detected at compile-time. 

 Another important issue to consider in program allocation is the 

granularity of partitions.  Although the dataflow model of computation exposes 

fine-grain parallelism embedded in a program, in practice there are advantages to 

adopting a more coarse-grain approach.  Most important, to reduces 
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communication costs between predecessor-succesor nodes by having a group of 

instructions execute on the same processor.  The question then becomes what is 

an appropriate granularity?  Due to the syntax structure of programs, code blocks 

(i.e., instances of a loop or user defined functions) adheres naturally to 

decomposition.  Such partitions can also simplify resource management involved 

in allocation of frames associated with code blocks [14].  However, since a single 

code block may contain considerable amount of parallelism, such a coarse-grain 

partition may severely degrade the performance.   

 Sarkar and Hennessy suggest that the optimal granularity should be 

dictated the trade-off between parallelism and the overhead of exploiting 

parallelism [43].  As mentioned before, fine granularity execution is inefficient on 

dataflow multiprocessors due to enormous scheduling and communication 

overhead.  On the other hand, determining the level of granularity by language 

constructs causes the programming style to drastically affect the system 

performance.  In their approach, the optimal granularity is dictated by 

performance characteristics.  The proposed compile-time partitioning algorithm 

determines each partition based on the cost function that considers execution 

time, communication overhead, and scheduling overhead.  The algorithm begins 

with a trivial partition that places each node in a separate subgraph.  For each 

iteration, a subgraph with the largest cost function is merged with another 

subgraph that yield the smallest cost function.  At the same time, a cost history is 

maintained.  This is repeated until all the nodes have been merged into a single 

subgraph.  The cost history is then used to identify and reconstruct the iteration 

with the best partition. 
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VII.  RESOURCE REQUIREMENTS IN DATAFLOW 

 The major motivation behind dataflow research is to expose as much 

parallelism as possible in a given program.  However, studies have shown that the 

dataflow execution model may be too successful in this regard [14].  In general, 

parallel execution requires more complex resource management than sequential 

execution.  As parallelism increases, more resources are required to fully exploit 

such concurrency.  If a program contains excess amount of parallelism, 

precautionary measures must be taken to prevent the machine from saturation 

and even deadlock. Ideally, sufficient parallelism should be exposed to fully 

utilize the machine on which the program is running, while minimizing the 

resource requirement of the program.  In this section, the issue of resource 

management is discused.  

 In the dataflow model of execution, the storage model is represented as a 

tree of activation frames.  A code block, such as loops, may be unfolded allowing 

many iterations to be active at the same time; therefore, the invocation tree can 

branch with arbitrary large degree.  Variables in a dataflow program denote arcs 

in the graph.  Although a token carries a data on an arc, a certain amount of 

storage is implicitly required to represent the data value.  For example, consider 

TTDA which employs Waiting-Matching units.  Tokens which are waiting for 

partners occupy storage in the Waiting-Matching unit.  Even architectures which 

utilize direct matching schemes must allocate storage in the frames.  Thus, one 

measure of the storage requirement of a dataflow program is the number of 

tokens in existence. 

 A study performed by Arvind and Culler shows that under the ideal case 

(i.e., unlimited resources and zero communication latencies) considerable 

parallelism exists in many programs [14].  Of course, such excessive parallelism 

cannot be fully exploited in practice.  Even when the number of processors is 
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reduced, the storage requirement for waiting tokens will not necessarily decrease.  

This is due to the fact that under the dynamic dataflow model of execution there 

exists a significant amount of exposed yet unexploited parallelism.  Limiting the 

number of processors constrains the actual number of executable nodes; however, 

the remaining nodes are scheduled with resource requirements close to that of 

the ideal case.  

 In order to reduce the resource requirements of a program, constrain must 

be placed on its execution so that less parallelism is exposed.  Culler and Arvind 

suggested placing a limit on the unfolding of loops which is the source of 

parallelism in many programs [14].  This is achieved by introducing an artificial 

data dependence between iterations.  An addition gate is place on the output of 

the predicate operator which inhibits new iterations from starting unless a trigger 

token is present at the control input to the gate.  The bounds on unfolding can be 

determined at run-time according to the problem size and number of processors. 

 The loop bounding approach to reduce the resource requirements of 

dataflow program still require extensive research.  Thus, one of the main 

challenge that remains is the appropriate bounding of loops to reduce useless 

parallelism.  In other words, when a program unfolds, a major portion of it 

allocates resources and then wait until data becomes available.  The proper 

detection of this useless parallelism for a broad class of programs will be the key 

to allowing large scientific programs to be executed effectively on dataflow 

machines.                                

 

VIII.  CONCLUSION 

 There is no question that dataflow computing has matured considerably in 

the past decade.  With the knowledge gained from the pioneering works such as 

Static Dataflow Machine and TTDA, dataflow computing has experienced 
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tremendous growth. In addition, the ground breaking advances from the 

development of current dataflow projects indicate that high performance dataflow 

machines may soon become a reality.  However, before a successful 

implementation of dataflow machines is possible, the various issues discussed in 

this article must be resolved. 

 The handling of data structures still remains a formidable problem to 

resolve.  It is clear that the solutions presented in this article do not fully satisfy 

all the requirements of the dataflow model of execution.  For example, the 

concept of the direct access scheme (i.e., token relabeling scheme) is more 

consistent with the semantics of the dataflow model resulting in improved 

performance due to simplification of access patterns.  On the other hand, indirect 

access schemes provide better resource requirements by allowing multiple reads 

from a separate structure storage.   

 In the past, a major emphasis has been place on data structure 

representations which are based on indirect access schemes [18, 30].  However, 

with the development of the token relabeling scheme, direct access approach is 

viewed as a practical alternative to the traditional indirect access methods.  There 

is obviously no question that a more extensive research is required to determine 

the appropriate strategy for representing data structuresdirect or indirect 

access.  Many advocates of indirect access schemes suggest that the ability of 

dataflow computers to tolerate long latencies will mask the overhead involved 

during data structure operations.  Therefore, a major study is needed to evaluate 

the tradeoff between direct and indirect schemes in order to utilize advantages 

offered by both methods.  For example, the direct scheme is appropriate for most 

array operations while indirect schemes are suitable for pointer accessing or table 

lookup applications [19].  This will require a careful analysis of concrete program 

characteristicsthe amount and kind of parallelism in a program, the size of data 



70 

structures, and the kinds of structure accesses performed during program 

execution. 

 The issue of program allocation is as old as parallel processing.  With the 

current dataflow proposals adapting a multiprocessor organization, the proper 

partitioning of programs into modules or processes and mapping of these units to 

processors will have a direct implication on the success of dataflow computers.  

The main objective in program allocation is to maximize the parallelism in a 

program while minimizing the communication costs between predecessor and 

successor nodes.  In order to achieve this compromise effectively, an appropriate 

granularity must be chosen for the partitions which can maximally utilize the 

architectural features of the target machinee.g., the type of interconnection 

network and the organization of the processing element.   

 Handling dynamic parallelism is another area in program allocation which 

requires additional research.  An analysis of static dataflow graph representation 

of a program reveals only a portion of the potential parallelism.  A simple solution 

of providing a code-copying facility may cause resources to be overcommitted.  

Therefore, a careful coordination of theses two interrelated issues (program 

allocation and resource requirements) is required to successfully manage and 

exploit the ample parallelism that exists in many programs. 

 It is clear that the issues discussed in this article are all important problem 

to resolve before dataflow computers can fulfill the promise of delivering 

substantial computing power.  The topics presented in this article are by no mean 

exhaustive.  However, it is also clear that the problem of handling data structures, 

program allocation, and resource management pose an arduous challenge to 

dataflow researchers.  These crucial issues will require an extensive study of 

program behaviors to provide a better assessment of the problems.    
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