
Vol.:(0123456789)1 3

Multimedia Systems (2020) 26:479–493
https://doi.org/10.1007/s00530-020-00653-w

REGULAR PAPER

Experimental study of QoE improvements towards adaptive HD video
streaming using flexible dual TCP‑UDP streaming protocol

Kevin Gatimu1 · Arul Dhamodaran1 · Taylor Johnson1 · Ben Lee1

Received: 19 September 2018 / Accepted: 30 April 2020 / Published online: 2 June 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
The Flexible Dual TCP-UDP Streaming Protocol (FDSP) combines the reliability of TCP with the low latency of UDP, thus
providing transport layer improvements towards maintaining high QoE of multi-bitrate videos in adaptive streaming. FDSP
delivers the more critical parts of the video data via TCP and the rest via UDP. FDSP also uses Bitstream Prioritization (BP),
a sliding scale that determines the proportion of video data that is sent using TCP. BP can be adjusted according to the level
of network congestion. FDSP-based streaming reduces total rebuffering time by over 90%, and rebuffering instances by 50%
in many cases compared to TCP-based streaming. At the same time, packet loss reduces by over 75% for most BP levels
compared to UDP-based streaming. In addition, FDSP-based streaming is potentially more suitable for adaptive streaming
compared to the state-of-the-art TCP-based HTTP Adaptive Streaming (HAS), which is often plagued by high latency and
high bandwidth requirements. In contrast, FDSP requires significantly less bandwidth than TCP in congested networks while
exhibiting more stable client buffers.

Keywords Low latency streaming · Hybrid protocol · FDSP · DASH · Adaptive video streaming · QoE

1 Introduction

Global Internet traffic is projected to increase nearly three-
fold between 2016 and 2021, with video accounting for
82% of the total traffic, of which 13% will be live video [1].
Currently, consumer video is dominated by High Defini-
tion (HD), but higher resolutions such as 4K are gaining
mainstream popularity, with up to 10% market penetration in
the US alone [2]. Furthermore, there is an increasing num-
ber of video streaming devices and platforms being added
globally everyday. For instance, the current 2.7 billion LTE

subscribers are expected to double by 2023, including 1
billion 5G subscribers. All these factors will continue to
increase global network congestion and pose even greater
challenges to seamlessly delivering video at HD/4K resolu-
tion and beyond.

The unicast delivery model used in major Video on
Demand (VoD) services such as Netflix, Hulu, and Amazon
Video further exacerbates this situation. Since each client
requests video directly from a server, the bandwidth require-
ments grow rapidly as the number of clients increases. VoD
content providers have mitigated some of the increased
bandwidth demands by decentralizing their infrastructure
through Content Delivery Networks (CDNs), which brings
proxy servers closer to end-users.

Another major development in streaming high quality
video over networks with limited and varying bandwidth
resources is HTTP Adaptive Streaming (HAS). In HAS, the
client dynamically adjusts the video quality according to
perceived network conditions by requesting video from a
selection of different bitrate versions. That is, the higher the
available bandwidth, the higher the selected video bitrate
and its corresponding quality.

The HAS model introduces a number of factors that
influence viewers’ Quality of Experience (QoE). These

Communicated by B. Li.

 * Kevin Gatimu
 gatimuk@eecs.oregonstate.edu

 Arul Dhamodaran
 dhamodaa@eecs.oregonstate.edu

 Taylor Johnson
 johnstay@eecs.oregonstate.edu

 Ben Lee
 benl@eecs.oregonstate.edu

1 School of Electrical Engineering and Computer Science,
Oregon State University, Corvallis, OR 97331, USA

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

480 K. Gatimu et al.

1 3

include startup delay, rebuffering time and instances,
bitrate switching frequency, and average video bitrate [3].
The main goal of improving QoE is minimizing startup
delay and rebuffering as they have the greatest impact on
viewers and are significantly affected by network conges-
tion and thus latency [4]. Startup delay in HAS is often
20 seconds or more because two or more substreams,
typically 10 seconds each, need to be buffered prior to
playout [5]. Such a high startup delay is acceptable for pre-
recorded content (e.g., movies) as this maximizes a client’s
video quality with reduced rebuffering. However, every
1-second increase in startup delay increases the video
abandonment rate by 5.8%, and viewing time decreases
by 5.02% when rebuffering exceeds just 1% of the video
duration. [4]. Furthermore, low latency is critically impor-
tant for live streaming as well as subscription-based live
video services such as Internet Protocol television (IPTV),
where channel switches need to be performed with hardly
any noticeable delay.

Transmission Control Protocol (TCP) is the underlying
transport protocol of HAS, and it provides transport services
such as reliable in-order delivery, congestion control, and
flow control. As a result, applications which rely on TCP
often experience high latency, and this adversely affects the
HAS model as well. On the other hand, the User Datagram
Protocol (UDP) is a low-latency alternative without the
services provided by TCP. Our hybrid streaming protocol,
called Flexible Dual TCP-UDP Streaming Protocol (FDSP),
combines the reliability of TCP with the low latency of UDP
through a simple application-layer combination, thus elimi-
nating special network-layer modifications or additional
protocols [6–9]. This is especially important for media con-
tent providers who need to deploy videos to heterogenous
networks and diverse devices. Our initial simulation studies
of FDSP have shown that it is effective in improving direct
device-to-device (D2D) streaming in a wireless local area
network [6]. The basic FDSP was then improved by adding
Bitstream Prioritization (BP), where a percentage of more
important elements of the H.264 bitstream were prioritized
via TCP transmission [7, 8]. This was followed by a study
using a client-server VoD testbed, which showed that FDSP-
based streaming achieves lower latency and less packet loss
than TCP-based and UDP-based streaming, respectively [9].

This paper extends the work in [9] to show that FDSP
is a suitable protocol for future integration into the trans-
port layer of today’s overwhelmingly TCP-based adaptive
streaming systems for VoD. Therefore, in addition to pro-
viding a discussion of FDSP in the context of video stream-
ing server-client systems, for completeness, this paper pre-
sents a performance comparison among FDSP, TCP, and
UDP for multiple bitrate versions of videos in congested
networks. Our study shows that FDSP utilizes significantly
less bandwidth resulting in better QoE than TCP for different

video bitrate versions. Therefore, FDSP has the potential for
improving adaptive streaming in the following ways:

1. FDSP can sustain a particular bitrate version of video
longer than TCP in congested networks with less packet
loss and rebuffering. This can decrease the frequency of
bitrate switches and increase average video bitrate.

2. The FDSP client buffer is more stable than in TCP-based
streaming. This provides the client with a more relia-
ble measure for assessing the available bandwidth and
developing more accurate buffer-based adaptation algo-
rithms [10]. This is in accordance with the DASH imple-
mentation guidelines, which emphasizes the importance
of a rate adaptation algorithm to smooth out fluctuations
in available bandwidth [11].

The rest of this paper is organized as follows. Section 2
provides a background of HAS, FDSP with BP, and UDP
firewall traversal. Section 3 discusses the related work. Sec-
tion 4 describes the experiment setup using a physical test-
bed. This is followed by a discussion of the results in Sect. 5.
Finally, Sect. 6 concludes the paper and discusses possible
future work.

2 Background

2.1 HAS

Several HAS implementations exist, including propri-
etary ones such as Microsoft Smooth Streaming (MSS)
[12], Adobe HTTP Dynamic Streaming [13], and Apple’s
HTTP Live Streaming (HLS) [14], as well as the open-
source standard, Dynamic Adaptive Streaming over HTTP
(DASH) [15]. In HAS, each video on the server is encoded
into different bitrate versions called representations. Each
representation is subdivided into 2–10-s segments. The basic
idea is for a client to send an HTTP request to a server for
a segment whose encoded bitrate can be supported by the
current available bandwidth. The client adapts to the varying
available bandwidth using a bitrate adaptation algorithm to
request segments from different representations. In general,
the higher the available bandwidth, the higher the bitrate of
the requested segment.

Bitrate adaptation algorithms can be broadly classified
into three major categories: client-side, server-side, and
network-level [16]. This paper will focus on client-side
algorithms, which can be further classified into throughput-
based, buffer-based, and hybrid [16]. In general, throughput-
based methods select video bitrates according to bandwidth
estimation while buffer-based methods do so based on a tar-
get client buffer occupancy. Hybrid methods are a combina-
tion of the two. There is a growing consensus on the greater

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

481Experimental study of QoE improvements towards adaptive HD video streaming using flexible…

1 3

importance of analyzing buffer occupancy compared to
bandwidth estimation towards developing bitrate adaptation
algorithms. For instance, Huang et al. demonstrated the inef-
fectiveness of bandwidth estimation [17], especially when
there are competing flows, and proposed a buffer-based
approach to bitrate adaptation [10]. Similarly, Spiteri et al.
ignored bandwidth estimation in favor of buffer occupancy
[18]. Furthermore, Yin et al. formulated an optimization
model between buffer occupancy and bandwidth estimation,
and found that their effectiveness for bitstream adaptation
was limited by the latter [19]. Our study on FDSP-based
streaming showed that it exhibits a more stable client buffer
compared to TCP-based streaming. Therefore, FDSP pro-
vides a more reliable reference in the transport layer for
designing better buffer-based bitrate adaptation algorithms.
This is important, especially given the growing evidence of
how unreliable bandwidth estimation can be.

2.2 FDSP overview

This section provides an overview of FDSP, including its
architectural features and video streaming using substreams.
For more details, see [6, 7] and [8]. FDSP is a hybrid stream-
ing protocol that combines the reliability of TCP with the
low latency characteristics of UDP. Figure 1 shows the
FDSP architecture consisting of a server and a client.

At the server, the H.264 Syntax Parser processes video
data in order to detect critical H.264 video syntax elements
(i.e., Sequence Parameter Set (SPS), Picture Parameter Set
(PPS), and slice headers). The MPEG-TS Packetizer within
the Demultiplexer (DEMUX) module then encapsulates all
the data according to the RTP MPEG-TS specification. The
DEMUX module then directs the packets containing critical
data to a TCP socket and the rest to a UDP socket as Dual
Tunneling keeps both TCP and UDP sessions simultaneously

active during video streaming. The BP Selection module
sets the Bitstream Prioritization (BP) parameter, which is
a percentage of I-frame data that is to be sent via TCP in
addition to the original critical data. At the client, the Mul-
tiplexer (MUX) sorts TCP and UDP packets based on their
RTP timestamps. This reordering is essential for the H.264
Decoder to decode incoming data correctly.

When a stream is initiated, the FDSP server transmits
the packets for the first 10-second substream. All the TCP
packets for this substream (T

1
…T

n
) must be received (i.e.,

buffered) before playback begins. This startup delay (T
init

) is
low since only the TCP portion of the data is sent rather than
the whole 10 seconds of video. To minimize rebuffering,
the TCP packets for the next substream are sent at the same
time as the UDP packets (U

1
…U

n
) for the current substream

through a process called substream overlapping as illustrated
in the transmission stream section of Fig. 2. In this particular
example, note that the TCP packets for substream 2 are all
transmitted together with UDP packets of substream 1. This
is done before transmitting the UDP packets for substream
2. Substream overlapping is repeated throughout the dura-
tion of the stream. However, when playback for a particular
substream is complete and the TCP packets for the upcoming
substream are not yet all available, the client has to wait, thus

Fig. 1 Flexible dual TCP-UDP
streaming protocol (FDSP)
architecture [6]

T1 T2 … U1 U2 T1 U3 Tn…Tn Un

U1 U2 U3 T1 UnTnU4 …T1 . . .Tn

Substream 1 Substream 2

Substream 1

Playback

Tinit Tji�er

Playout deadline
for substream 1

Transmission
stream

Receiver
stream

Substream 2

Fig. 2 Substream overlapping. Each packet is either UDP (U) or TCP
(T), where the subscript represents the packet number within a sub-
stream

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

482 K. Gatimu et al.

1 3

causing a rebuffering instance. The playout deadline for all
subsequent packets is then incremented by the rebuffering
time.

2.3 UDP firewall traversal

FDSP’s TCP-UDP hybrid form is a useful and relevant tech-
nology for current innovations in HAS and video streaming
transport in general. Even though HAS is primarily built on
HTTP/TCP mainly due to HTTP’s ability to traverse network
address translators (NATs) or firewalls [20], UDP-based
technologies are also critical to supplementing the latest
HAS systems, e.g., as in CDN-P2P architectures (see Sect. 3
for more details on UDP-based streaming). As a result, there
exist several UDP firewall traversal techniques.

For example, Peer5 offloads up to 98% of CDN band-
width [21] via Web Real-Time Communications (WebRTC),
which is a popular open-source project that provides APIs
for UDP-based peer-to-peer (P2P) connections. WebRTC
provides a practical example of how UDP-based transport
can traverse NATs. Similarly, UDP NAT Traversal can also
be extended to additional networking scenarios including the
UDP portion of FDSP streaming servers and clients.

For instance, consider two hosts within individual NAT-
protected private networks that wish to establish a UDP con-
nection. This could be a video server attempting to send a
client UDP data via FDSP streaming. An intermediate well-
known globally reachable server can be used to establish
UDP addresses and ports for both hosts prior to direct com-
munication. This is achieved using protocols such as Session
Traversal Utilities for NAT (STUN), Traversal Using Relay
around NAT (TURN), and Interactive Connectivity Estab-
lishment (ICE) [22]. Each host requests a public IP address
and port number from a STUN server. This creates an exter-
nal NAT address that can be used for direct connections,
including UDP, between the hosts. In some special cases
(e.g., symmetric NATs), a proxy server connection for data
transport is also needed via TURN. A host can build multi-
ple IP and port pair candidates for connecting to other hosts
by making a series of requests to a STUN server. Finally,
ICE determines the best candidate for creating a connection.
STUN is preferred over TURN since it is faster and does not
require a relay service.

3 Related work

TCP is the default transport protocol for HAS, but it exhibits
shortcomings mainly due to latency. TCP’s reliable trans-
mission requires available bandwidth that is about twice the
bitrate of video for satisfactory streaming performance [23].
In addition, the slow-start mechanism results in initial low
throughput that requires pre-buffering as well as rebuffering

when idle connections are restarted [24]. Furthermore, when
congestion occurs, the sender retransmits TCP packets while
halving the transmission rate. These factors result in low
TCP throughput, which further jeopardizes low-latency
streaming.

Since low latency is vital towards meeting the most sig-
nificant QoE metrics in HAS, i.e., startup delay and rebuff-
ering [4], several strategies have been proposed to either
decrease latency or improve startup delay and rebuffering.
For instance, reducing the segment size to just a few seconds
is commonly used to decrease startup delay. However, this
increases the total number of segments and, therefore, the
number of client HTTP requests. These requests use pre-
cious bandwidth at a rate of one round-trip time (RTT) per
video segment. For instance, a client that requests 2-s video
segments on a network path with an RTT delay of 300 ms
will experience 300 ms of additional delay every 2 s. FDSP
drastically decreases latency by transmitting most of the data
via UDP rather than HTTP/TCP.

Chakareski et al. used multiple TCP connections in con-
junction with Scalable Video Coding (SVC) [25] to decrease
latency. Packets belonging to higher quality bitstreams in
the SVC hierarchy were transmitted via better quality TCP
connections. Therefore, these packets were less prone to
retransmissions thus reducing delay in the transport layer.
However, there is still potential for significant delay in the
application layer due to buffering video segments (typically
10-s). FDSP’s dual streaming significantly reduces applica-
tion layer delay by only buffering the TCP portions of future
segments while streaming the UDP portion of the current
segment. In addition, FDSP’s implementation is orthogonal
to multipath-TCP schemes.

Swaminathan et al. used HTTP chunked transfer encoding
to disrupt the correlation between latency and segment dura-
tion, particularly in live streaming [26]. This was done by
using partial HTTP responses rather than waiting for com-
plete responses (i.e., full segments) to be generated by the
server. Houze et al. also used HTTP chunked encoding, but
to supplement an application layer multi-path TCP streaming
scheme [27]. Here, video frames were subdivided in propor-
tion to network path speeds and reassembled by the client,
thereby reducing latency and rebuffering. However, HTTP
transfer chunked encoding can lead to extra overhead due to
the increased volume of HTTP transfers. This is especially
the case in congested networks, where timeout issues can
occur when complete HTTP responses are not assembled
punctually [28]. Rather than requiring chunked encoding,
FDSP is readily compatible with basic HTTP while still
reducing latency and rebuffering. At the same time, HTTP
chunked encoding is an orthogonal issue and could option-
ally be implemented on FDSP.

Alternatively, HTTP/2 provides server push mechanisms
that allow the client receives multiple video segments

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

483Experimental study of QoE improvements towards adaptive HD video streaming using flexible…

1 3

per request instead of just a single segment [29–31]. This
reduces the overall time needed for the client-server request-
response mechanism, thus reducing latency. However,
HTTP/2 is not as widely available as the more established
HTTP/1.1. HTTP/2 only has 15% worldwide deployment
and, at a current growth rate of 5% additional coverage every
year, it has a long way to go before becoming a widely rec-
ognized standard [32]. However, FDSP is a simple applica-
tion-layer combination of UDP and TCP, making it compat-
ible with HTTP/1.1. FDSP’s straightforward implementation
also makes it compatible with HTTP/2.

UDP is well-suited for low-latency applications as it lacks
the extra overhead necessary for TCP’s features, such as flow
control and reliable delivery. However, UDP’s simplicity
can result in packet loss, especially in congested networks.
In addition, the lack of congestion control can lead to deple-
tion of network resources due to bandwidth over-utilization,
placing UDP out of favor compared to TCP in the broader
Internet landscape. Nevertheless, UDP’s low-latency offers
an attractive option for contemporary HAS systems by sup-
plementing CDNs with UDP-based P2P networks [33, 34].
This helps content providers lower deployment and mainte-
nance costs [35]. At the same time, P2P networks improve
live streaming latency by decreasing HTTP requests made
to CDN servers [36, 37]. In fact, CDN caching can increase
live streaming delay by 15-30 seconds [38]. CDN-P2P archi-
tectures have been commercialized for some time now by
companies such as ChinaCache [33] and Akamai [34]. These
hybrid architectures primarily rely on CDNs for HTTP-based
retrieval of initial or critical video segments while using P2P
networks for bandwidth relief or for retrieving future seg-
ments. Similarly, FDSP prioritizes the more important parts
of the video bitstream via TCP while offloading the rest to
UDP. Therefore, it can be integrated into a CDN-P2P-like
framework, where the UDP portion of FDSP, in particular,
can be reserved for a P2P network.

The work closest to ours is hybridization efforts at the
transport layer to supplement the low latency and low over-
head of UDP with TCP-like features [39–42]. Velten et al.
initially proposed the Reliable Data Protocol [39], which
was designed to be a minimal variation of TCP for bulk
data transfer with simplified flow control, buffering, and
connection management. Bova and Krivoruchka followed
this with the improved Reliable UDP (RUDP) [40]. RUDP
extends UDP mainly by making some features mandatory,
e.g., packet retransmissions, in-order delivery, and flow con-
trol. However, it is not standardized and is primarily limited
to specific tasks, e.g., Microsoft’s proprietary version for its
TV software, Mediaroom [41]. There are also several RUDP-
like protocols, but they are mostly application-specific. For
example, Floyd et al. proposed the Datagram Congestion
Control Protocol (DCCP), which adds congestion control to
streaming media but without reliable in-order delivery [42].

FDSP is also a hybrid streaming protocol, in that the services
it provides fall somewhere between pure TCP and pure UDP.
However, FDSP has an advantage over other hybrid methods
because it simply uses the existing TCP and UDP protocols
without any modification to either.

More recently, Google has done work on an experimental
transport protocol built on UDP called Quick UDP Internet
Connections (QUIC) [43]. Its main goal is to improve the
performance of TCP-based applications by reducing latency
and connection time. This is achieved by customizing UDP
with encryption support, real-time bandwidth estimation,
and bitstream compression. However, QUIC has been shown
to have higher protocol overhead than TCP at low video
bitrates [44]. On the other hand, FDSP demonstrates good
performance across a wide range of video bitrates, includ-
ing low ones.

4 Experiment setup

As in our previous work [9], the experimental testbed is
shown in Fig. 3, which consists of a client-server pair and a
traffic controller. The client and the server are each running
VLC Media Player [45] on Mac OS X. The following modi-
fications were made to integrate FDSP with BP into VLC:

1. Simultaneous streaming via UDP and TCP protocols.
2. Parsing H.264 video data at the server and subdividing

it into TCP-bound and UDP-bound elements.
3. Reordering TCP and UDP packets and reconstructing

the H.264 bitstream at the client prior to decoding.

The traffic controller, running on CentOS, connects the
server to the client via a network bridge across interfaces
eth2 and eth3, respectively. The Linux traffic control (tc)
utility is then used to perform traffic control on the network
bridge, which, in turn, sets the available bandwidth. The
tc configures the Linux kernel primarily through queueing
disciplines (qdiscs). A qdisc is an interface between the
kernel and a network interface, where packets are queued
and released according to tc settings. These settings are then

Fig. 3 Experiment testbed. The client consumes video provided by
the server, while the traffic controller sets the level of network con-
gestion

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

484 K. Gatimu et al.

1 3

used to create different levels of network congestion. For
example, a loss setting drops packets from the qdisc accord-
ing to a specified percentage, while a delay setting prolongs
the duration the packets spend in the qdisc.

This testbed provides a physical platform for two sets
of experiments. The first is a fundamental video streaming
comparison among the relevant protocols, i.e., FDSP, UDP,
and TCP. This is used to corroborate our findings in favor
of FDSP from our simulation-only device-to-device stud-
ies [6–8]. The second set of experiments are then used to
explore the advantages of FDSP over TCP towards future
integration into HAS. The rest of this section details each
set of experiments, while the corresponding results are dis-
cussed in Sect. 5.

4.1 Basic comparison of FDSP, UDP and TCP

A summary of tc parameters used to compare the three pro-
tocols is shown in Table 1. The values chosen represent an
array of Wide Area Network (WAN) scenarios that would
typically plague Internet video streaming performance. The
Delay setting, in conjunction with the other settings, was
primarily used to generate five different levels of real-world
Internet congestion [46]. The core network RTT latency1 is
about 30 ms within Europe, 45 ms within North America,
and 90 ms for Trans-Atlantic routes [47]. However, edge net-
works introduce additional latency. Therefore, Delay ranging
from 25 to 125 ms in increments of 25 ms was used for each
of the two bridged interfaces (eth2 and eth3), resulting
in a total RTT latency of 50–250 ms in increments of 50
ms. This corresponds to five different levels of congestion
dictated by RTT latency, i.e., 50 ms, 100 ms, 150 ms, 200
ms, and 250 ms. In addition, for each delay setting, the cor-
responding random Jitter value was set at 20% of the delay,
while the Duplicate setting generates duplicate packets, e.g.,
due to retransmissions. The Loss setting causes a minimum
ratio of packets to be randomly dropped by the network. The

Corrupt setting introduces a random bit error in a speci-
fied percentage of the packets. Finally, the Reorder setting
simulates multi-hop routing by further delaying a specified
percentage of packets according to the Delay and Jitter set-
tings. For brevity, the Delay setting will be used to represent
the 6-tuple settings.

The test videos used for streaming were two full HD
(1920 × 1080 @30fps) 30-second clips from an animation
video, Bunny, and a documentary video, Nature. These vid-
eos are encoded using x264 with an average bit rate of 4
Mbps and four slices per frame. They were then streamed
from the server to the client using FDSP, TCP, and UDP.
For each streaming protocol, the five different levels of net-
work congestion were created via the network congestion
settings. Furthermore, FDSP-based streaming was done for
five different BP values (0%, 25%, 50%, 75%, and 100%) per
congestion level. The general structure of the tc command
applied to each interface is illustrated in the example below.
tc qdisc add dev eth2 root netem delay

50 ms 10 ms loss 0.2% duplicate 0.2%
corrupt 0.2% reorder 0.2%

4.2 Comparison of FDSP and TCP in multi‑bitrate
streaming

For multi-bitrate streaming, the tc settings were chosen to
control the amount of available bandwidth corresponding
to different video bitrates. The general structure of the tc
command applied to each interface is given by the example
below:
tc qdisc add dev eth2 root tbf rate

5mbit latency 50ms burst 625
The token bucket filter (tbf) is a packet queue model

that releases tokens according the ratio between the rate
parameter, i.e., the desired available bandwidth, and the ker-
nel frequency. The burst parameter must be set to at least
this ratio in bytes. In this example, the rate is 5 Mbps and
the kernel frequency is 1000 Hz for our testbed, which yields
a burst of 625 bytes. A packet at the head of the queue is
transmitted once there are enough tokens corresponding to
the packet size in bytes.

The test videos consist of three sets of full HD (1920
× 1080 @30fps) clips (approximately 2.5 min in length).
They are Bunny2 (an animation), Bears (a documentary),
and Hobbit (a movie trailer). Each video set includes three
bitrate representations of 1 Mbps, 2 Mbps, and 4 Mbps.
These videos were also encoded using x264 with four slices
per frame. The videos were then streamed using FDSP and
TCP in four different available bandwidth settings as shown
in Table 2, which can be categorized as static and dynamic.
The static settings indicate constant available bandwidth,
while the dynamic settings include upper and lower limits
of available bandwidth that oscillate with a 4-s duty cycle,

Table 1 Network congestion settings for for tc

Parameters Value(s)

Bridge interface eth2, eth3
Delay (ms) 25, 50, 75, 100, 125
Jitter (ms) 5, 10, 15, 20, 25
Loss 0.2%
Duplicate 0.2%
Corrupt 0.2%
Reorder 0.2%

1 RTT latency and RTT delay are used interchangeably.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

485Experimental study of QoE improvements towards adaptive HD video streaming using flexible…

1 3

which is similar to the recommended network profiles pro-
vided by the DASH Industry Forum Guidelines [48].

Each category is further subdivided into congested and
non-congested settings. Although our results are primarily
focused on congested settings, the experiments were also
repeated for non-congested settings for completeness. In our
prior simulation studies, congestion was set at the average
bitrate of the video, which proved sufficient. However, in
our physical testbed, this severely hampered streaming, par-
ticularly with the addition of the traffic control latency
parameter, which specifically refers to network latency. Our
experiments showed that available bandwidth set at 25%
above the average video bitrate provided sufficient conges-
tion for making useful comparisons between FDSP and TCP.

5 Results

This section discusses the results of our experiments.
Sect. 5.1 analyzes the improvements of FDSP relative to
both TCP and UDP in rebuffering and packet loss ratio
(PLR) as BP increases from 0 to 100%. The corresponding
tradeoffs are also discussed in detail. In summary, as BP
increases, PLR decreases while rebuffering increases. Then,
Sect. 5.2 shows why FDSP is more suitable than TCP for
multi-bitrate streaming and, consequently, its potential as a
transport protocol for improved adaptive streaming.

5.1 FDSP improvement over both UDP and TCP

Figure 4 shows an example of basic video streaming
improvements of FDSP over TCP and UDP at 100 ms RTT
delay for Nature and Bunny. Note that this and every other
RTT delay setting is accompanied by corresponding tc
parameters as described in Table 2 and Sect. 4.1. In gen-
eral, FDSP rebuffering time is significantly lower than TCP

rebuffering time even though it increases with BP. At the
same time, PLR also decreases within a particular range of
BP. The other levels of network congestion chosen for our
experiments (i.e., 50 ms, 150 ms, 200 ms and 250 ms) show
similar results.

The rest of this subsection provides more details on
results that demonstrate the fundamental improvements of
FDSP over UDP and TCP, i.e., lower rebuffering and lower
PLR, as well as the fact that there is an optimal range of BP
that provides these improvements.

5.1.1 FDSP Improvement over TCP in Rebuffering

Reducing both rebuffering time and the number of rebuff-
ering instances is important towards improving the user’s
QoE. Figure 5 shows the total amount of rebuffering time
and instances for the different levels of network congestion.
For each congestion level, rebuffering for FDSP is shown
with different values of BP as well for TCP. For instance,
for Nature with 150 ms RTT delay, FDSP rebuffering time
ranges from 108 ms to 1616 ms, compared to 9410 ms
in TCP. In addition, the number of rebuffering instances
ranges from 2 to 3 for FDSP compared to 7 for TCP. Mean-
while, for Bunny with 150 ms RTT delay, FDSP rebuffering
time ranges from 92 ms to 1441 ms with 2 to 6 instances,

 0

 200

 400

 600

 800

 1000

 1200

 25 50 75 100
 0

 2

 4

 6

 8

 10

 12
TCP Rebuff = 3008 ms

R
eb

uf
fe

rin
g

T
im

e
(m

s)

P
LR

 (
%

)

BP (%)

FDSP Rebuffering Time
FDSP PLR
UDP PLR

 0

 200

 400

 600

 800

 1000

 1200

 25 50 75 100
 0

 2

 4

 6

 8

 10

 12

(a) Nature video

 0

 200

 400

 600

 800

 1000

 1200

 25 50 75 100
 0

 2

 4

 6

 8

 10

 12
UDP PLR = 32.71%

R
eb

uf
fe

rin
g

T
im

e
(m

s)

P
LR

 (
%

)

BP (%)

FDSP Rebuffering Time
FDSP PLR

TCP Rebuffering Time

 0

 200

 400

 600

 800

 1000

 1200

 25 50 75 100
 0

 2

 4

 6

 8

 10

 12

(b) Bunny video

Fig. 4 Rebuffering time and packet loss ratio (PLR) for FDSP, TCP, and UDP at 100 ms delay green colour indicates optimal range (colour fig-
ure online)

Table 2 Available bandwidth settings (Mbps) for comparing FDSP to
TCP

Encoded Bitrate

1 Mbps 2 Mbps 4 Mbps

Static congested 1.25 2.5 5
Dynamic congested 1–1.5 2–2.5 4–6
Static non-congested 2 4 10
Dynamic non-congested 1.75–2.25 3–5 7.5–12.5

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

486 K. Gatimu et al.

1 3

compared to 8764 ms with 5 instances for TCP. The rest of
the rebuffering results for the two videos are summarized
in Tables 3 and 4. Note that the first rebuffering instance
(Rebuff 1) is the startup delay. As can be seen, FDSP exhibits
lower startup delay than TCP for all BP values.

While FDSP is significantly better than TCP in terms
of rebuffering, it is important to note that rebuffering does
increase with BP. This is because higher BP values result in
more TCP data, which increases the chance of retransmis-
sions and thus rebuffering. A closer look at the behavior of
just FDSP is illustrated by Fig. 6, which shows the rebuffer-
ing time and instances across the different network conges-
tion levels for each BP value.

5.1.2 FDSP improvement over UDP in PLR

FDSP-based streaming results in not only less rebuffering,
but better video quality by reducing PLR. Figure 7 shows
the effect of BP on PLR across different levels of network

congestion for both Nature and Bunny. For each congestion
level, PLR is shown for FDSP with different values of BP as
well as for UDP. PLR can be minimized by increasing BP,
which leads to better video quality. For example, in Nature,
the PLR for 50 ms RTT delay decreases from 9 to 0.32% as
BP increases from 0 to 75%. Similarly, in Bunny, the PLR
decreases from 1.19 to 0.51% as BP increases from 0 to 25%.
In addition, this implies that there is an optimal range of
BP operation based on the type of video as shown in Fig. 4.
As BP increases, more packets are sent via TCP rather than
UDP. This protects them from network-induced losses. Since
PLR is due to lost UDP packets, the overall PLR decreases
as BP increases from 0% through the optimal range. Further
details are discussed in Sect. 5.1.3.

Figure 8 shows a sample of the visual improvement of
FDSP-based streaming with 0% BP over UDP-based stream-
ing in Bunny. The video frame in Fig. 8a is intact while
the frame in Fig. 8b shows the effects of packet loss under
UDP-based streaming. In such situations, the loss of just

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

B
P

 0
%

B
P

 2
5%

B
P

 5
0%

B
P

 7
5%

B
P

 1
00

%
T

C
P

R
eb

uf
fe

rin
g

T
im

e
(m

s)

Delay (ms)

Rebuff 1
Rebuff 2
Rebuff 3
Rebuff 4
Rebuff 5
Rebuff 6
Rebuff 7

25020015010050

(a) Nature video

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

B
P

 0
%

B
P

 2
5%

B
P

 5
0%

B
P

 7
5%

B
P

 1
00

%
T

C
P

R
eb

uf
fe

rin
g

T
im

e
(m

s)

Delay (ms)

Rebuff 1
Rebuff 2
Rebuff 3
Rebuff 4
Rebuff 5
Rebuff 6

25020015010050

(b) Bunny video

Fig. 5 Rebuffering for different levels of network congestion for FDSP-based streaming at different values of BP and TCP-based streaming

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

50
m

s
10

0m
s

15
0m

s
20

0m
s

25
0m

s

R
eb

uf
fe

rin
g

T
im

e
(m

s)

BP (%)

Rebuff 1
Rebuff 2
Rebuff 3
Rebuff 4
Rebuff 5
Rebuff 6

1007550250

(a) Nature video.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

50
m

s
10

0m
s

15
0m

s
20

0m
s

25
0m

s

R
eb

uf
fe

rin
g

T
im

e
(m

s)

BP (%)

Rebuff 1
Rebuff 2
Rebuff 3
Rebuff 4
Rebuff 5
Rebuff 6

1007550250

(b) Bunny video.

Fig. 6 An in-depth look at rebuffering time for different levels of network congestion at different values of BP. TCP has been omitted here as it
has much higher rebuffering than FDSP

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

487Experimental study of QoE improvements towards adaptive HD video streaming using flexible…

1 3

a slice header or the first few bytes of a slice renders the
rest of the slice data useless to the decoder, even if prop-
erly received. This results in the decoder performing error
concealment on the lost data as shown in slice 4 of Fig. 8b.
On the other hand, FDSP-based streaming, even at 0% BP,
protects at least the slice headers through TCP transmission,
thus making any available slice data useful to the decoder.
As a result, FDSP produces better quality video frames as
shown in Fig. 8a.

5.1.3 Optimal range of BP

Since overall rebuffering time is significantly lower in FDSP
than TCP across all BP values as shown in Fig. 4, there is an
optimal range of BP values for decreasing PLR as shown.
If BP surpasses the optimal range and becomes too high,
the network can become saturated with TCP packets. This
will cause more packets to be delayed, reordered, or lost
when there is network congestion. The TCP packets are then
more prone to retransmissions so as to guarantee in-order,

reliable delivery. Meanwhile, the IP queue at the sender is
filled with staged TCP and UDP packets. These additional
TCP packets in the IP queue then cause subsequent UDP
packets to be dropped. This is the cause of most of the PLR
when BP becomes too high. Note that additional PLR also
occurs when some UDP packets arrive at the client too late,
past the decoder’s playout deadline, and are thus also con-
sidered lost.

The frequency of I-frames can be used to categorize the
type of video, and therefore determines the optimal range of
BP. Videos such as Bunny are characterized by fast motion,
many scene changes, and a corresponding higher number of
I-frames. In fact, there are 37 I-frames in Bunny compared
to just 5 in the low-motion Nature. UDP-based streaming
PLR in low-motion videos is much lower than in high-
motion videos. For instance, as shown in Fig. 7, Nature has
2.2–4.3% UDP-based streaming PLR across all congestion
levels compared to 26.4–33.3% in Bunny. This is because
Nature’s lower I-frame frequency reduces the likelihood of
making network saturation worse.

 0

 5

 10

 15

 20

 25

 30

 35

 50 100 150 200 250

B
P

 0
%

B
P

 2
5%

B
P

 5
0%

B
P

 7
5%

B
P

 1
00

%
U

D
P

P
LR

 (
%

)

Delay (ms)

(a) Nature video

 0

 5

 10

 15

 20

 25

 30

 35

 50 100 150 200 250

B
P

 0
%

B
P

 2
5%

B
P

 5
0%

B
P

 7
5%

B
P

 1
00

%
U

D
P

P
LR

 (
%

)

Delay (ms)

(b) Bunny video

Fig. 7 PLR for FDSP-based streaming at different values of BP and UDP-based streaming for different levels of network congestion

Fig. 8 Visual comparison between FDSP-based streaming and UDP-based streaming for Bunny

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

488 K. Gatimu et al.

1 3

However, when low-motion videos are streamed via
FDSP, the introduction of TCP packets at low BP values
increases network saturation, thus increasing PLR. However,
applying higher BP values (up to 75% in the case of Nature)
lowers PLR significantly below that of UDP-based stream-
ing. On the other hand, low BP values (0–25% for Bunny)
are effective towards minimizing PLR for high-motion vid-
eos. In both cases, BP values beyond the optimal range (>
25% for Bunny and > 75% for Nature) will tend to saturate
the network with TCP packets containing I-frame data and
increase PLR. Nevertheless, PLR in this range is still less
than that of UDP-based streaming. Determining an optimal
BP range that minimizes PLR while keeping rebuffering low
based on the type of video will be left as future work.

5.2 FDSP improvement over TCP for multi‑bitrate
streaming

FDSP-based streaming improves the transmission of multi-
bitrate video representations for HAS in two ways: (1) lowers
bandwidth requirements compared to TCP-based streaming

and (2) maintains a more stable client buffer occupancy. The
lower bandwidth requirement makes FDSP-based stream-
ing more suitable in congested networks. This also lays a
foundation for more fairness when there is additional traf-
fic, including multiple video streams. At the same time, a
more stable client buffer provides a reliable reference for
developing buffer-based adaptation algorithms for adaptive
streaming. The following discusses these two improvements
in more detail.

5.2.1 Lower bandwidth requirement

Figure 9 shows the throughput results for the three sets of
videos streamed via FDSP with 100% BP in static congested
scenarios. The throughput profiles for the BP values 0%,
25%, 50%, and 75% are very similar with minor proportional
differences. FDSP-streaming required much less bandwidth
than TCP-streaming in congested networks. For instance, the
average throughput for Hobbit encoded at 4 Mbps was 2.87
Mbps at 0% BP and 2.91 Mbps at 100% BP. The average

 0

 1000

 2000

 3000

 4000

 5000

 0 20 40 60 80 100 120 140

Th
ro

ug
hp

ut
 (K

bp
s)

Time (s)

FDSP BP 100%
TCP

 0

 1000

 2000

 3000

 4000

 5000

 0 20 40 60 80 100 120 140

Th
ro

ug
hp

ut
 (K

bp
s)

Time (s)

 0

 1000

 2000

 3000

 4000

 5000

 0 20 40 60 80 100 120 140

Th
ro

ug
hp

ut
 (K

bp
s)

Time (s)

 0

 1000

 2000

 3000

 4000

 5000

 0 20 40 60 80 100 120

Th
ro

ug
hp

ut
 (K

bp
s)

Time (s)

 0

 1000

 2000

 3000

 4000

 5000

 0 20 40 60 80 100 120

Th
ro

ug
hp

ut
 (K

bp
s)

Time (s)

 0

 1000

 2000

 3000

 4000

 5000

 0 20 40 60 80 100 120

Th
ro

ug
hp

ut
 (K

bp
s)

Time (s)

 0

 1000

 2000

 3000

 4000

 5000

 0 20 40 60 80 100 120 140

Th
ro

ug
hp

ut
 (K

bp
s)

Time (s)

 0

 1000

 2000

 3000

 4000

 5000

 0 20 40 60 80 100 120 140

Th
ro

ug
hp

ut
 (K

bp
s)

Time (s)

 0

 1000

 2000

 3000

 4000

 5000

 0 20 40 60 80 100 120 140

Th
ro

ug
hp

ut
 (K

bp
s)

Time (s)

(a) Bunny2 – 1 Mbps, 1.25 Mbps bw (b) Bunny2 – 2 Mbps, 2.5 Mbps bw (c) Bunny2 – 4 Mbps, 5 Mbps bw

(d) Bears – 1 Mbps, 1.25 Mbps bw (e) Bears – 2 Mbps, 2.5 Mbps bw (f) Bears – 4 Mbps, 5 Mbps bw

(g) Hobbit – 1 Mbps, 1.25 Mbps bw (h) Hobbit – 2 Mbps, 2.5 Mbps bw (i) Hobbit – 4 Mbps, 5 Mbps bw

Fig. 9 Throughput for FDSP-based streaming with 100% BP under static congested conditions (bw bandwidth)

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

489Experimental study of QoE improvements towards adaptive HD video streaming using flexible…

1 3

throughput was lower than the average encoded bitrate for
two reasons: (1) packet loss reduced the overall amount
of data; and (2) rebuffering lengthened the playback time
and, therefore, increased the time value used in the average
throughput calculations.

In contrast, TCP-based streaming utilized practically
all of the available bandwidth. For example, the TCP
throughput for 4 Mbps Bunny2 streamed on 5 Mbps of
available bandwidth varied between ∼ 4.9 and 5 Mbps.
This is due to a couple of reasons. First, even when there
is no congestion, TCP streaming requires bandwidth that
is about twice the average video bitrate as discussed in
Sect. 3. Second, TCP transmission requires significantly
more bandwidth than FDSP due to retransmissions. For
instance, when streaming the 4 Mbps version of Bunny2
in 5 Mbps of available bandwidth, 94,477 KB of video

data was transmitted and received for FDSP-based stream-
ing compared to 155,441 KB for TCP-based streaming.
This shows that FDSP would be more suitable for adap-
tive streaming in congested networks than TCP due to
its lower bandwidth requirements. This would result in
less bitrate switching, especially in congested networks.
Furthermore, less bitrate down-switching would also raise
the average bitrate.

FDSP-based streaming also exhibited very similar
results for the dynamic congestion scenarios. However, the
video completely stalled in the case of TCP-based stream-
ing. This is because pure-TCP throughput is adversely
affected by the available bandwidth oscillation due to
the inability of TCP slow-start to achieve a sufficiently
large congestion window, which results in persistently
low throughput and increased retransmissions. In contrast,
FDSP’s UDP portion utilizes the oscillating bandwidth

Table 3 Rebuffering time and instances for Bunny

The percentage entries under protocol represent BP values for FDSP

Delay (ms) Protocol Rebuff 1 Rebuff 2 Rebuff 3 Rebuff 4 Rebuff 5 Rebuff 6 Total (ms) Instances

50 0% 8 85 – – – – 93 2
25% 12 2 114 – – – 128 3
50% 8 6 62 52 151 – 279 5
75% 122 3 7 23 3 68 226 6
100% 122 76 20 42 31 31 322 6
TCP 1147 – – – – – 1147 1

100 0% 9 73 – – – – 82 2
25% 10 154 – – – – 164 2
50% 6 473 – – – – 479 2
75% 465 237 – – – – 702 2
100% 9 159 249 358 – – 775 4
TCP 1090 – – – – – 1090 1

150 0% 9 83 – - - – 92 2
25% 25 65 105 – – – 195 3
50% 7 5 135 120 375 – 642 5
75% 479 51 158 584 118 371 1761 6
100% 34 706 26 142 40 493 1441 6
TCP 1941 755 1309 2114 2645 – 8764 5

200 0% 8 77 – – – – 85 2
25% 9 3 226 – – – 238 3
50% 33 5 129 11 665 – 843 5
75% 532 3 155 537 115 342 1684 6
100% 349 180 56 250 273 752 1860 6
TCP 2611 2813 4420 103 – – 9947 4

250 0% 60 171 – – – – 231 2
25% 8 68 177 – – – 253 3
50% 54 710 165 345 600 – 1874 5
75% 869 437 394 801 – – 2501 4
100% 175 196 85 210 934 1317 2917 6
TCP 3009 2626 2109 3376 3377 – 14497 5

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

490 K. Gatimu et al.

1 3

more effectively. Finally, neither FDSP nor TCP was nega-
tively affected by non-congested scenarios.

5.2.2 More stable client buffer occupancy

FDSP-based streaming showed more stable client buffer lev-
els than TCP-based streaming. Figure 10 shows the client
buffer occupancy for all the test videos and encoded bitrates
streamed via FDSP and TCP at different static congestion
levels. In general, FDSP-based streaming shows a consist-
ent client buffer occupancy compared to more erratic results
exhibited by TCP. This is the case for 0–100% BP for the
videos encoded at 2 or 4 Mbps and 0–75% BP for the 1 Mbps
videos. Since the client buffer behaves similarly for these BP

ranges, the results for the highest respective BP values are
shown in Fig. 10.

Among the three encoded bitrates, 1 Mbps videos
exhibit the highest proportion of TCP data when streamed
via FDSP. This is because most of the frames are so small
that they have very little data beyond the slice headers.
Consequently, protecting their slice headers via TCP trans-
mits almost all of the corresponding frame data via TCP.
As a result, FDSP-based streaming and the correspond-
ing buffer occupancy at higher BP values (beyond 75%)
greatly resembles TCP-based streaming for 1 Mbps videos.
Therefore, the recommendation is to use the FDSP client
buffer occupancy for buffer-based adaptation at the full
BP range only when streaming at higher video bitrates.
In this regard, lower video bitrates call for a more limited
BP range. A scheme that maps a given video bitrate to the
BP range that best leverages the buffer occupancy towards

Table 4 Rebuffering time and instances for Nature

The percentage entries under protocol represent BP values for FDSP

Delay (ms) Protocol Rebuff 1 Rebuff 2 Rebuff 3 Rebuff 4 Rebuff 5 Rebuff 6 Rebuff 7 Total (ms) Instances

50 0% 46 64 – – – – – 110 2
25% 117 10 – – – – – 127 2
50% 91 77 – – – – – 168 2
75% 141 100 115 – – – – 356 3
100% 253 53 – – – – – 306 2
TCP 948 – – – – – – 948 1

100 0% 26 100 – – – – – 126 2
25% 100 8 – – – – – 108 2
50% 156 7 – – – – – 163 2
75% 464 85 – – – – – 549 2
100% 505 467 – – – – – 972 2
TCP 1578 910 520 – – – – 3008 3

150 0% 37 71 – – – – – 108 2
25% 71 93 – – – – – 164 2
50% 104 10 289 – – – – 403 3
75% 789 85 130 – – – – 1004 3
100% 901 158 557 – – – – 1616 3
TCP 2112 1357 1129 1345 1507 1810 150 9410 7

200 0% 52 79 – – – – – 131 2
25% 9 116 – – – – – 125 2
50% 68 43 195 – – – – 306 3
75% 585 131 – – – – – 716 2
100% 1428 1335 911 – – – – 3674 3
TCP 2395 3012 4619 734 – – – 10760 4

250 0% 60 171 – – – – – 231 2
25% 27 54 – – – – – 81 2
50% 99 16 650 – – – – 765 3
75% 805 137 89 – – – – 1031 3
100% 1183 439 1623 – – – – 3245 3
TCP 3014 5023 4219 – – – – 12256 3

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

491Experimental study of QoE improvements towards adaptive HD video streaming using flexible…

1 3

buffer-based adaptation is beyond the scope of this experi-
mental study and reserved for future work.

6 Conclusion and future work

This paper shows that FDSP is suitable for high-quality,
low-latency HD video streaming over the Internet by com-
bining the reliability of TCP with the low-latency of UDP.
Our implementation and experiments on a real testbed
showed that FDSP results in significantly less rebuffering
than TCP-based streaming and much lower PLR than UDP-
based streaming.

Our testbed experiments also show that FDSP-based
streaming outperforms TCP-based streaming of multi-bitrate
videos in terms of lower bandwidth requirements and more
stable client buffer occupancy. As a result, FDSP can be used
to potentially improve QoE in adaptive streaming by reduc-
ing bitrate switches, increasing the average video bitrate and
providing a platform for more precise buffer-based adapta-
tion algorithms.

As future work, BP will be dynamically adjusted in a
physical testbed based on the results of an ongoing simula-
tion study that looks at the interaction of PLR and rebuffer-
ing and its effect on user QoE. Furthermore, FDSP will be
integrated into adaptive streaming to provide an orthogonal
option for adaptation algorithms via BP adjustment. Key
developments would include an optimal BP range based
on the network condition and the type of video in order to
minimize both PLR and rebuffering while also providing a
reliable buffer occupancy for an adaptation algorithm.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

 0

 1000

 2000

 3000

 4000

 5000

 6000
Bu

ffe
r L

ev
el

 (m
s)

Time (s)

FDSP BP 75%
TCP

(a) Bunny2 – 1 Mbps, 1.25 Mbps bw

 0

 1000

 2000

 3000

 4000

 5000

 6000

Bu
ffe

r L
ev

el
 (m

s)

Time (s)

FDSP BP 100%
TCP

(b) Bunny2 – 2 Mbps, 2.5 Mbps bw

 0

 1000

 2000

 3000

 4000

 5000

 6000

Bu
ffe

r L
ev

el
 (m

s)

Time (s)

FDSP BP 100%
TCP

(c) Bunny2 – 4 Mbps, 5 Mbps bw

 0

 1000

 2000

 3000

 4000

 5000

 6000

Bu
ffe

r L
ev

el
 (m

s)

Time (s)

FDSP BP 75%
TCP

(d) Bears – 1 Mbps, 1.25 Mbps bw

 0

 1000

 2000

 3000

 4000

 5000

 6000

Bu
ffe

r L
ev

el
 (m

s)

Time (s)

FDSP BP 100%
TCP

(e) Bears – 2 Mbps, 2.5 Mbps bw

 0

 1000

 2000

 3000

 4000

 5000

 6000

Bu
ffe

r L
ev

el
 (m

s)

Time (s)

FDSP BP 100%
TCP

(f) Bears – 4 Mbps, 5 Mbps bw

 0

 1000

 2000

 3000

 4000

 5000

 6000

Bu
ffe

r L
ev

el
 (m

s)

Time (s)

FDSP BP 75%
TCP

(g) Hobbit – 1 Mbps, 1.25 Mbps bw

 0

 1000

 2000

 3000

 4000

 5000

 6000

Bu
ffe

r L
ev

el
 (m

s)

Time (s)

FDSP BP 100%
TCP

(h) Hobbit – 2 Mbps, 2.5 Mbps bw

 0

 1000

 2000

 3000

 4000

 5000

 6000

Bu
ffe

r L
ev

el
 (m

s)
Time (s)

FDSP BP 100%
TCP

(i) Hobbit – 4 Mbps, 5 Mbps bw

Fig. 10 Client buffer occupancy for FDSP- and TCP-based streaming at 100% BP for 2 and 4 Mbps videos and 75% BP for 1 Mbps

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

492 K. Gatimu et al.

1 3

References

 1. VNI Global Fixed and Mobile Internet Traffic Forecasts. http://
www.cisco .com/c/en/us/solut ions/servi ce-provi der/visua l-netwo
rking -index -vni/index .html. Accessed 3 Mar 2018

 2. 4k Internet TV & Video to be Viewed by 1 in 10 US Residents,
August 2016. https ://www.junip erres earch .com/press /press -relea
ses/4k-inter net-tv-video -conte nt-to-be-viewe d-by-1-i. Accessed 3
Mar 2018

 3. Jiang, J., Sekar, V., Zhang, H.: Improving fairness, efficiency,
and stability in http-based adaptive video streaming with festive.
IEEE ACM Trans. Netw. 22(1), 326–340 (2014). https ://doi.
org/10.1109/TNET.2013.22916 81

 4. Krishnan, S.S., Sitaraman, R.K.: Video stream quality impacts
viewer behavior: inferring causality using quasi-experimental
designs. IEEE ACM Trans. Netw. 21(6), 2001–2014 (2013). https
://doi.org/10.1109/TNET.2013.22815 42. (ISSN 1063-6692)

 5. What YOU Need to Know About HLS: Pros and Cons, January
2016. http://blog.red5p ro.com/what-you-need-to-know-about -hls-
pros-and-cons/. Accessed 3 Mar 2018

 6. Zhao, J., Lee, B., Lee, T.-W., Kim, C.-G., Shin, J.-K., Cho, J.:
Flexible Dual TCP/UDP Streaming for H.264 HD Video over
WLANs. In: Proceedings of the 7th International Conference
on Ubiquitous Information Management and Communica-
tion (ICUIMC 2013), pp. 34:1–34:9. Kota Kinabalu, Malay-
sia (2013). https ://doi.org/10.1145/24485 56.24485 90(ISBN
978-1-4503-1958-4)

 7. Sinky, M., Dhamodaran, A., Lee, B., Zhao, J.: Analysis of H.264
bitstream prioritization for dual TCP/UDP streaming of HD video
over WLANs. In: IEEE 12th Consumer Communications and Net-
working Conference (CCNC 2015), pp. 576–581. Las Vegas, USA
(2015)

 8. Dhamodaran, A., Sinky, M., Lee, B.: Adaptive bitstream prioriti-
zation for dual TCP/UDP streaming of HD video. In: The Tenth
International Conference on Systems and Networks Communica-
tions (ICSNC 2015), pp. 35–40. Barcelona, Spain (2015)

 9. Gatimu, K., Dhamodaran, A., Johnson, T., Lee, B.: Experimen-
tal study of low-latency HD VOD streaming using flexible dual
TCP-UDP streaming protocol. In: 2018 15th IEEE Annual Con-
sumer Communications Networking Conference (CCNC), pp. 1–6
(2018). https ://doi.org/10.1109/CCNC.2018.83192 34

 10. Huang, T.-Y., Johari, R., McKeown, N., Trunnell, M., Watson,
M.: A buffer-based approach to rate adaptation: evidence from
a large video streaming service. In: Proceedings of the 2014
ACM Conference on SIGCOMM, SIGCOMM ’14, pp. 187–198.
ACM, New York (2014). https ://doi.org/10.1145/26192 39.26262
96(ISBN 978-1-4503-2836-4)

 11. ISO/IEC TR 23009-3:2015—Information technology—dynamic
adaptive streaming over HTTP (DASH)—Part 3: implementation
guidelines. https ://www.iso.org/stand ard/63562 .html. Accessed 3
Mar 2018

 12. Alex Z.: Smooth Streaming Technical Overview. http://www.iis.
net/learn /media /on-deman d-smoot h-strea ming/smoot h-strea ming-
techn ical-overv iew. Accessed 3 Mar 2018

 13. Adobe Systems. HTTP Dynamic Streaming. http://www.adobe
.com/produ cts/hds-dynam ic-strea ming.html. Accessed 3 Mar
2018

 14. Apple Inc. HTTP Live Streaming Internet—Draft. https ://tools
.ietf.org/html/draft -panto s-http-live-strea ming-19. Accessed 3
Mar 2018

 15. ISO/IEC 23009-1:2012—Information technology—dynamic
adaptive streaming over HTTP (DASH)—Part 1: media presenta-
tion description and segment formats. http://www.iso.org/iso/iso_
catal ogue/catal ogue_tc/catal ogue_detai l.htm?csnum ber=57623

 16. Kua, J., Armitage, G., Branch, P.: A survey of rate adaptation
techniques for dynamic adaptive streaming over http. IEEE Com-
mun. Surv. Tut. 19(3), 1842–1866 (2017). https ://doi.org/10.1109/
COMST .2017.26856 30. (ISSN 1553-877X)

 17. Huang, T.-Y., Handigol, N., Heller, B., McKeown, N., Johari, R.:
Confused, timid, and unstable: picking a video streaming rate is
hard. In: Proceedings of the 2012 Internet Measurement Confer-
ence, IMC ’12, pp. 225–238. ACM, New York (2012). https ://doi.
org/10.1145/23987 76.23988 00(ISBN 978-1-4503-1705-4)

 18. Spiteri, K., Urgaonkar, R., Sitaraman, R.K.: Bola: Near-optimal
bitrate adaptation for online videos. In: IEEE INFOCOM 2016—
The 35th Annual IEEE International Conference on Computer
Communications, pp. 1–9 (2016). https ://doi.org/10.1109/INFOC
OM.2016.75244 28

 19. Yin, X., Jindal, A., Sekar, V., Sinopoli, B.: A control-theoretic
approach for dynamic adaptive video streaming over http. SIG-
COMM Comput. Commun. Rev. 45(4), 325–338 (2015). https ://
doi.org/10.1145/28299 88.27874 86. (ISSN 0146-4833)

 20. Popa, L., Ghodsi, A., Stoica, I.: Http as the narrow waist of the
future internet. In: Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks, Hotnets-IX, pp. 6:1–6:6.
ACM, New York (2010). https ://doi.org/10.1145/18684 47.18684
53(ISBN 978-1-4503-0409-2)

 21. Peer5, 2018. https ://www.peer5 .com/. Accessed 3 Mar 2018
 22. Dutton, S.: WebRTC in the real world: STUN, TURN and signal-

ing—HTML5 Rocks. https ://www.html5 rocks .com/en/tutor ials/
webrt c/infra struc ture/

 23. Wang, B., Kurose, J., Shenoy, P., Towsley, D.: Multimedia stream-
ing via TCP: an analytic performance study. ACM Trans. Mul-
timed. Comput. Commun. Appl. 4(2), 16:1–16:22 (2008). https
://doi.org/10.1145/13520 12.13520 20. (ISSN 1551-6857)

 24. Aggarwal, A., Savage, S., Anderson, T.: Understanding the per-
formance of TCP pacing. In: Proceedings IEEE INFOCOM 2000.
Conference on Computer Communications. Nineteenth Annual
Joint Conference of the IEEE Computer and Communications
Societies (Cat. No.00CH37064), vol. 3, pp. 1157–1165 (2000).
https ://doi.org/10.1109/INFCO M.2000.83248 3

 25. Chakareski, J., Sasson, R., Eleftheriadis, A., Shapiro, O.: System
and method for low delay, interactive communication using mul-
tiple TCP connections and scalable coding, (2014). http://www.
googl e.com/paten ts/US869 9522. U.S. Classification 370/474,
370/536, 375/240.05, 709/231; International Classification
H04J3/24; Cooperative Classification H04L65/607, H04L47/32,
H04L47/10, H04L47/193, H04L47/2416, H04L65/4015,
H04L47/283, H04L65/80

 26. Swaminathan, V., Wei, S.: Low latency live video streaming using
HTTP chunked encoding. In: 2011 IEEE 13th International Work-
shop on Multimedia Signal Processing, pp. 1–6 (2011). https ://
doi.org/10.1109/MMSP.2011.60938 25

 27. Houzé, P., Mory, E., Texier, G., Simon, G.: Applicative-layer
multipath for low-latency adaptive live streaming. In: 2016 IEEE
International Conference on Communications (ICC), pp. 1–7
(2016). https ://doi.org/10.1109/ICC.2016.75115 50

 28. Hoffman, B.: Too chunky: performance and HTTP chunked
encoding (2012). https ://zoomp f.com/blog/2012/05/too-chunk
y/. Accessed 3 Mar 2018

 29. Wei, S., Swaminathan, V.: Low latency live video streaming over
HTTP 2.0. In: Proceedings of Network and Operating System
Support on Digital Audio and Video Workshop, NOSSDAV
’14, pp. 37:37–37:42. ACM, New York (2014). https ://doi.
org/10.1145/25782 60.25782 77(ISBN 978-1-4503-2706-0)

 30. Cherif, W., Fablet, Y., Nassor, E., Taquet, J., Fujimori, Y.: DASH
fast start using HTTP/2. In: Proceedings of the 25th ACM
Workshop on Network and Operating Systems Support for Digi-
tal Audio and Video, NOSSDAV ’15, pp. 25–30. ACM, New

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

493Experimental study of QoE improvements towards adaptive HD video streaming using flexible…

1 3

York (2015). https ://doi.org/10.1145/27360 84.27360 88(ISBN
978-1-4503-3352-8)

 31. Huysegems, R., van der Hooft, J., Bostoen, T., Rondao Alface, P.,
Petrangeli, S., Wauters, T., De Turck, F.: HTTP/2-based methods
to improve the live experience of adaptive streaming. In: Pro-
ceedings of the 23rd ACM International Conference on Multime-
dia, MM ’15, pp. 541–550. ACM, New York (2015). https ://doi.
org/10.1145/27333 73.28062 64(ISBN 978-1-4503-3459-4)

 32. Theedom, A.: Tracking HTTP/2 Adoption: Stagnation—DZone
Web Dev (2016). https ://dzone .com/artic les/track ing-http2 -adopt
ion-stagn ation . Accessed 3 Mar 2018

 33. Liu, X., Yin, H., Lin, C.: A novel and high-quality measure-
ment study of commercial CDN-P2p live streaming. In: 2009
WRI International Conference on Communications and Mobile
Computing, vol. 3, pp. 325–329 (2009). https ://doi.org/10.1109/
CMC.2009.152

 34. Lu, Z., Wang, Y., Yang, Y.R.: An analysis and comparison of
CDN-P2p-hybrid content delivery system and model. J. Com-
mun. (2012). https ://doi.org/10.4304/jcm.7.3.232-245. http://
www.jocm.us/index .php?m=conte nt&c=index &a=show&catid
=39&id=90(ISSN 1796-2021)

 35. Xu, D., Kulkarni, S.S., Rosenberg, C., Chai, H.-K.: Analysis of a
CDN-P2p hybrid architecture for cost-effective streaming media
distribution. Multimed. Syst. 11(4), 383–399 (2006). https ://doi.
org/10.1007/s0053 0-006-0015-3. (ISSN 0942-4962, 1432–1882)

 36. Seyyedi, S.M.Y., Akbari, B.: Hybrid CDN-P2P architectures for
live video streaming: comparative study of connected and uncon-
nected meshes. In: 2011 International Symposium on Computer
Networks and Distributed Systems (CNDS), pp. 175–180 (2011).
https ://doi.org/10.1109/CNDS.2011.57645 67

 37. Thi, ThuH, Tran, K., Jinsul, N.J.: Design and deployment of low-
delay hybrid CDN-P2P architecture for live video streaming over
the web. Wirel. Pers. Commun. 94(3), 513–525 (2017). https ://
doi.org/10.1007/s1127 7-015-3144-1

 38. Michaels, C.: HLS Latency Sucks, But Here’s How to Fix It |
Wowza (2017). https ://www.wowza .com/blog/hls-laten cy-sucks
-but-heres -how-to-fix-it. Accessed 3 Mar 2018

 39. Velten, T., Hinden, R., Sax, J.: Reliable data protocol (1984). https
://tools .ietf.org/html/draft -ietf-sigtr an-relia ble-udp-00. Accessed 3
Mar 2018

 40. Bova, T., Krivoruchka, T.: Reliable UDP protocol. https ://tools
.ietf.org/html/draft -ietf-sigtr an-relia ble-udp-00. Accessed 3 Mar
2018

 41. Williams, J.: Microsoft TV test (2011). https ://www.viavi solut
ions.com/en-us/liter ature /micro soft-tv-test-appli catio n-notes -en.
pdf. Accessed 3 Mar 2018

 42. Floyd, S., Handley, M., Kohler, E.: Datagram congestion control
protocol (DCCP). https ://tools .ietf.org/html/rfc43 40. Accessed 3
Mar 2018

 43. Wilk, A., Iyengar, J., Swett, I., Hamilton, R.: QUIC: a UDP-based
secure and reliable transport for HTTP/2. https ://tools .ietf.org/
html/draft -hamil ton-early -deplo yment -quic-00. Accessed 3 Mar
2018

 44. Timmerer, C., Bertoni, A.: Advanced transport options for the
dynamic adaptive streaming over HTTP. arXiv preprint arXiv
:1606.00264 , (2016)

 45. VideoLAN. http://www.video lan.org/. Accessed 3 Mar 2018
 46. Network Latency and Packet Loss Emulation @ Calomel.org.

https ://calom el.org/netwo rk_loss_emula tion.html. Accessed 3
Mar 2018

 47. IP Latency Statistics: (2017). http://www.veriz onent erpri se.com/
about /netwo rk/laten cy/. Accessed 3 Mar 2018

 48. DASH Industry Forum. Guidelines for Implementation: DASH-
AVC/264 Test cases and Vectors (2014). https ://dashi f.org/
wp-conte nt/uploa ds/2016/06/DASH-AVC-264-Test-Vecto rs-
v1.0.pdf. Accessed 3 Mar 2018

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1.

2.

3.

4.

5.

6.

Terms and Conditions

Springer Nature journal content, brought to you courtesy of Springer Nature Customer Service Center GmbH (“Springer Nature”).
Springer Nature supports a reasonable amount of sharing of research papers by authors, subscribers and authorised users (“Users”), for small-
scale personal, non-commercial use provided that all copyright, trade and service marks and other proprietary notices are maintained. By
accessing, sharing, receiving or otherwise using the Springer Nature journal content you agree to these terms of use (“Terms”). For these
purposes, Springer Nature considers academic use (by researchers and students) to be non-commercial.
These Terms are supplementary and will apply in addition to any applicable website terms and conditions, a relevant site licence or a personal
subscription. These Terms will prevail over any conflict or ambiguity with regards to the relevant terms, a site licence or a personal subscription
(to the extent of the conflict or ambiguity only). For Creative Commons-licensed articles, the terms of the Creative Commons license used will
apply.
We collect and use personal data to provide access to the Springer Nature journal content. We may also use these personal data internally within
ResearchGate and Springer Nature and as agreed share it, in an anonymised way, for purposes of tracking, analysis and reporting. We will not
otherwise disclose your personal data outside the ResearchGate or the Springer Nature group of companies unless we have your permission as
detailed in the Privacy Policy.
While Users may use the Springer Nature journal content for small scale, personal non-commercial use, it is important to note that Users may
not:

use such content for the purpose of providing other users with access on a regular or large scale basis or as a means to circumvent access

control;

use such content where to do so would be considered a criminal or statutory offence in any jurisdiction, or gives rise to civil liability, or is

otherwise unlawful;

falsely or misleadingly imply or suggest endorsement, approval , sponsorship, or association unless explicitly agreed to by Springer Nature in

writing;

use bots or other automated methods to access the content or redirect messages

override any security feature or exclusionary protocol; or

share the content in order to create substitute for Springer Nature products or services or a systematic database of Springer Nature journal

content.

In line with the restriction against commercial use, Springer Nature does not permit the creation of a product or service that creates revenue,
royalties, rent or income from our content or its inclusion as part of a paid for service or for other commercial gain. Springer Nature journal
content cannot be used for inter-library loans and librarians may not upload Springer Nature journal content on a large scale into their, or any
other, institutional repository.
These terms of use are reviewed regularly and may be amended at any time. Springer Nature is not obligated to publish any information or
content on this website and may remove it or features or functionality at our sole discretion, at any time with or without notice. Springer Nature
may revoke this licence to you at any time and remove access to any copies of the Springer Nature journal content which have been saved.
To the fullest extent permitted by law, Springer Nature makes no warranties, representations or guarantees to Users, either express or implied
with respect to the Springer nature journal content and all parties disclaim and waive any implied warranties or warranties imposed by law,
including merchantability or fitness for any particular purpose.
Please note that these rights do not automatically extend to content, data or other material published by Springer Nature that may be licensed
from third parties.
If you would like to use or distribute our Springer Nature journal content to a wider audience or on a regular basis or in any other manner not
expressly permitted by these Terms, please contact Springer Nature at

onlineservice@springernature.com

mailto:onlineservice@springernature.com

