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11 Kinetic Theories 
 
Criticisms and accomplishments of the Prigogine-Herman 

kinetic theory are reviewed.  Two of the latter are identified as 

possible benchmarks, against which to measure proposed 

novel kinetic theories of vehicular traffic.  Various kinetic 

theories that have been proposed in order to eliminate defi-

ciencies of the Prigogine-Herman theory are assessed in this 

light.  None are found to have yet been shown to meet both of 

these benchmarks. 

 Possible objectives and applications for kinetic theo-

ries of vehicular traffic are considered.  One of these is the 

traditional application to the development of continuum mod-

els, with the resulting microscopically based coefficients.  

However, modern computing power makes it possible to con-

sider computational solution of kinetic equations per se, and 

therefore direct applications of the kinetic theory (e.g., the 

kinetic distribution function).  It is concluded that the primary 

applications are likely to be found among situations in which 

variability between instances is an important consideration 

(e.g., travel times, or driving cycles).  

11.1 Introduction 

On page 20 of their well-known monograph on the kinetic 
theory of vehicular traffic, Prigogine and Herman (1971) 
summarize possible alternate forms of the relaxation term in 
their kinetic equation of vehicular traffic.  They conclude this 
discussion by issuing the invitation that “the reader may, if he 
is so inclined, work out the theory using other forms of the 
relaxation law.”  This invitation to explore alternate kinetic 
models of vehicular traffic has subsequently been accepted by 
a number of workers, most notably by Paveri-Fontana (1975) 
and by Phillips (1979, 1977), and more recently by Nelson 
(1995a), and by Klar and Wegener (1999).  The existence of 
this variety of kinetic models of vehicular traffic raises the 
issue of how one chooses between them in any particular ap-
plication; more generally there arises the issue of the types of 
applications for which any kinetic model has a role.  In these 
lights, the primary objective of this chapter is to address ques-
tions related to what might reasonably be expected from a 
good kinetic theory of vehicular traffic.        

The approach presented here is substantially influ-
enced by the work of Nagel (1996), who gave an excellent 
review of a variety of types of models of vehicular traffic, 
including continuum (“hydrodynamic”), car-following and 
particle hopping (cellular automata) models.  In particular, he 
has emphasized that: i) any model necessarily represents some 
compromise in terms of its fidelity in describing the reality it is 
intended to represent; ii) different types of models represent 
engineering judgements as to the relative importance of reso-
lution, fidelity and scale for the particular application at hand.  
To some extent, this chapter is intended to address similar 

issues for kinetic models of vehicular traffic.  The status of 
various kinetic models will also be reviewed, in terms of 
achieving two objectives that seem appropriate to designate as 
benchmarks, primarily on the basis that the seminal kinetic 
model of Prigogine and Herman (1971) has been shown to 
meet those objectives. 

It seems appropriate to view kinetic models as occu-
pying a point on the model spectrum that is intermediate be-
tween continuum (e.g., hydrodynamic) models and micro-
scopic (e.g., car-following or cellular automata) models.1  One 
of the primary applications of kinetic models is to obtain con-
tinuum models in a consistent manner from an underlying 
microscopic model of driver behavior.  (See Nelson (1995b) 
for further thoughts on the role of kinetic models of vehicular 
traffic as a bridge from microscopic models to macroscopic 
models.)  However, computing power now has advanced to 
the point that it is practical to consider computational solution 
of kinetic equations per se.  This opens the door to the realistic 
possibility of applying kinetic models directly to the simula-
tion of traffic flow.  This is a qualitatively different situation 
from that prevailing in the 1960’s, when kinetic models of 
vehicular traffic were initially proposed by Prigogine, Herman 
and co-workers.  (See Prigogine and Herman, 1971, and works 
cited therein.) 
 

The specific further contents of this chapter are as 
follows.  In Section 2 below, the status of the Prigogine-

                                                           
1 The word mesoscopic has come into recent vogue to describe mod-
els that are, in some sense, intermediate between macroscopic and 
microscopic models.   
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Herman (1971) kinetic model of vehicular traffic is reviewed.  
The intent of this review is to provide an evenhanded discus-
sion of both the deficiencies and signal accomplishments of 
this seminal kinetic theory of vehicular traffic.  Two of these 
accomplishments are suggested as benchmarks that should 
minimally be met by any proposed novel kinetic model of 
vehicular traffic.  In Section 3 alternate kinetic models that 
have been proposed in the literature are assessed against these 
benchmarks, and none are found that yet have been shown to 
meet both of them.  Both of these benchmarks relate to the 
equilibrium solutions of the Prigogine-Herman kinetic equa-
tion, and one of them relates to the recent result of Nelson and 
Sopasakis (1998) to the effect that under certain circumstances 
– particularly for sufficiently congested traffic – the Prigog-
ine-Herman model admits a two-parameter family of equilib-
rium solutions, as opposed to the one-parameter (density) fam-
ily that would be expected classically. 

In Section 4, the role of kinetic equations as a bridge 
from microscopic to continuum models is considered.  Section 
5 is devoted to consideration of the potential applications of 
the solution of kinetic equations per se. 

11.2 Status of the Prigogine-Herman Ki-
netic Model 

The kinetic model of Prigogine and Herman (1971) is summa-
rized in Subsection 2.1.  A number of published criticisms of 
this model, along with alternative models that have been sug-
gested to overcome some of these criticisms, are reviewed in 
Subsection 2.2.  In Subsection 2.3 two significant accom-
plishments of the Prigogine-Herman theory are described, and 
suggested as benchmarks against which novel kinetic theories 
of vehicular traffic should be measured.  
 

11.2.1 The Prigogine-Herman Model 
The kinetic equation of Prigogine and Herman is 
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  (1) 
 
Here the various symbols have the following meanings: 

a) the zero order moment of f(x,v,t), 

 is vehicular density. 
b) the ratio of the first and zero order moments, 

 
is mean vehicular speed; 

c) P is passing probability; 
d) T is the relaxation time; 
e) f0 is the corresponding density function for the desired 

speed of vehicles; 
f) f is the density function for the distribution of vehicles in 

phase space, so that  

is the expected number of vehicles at time t that have po-
sition between 1x  and 2x  and speed between 1v  and 

2v ( 21 xx ≤  and 21 vv ≤ ). 
The second term on the left-hand side of Eq. (1), the 

streaming term, represents the rate of change of the density 
function due to motion of the traffic stream, absent any 
changes of velocity by vehicles.  The first term on the right-
hand side, which is often called the relaxation term, is the 
contribution to this rate of change that stems from changes of 
vehicular speed associated with passing or other causes of 
acceleration.   The second term on the right-hand side, the 
slowing-down term, stems from deceleration of vehicles that 
overtake slower-moving vehicles.  The relaxation term is phe-
nomenological in nature, in that it is based on the underlying 
assumption that increases in vehicular speed cause the actual 
density to “relax” toward the desired density with some char-
acteristic time T.  By contrast, the slowing-down term can be 
obtained from basic physical arguments, albeit with idealized 
assumptions such as instantaneous deceleration, treatment of 
vehicles as point particles (i.e., neglect of the positive length 
of vehicles), and the validity of what Paveri-Fontana (1975) 
terms vehicular chaos.  The validity of both of these particular 
forms of the rates of change due to changes of speed has been 
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questioned, as will be briefly discussed in the following sub-
section. 

A kinetic equation generally is an equation that in 
principle, subject to appropriate initial and boundary condi-
tions, can be solved for the density function f, as defined 
above.  Some kinetic equations that are alternatives to that of 
Prigogine and Herman are discussed in Section 3 following 

11.2.2 Criticisms of the Prigogine-Herman 
Model. 

The first published serious critique of the Prigogine-Herman 
kinetic equation seems to be the work of Munjal and Pahl 
(1969).  These workers raise a number of questions,2 but the 
most fundamental of these fall into one of the following two 
categories: 
1. The validity of the slowing-down term (denoted the “in-

teraction term” by these authors) is doubtful in the pres-
ence of  “queues” (or “platoons”) of vehicles.  This stems 
from the fact that the correlation inherent in platoons in-
validates the assumption of vehicular chaos (Paveri-
Fontana, 1975), which assumption underpins the particu-
lar form of the slowing-down term in the Prigogine-
Herman kinetic equation. 

2. The absence of a derivation of the relaxation term from 
first principles raises general questions regarding its va-
lidity.  The validity of the specific expression (in terms of 
c) used by Prigogine et al. for the relaxation time T has 
therefore “not been proven.”  Further, it is therefore also 
difficult to “conceive the meaning of the relaxation time” 
and therefore “define a method for its experimental de-
termination.” 

 
In addition to noting the first of these concerns, Paveri-
Fontana (1975) argues forcefully that it is fundamentally in-
correct to treat the desired speed as a parameter, as in done in 
the Prigogine-Herman kinetic equation.  Rather, he suggests 
the desired speed must be taken as an additional independent 

                                                           
2 Other concerns relate to: i) The necessity to include time depend-
ence in the desired speed distribution, owing to the normalization 

∫ =
max

0
0 ),(),,(

v

txcdvtvxf ; and ii) the interpretation and func-

tional dependence of the passing probability, P. 
 

variable, on the same footing as the actual speed, and he pro-
vides a modification of the Prigogine-Herman equation that 
accomplishes precisely that. 

Prigogine and Herman (1971, Section 3.4, and 1970) 
dispute the claim of Munjal and Pahl (1969) to the effect that 
“the validity of the interaction term (i.e., the Prigogine-
Herman slowing-down term) is limited to traffic situations 
where no vehicles are queuing” (parenthetical clarification 
added).  Current opinion seems inclined to agree with Paveri-
Fontana (1975) that on balance Munjal and Pahl have the bet-
ter of this particular discussion.  However, traffic on arterial 
roads, for which signalized intersections necessarily enforce 
the formation of platoons, is the only situation that seems thus 
to be definitely excluded from the domain of the Prigogine-
Herman kinetic equation.  In particular, it is not a priori clear 
that the same objection is valid for the stop-and-go traffic that 
seems to characterize congested traffic on freeways.  Nelson 
(1995a) has noted that a correlation model is generally needed 
to obtain a kinetic equation, and vehicular chaos is simply one 
instance of a correlation model.  Other correlation models, 
which would lead to a kinetic equation other than that of 
Prigogine and Herman, conceivably could better treat pla-
toons, at least under restricted circumstances.  Approaches 
(e.g., Prigogine and Andrews, 1960; Beylich, 1979), in which 
multiple-vehicle density functions appear as the unknowns to 
be determined, also offer the potential ability to treat queues 
within the spirit of the kinetic theory. 

Nelson (1995a) introduced the concepts of a mechani-
cal model and a correlation model as the fundamental ingredi-
ents of any kinetic equation.  This work was motivated pre-
cisely by the desire to obtain forms of the speeding-up term 
that are based upon at least the same level of first principles as 
the classical derivations of the Prigogine-Herman slowing-
down term.  Klar and Wegener (1999) used this approach to 
obtain a kinetic equation for traffic flow that accounts for the 
spatial extent of vehicles.  The treatment of vehicles as 
“points” of zero length is an idealization underlying the 
Prigogine-Herman kinetic equation that seems not to have 
been extensively discussed in the earlier literature on traffic 
flow.  Klar and Wegener (1999) show that including the length 
of vehicles has a significant quantitative effect upon the value 
of some coefficients in associated continuum models.  The 
observational measurements of the relaxation time by Edie, 
Herman and Lam (1980) also bear mentioning. 

The arguments of Paveri-Fontana (1975) that the de-
sired speed must appear as an independent variable in any 
kinetic equation, so that the density function depends upon the
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desired speed, as well as position, actual speed and time, seem 
to be quite convincing.  In order to avoid this complexity, 
some workers (e.g., Nelson, 1995a) choose to focus upon 
models in which all drivers have the same desired speed.  
Paveri-Fontana (1975) represents his modification of the 
Prigogine-Herman equation, to include desired speed as an 
independent variable, as valid only for dilute traffic.  How-
ever, as suggested above, it is not completely clear that this 
restriction is required, unless the dense traffic also includes a 
significant fraction of the vehicles in platoons.   

11.2.3 Accomplishments of the Prigogine-
Herman Model 

In view of the deficiencies chronicled in the preceding subsec-
tion, why would anyone deem the Prigogine-Herman kinetic 
equation to be of any interest?  That question is answered in 
this subsection, by describing two significant results that stem 
from the Prigogine-Herman model. 

First, Prigogine and Herman (1971, Chap. 4) demon-
strated, under the somewhat restrictive assumption that there 
exist drivers desiring arbitrarily small speeds, that one can 
obtain traffic stream models (fundamental diagrams, 
speed/density relations), say q=Q(c), from the equilibrium 
solutions (i.e., the solutions that are independent of space and 
time) of their kinetic equation.  (Here q is vehicular flow, and 
c is, as above, vehicular density.) The procedure is precisely 
analogous to that giving rise to the Maxwellian distribution 
and the ideal gas law, when applied to the Boltzmann equation 
of the kinetic theory of gases.  Further, at high concentrations 
the equilibrium solution is bimodal; that is, it displays two 
(local) maxima in speed, in qualitative agreement with the 
observations of Phillips (1977, 1979).  (See the following sec-
tion for more details of these works.)  One of these modes 
corresponds to a modification of the distribution of desired 
speeds, and the other (under the assumptions of Prigogine and 
Herman) to platoon flow in the rather extreme case of stopped 
traffic (i.e., zero speed).  This “multiphase” aspect of con-
gested traffic flow has subsequently been rediscovered by a 
number of workers.  Note that this approach gives rise to a 
traffic stream model from an underlying microscopic model, 
via the equilibrium solution of a corresponding kinetic equa-
tion.  Such a theoretical development contrasts with statements 
sometimes encountered to the effect that traffic stream models 
must be based upon observational data. 

More recently, Nelson and Sopasakis (1998) showed 
that if one relaxes the assumption of Prigogine and Herman 
that there exist drivers having arbitrarily small desired speeds, 
then at sufficiently high densities the equilibrium solution is a 
two-parameter family.  This contrasts with the one-parameter 
(typically taken as density) family that occurs at low densities, 
even at all densities under the restrictive assumption of 
Prigogine and Herman (1971).3  

The consequence of the equilibrium solutions of Nel-
son and Sopasakis (1998) for the attendant traffic stream 
model will now be briefly described.  Let 

where w- and w+ are respectively the lower and upper bound 
on the desired speeds.  Then there exists a positive critical 
density, denoted ccrit, and defined as the unique root (in c) of 
the equation F(0;c) = cT(1-P), such that the dependence of  
mean speed upon density is as follows.  Let ζ*=ζ*(c) be the 
unique root (in ζ ) of F(ζ;c) = cT(1-P).  If 0≤ c≤ccrit , then 
ζ*≤0, and the mean speed is given by 

However, if c>ccrit , then ζ*>0, and the mean speed is given by  

where now ζ  can take on any value such that 0 ≤ ζ ≤ 
min{ζ*,w-}.  The parameter ζ  is the speed of the embedded 
collective flow, and the preceding equation for the mean speed 
shows that the overall mean speed increases with increasing 
speed of the embedded collective flow.  Figure 11.1 shows a 
three-dimensional graphical representation of the resulting 
“traffic stream model,” for a particular hypothetical desired 
 

                                                           
3 In some of their work, Prigogine and Herman (1971, Section 
4.4, esp. Fig. 4.8 and the related discussion) did permit posi-
tive lower bounds for the set of desired speeds, but for reasons 
that seem unclear at this point their attendant analysis did not 
identify the full two-parameter range of equilibrium solutions 
at higher densities. 
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Figure 11-1 Dependence of the mean speed upon density normalized to jam density, η=c/cP, for jam density cP = 200 vpm, P=1-
η, T=τη/(1-η), with τ=0.003 hours, and a uniform desired speed distribution from 40 to 80 mph.

speed distribution.  See Nelson and Sopasakis (1998) for more 
details. 

The significance of this three-dimensional presenta-
tion of a traffic stream model lies in the fact that it is consis-
tent with the well-known tendency (e.g., Drake, Schofer and 
May, 1967) for traffic flow data to be widely scattered at high 
densities.  The effort to explain this tendency has spawned a 
number of theories (e.g., Ceder, 1976; Hall, 1987; Disbro and 
Frame, 1989).  The explanation in terms of an embedded col-
lective flow seems possibly preferable to these, in that it de-
rives from the kinetic theory, which is a well-known branch of 
traffic flow theory, as opposed to requiring some novel ad hoc 
theory. 

Thus, the Prigogine-Herman kinetic equation has 
equilibrium solutions that both reproduce the observed bi-
modal distribution of speeds at high densities, and provide 
traffic stream models that reproduce qualitatively the well-
known result that at sufficiently high densities mean speeds 
and flows do not depend exclusively upon vehicular density.    

One certainly can envision more ambitious objectives for a 
kinetic theory of vehicular traffic than these two.  Some possi-
ble such objectives are discussed further in Sections 4 and 5 
below.  However, given that the seminal Prigogine-Herman 
kinetic equation of vehicular traffic does accomplish at least 
these objectives, it seems appropriate to suggest them as 
minimal benchmarks that should be met by any alternative 
kinetic equations that might be proposed.  In the following 
section some of the alternative kinetic equations that have 
been proposed, as described in the preceding subsection, are 
assessed against these benchmarks. 

11.3 Other Kinetic Models 
Both benchmarks suggested in the preceding subsection have 
to do with the equilibrium solutions of the kinetic equation of 
interest.  The equilibrium solutions of the Paveri-Fontana 
(1975) generalization of the Prigogine-Herman kinetic equa-
tion, as described in Subsection 2.2, do not seem to have been 
definitively ascertained.  Indeed, Helbing (1996), who has 
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extensively applied the Paveri-Fontana kinetic model in his 
recent works on the kinetic theory of vehicular traffic, states, 
in regard to these equilibrium solutions, that “unfortunately it 
seems impossible to find an analytical expression ….”  He 
then indicates that “empirical data and microsimulations” sug-
gest these equilibrium solutions are “approximately a Gaus-
sian.”  Note that Gaussians are not bimodal.  Thus, the Paveri-
Fontana model does not seem to have been shown to satisfy 
either of the benchmarks suggested in the preceding subsec-
tion. 

Phillips (1977, 1979) develops yet another kinetic 
equation that is an alternative to the original Prigogine-
Herman kinetic model.   However, this development seems 
predicated on a form of the corresponding equilibrium solu-
tion that ignores the considerations that led Prigogine and 
Herman to the “lower mode” of their bimodal equilibrium 
solution; cf. Eq. (4) of Phillips, 1979.  Phillips compared 
(sketchily in Phillips, 1979, but exhaustively in Phillips, 1977) 
the equilibrium solution of his kinetic model against measured 
speed distributions.  With one possibly important exception, 
the agreement seems reasonable.  One therefore expects good 
agreement between the traffic stream model obtained theoreti-
cally from the equilibrium solution and that obtained observa-
tionally, although Phillips does not explicitly effect such com-
parisons.  The exception is that a large amount of the data in-
dicates a bimodal equilibrium solution; cf. Figs. 3 and 4 of 
Phillips, 1979, and numerous figures in Phillips, 1977.  Thus, 
although the bimodal nature of an equilibrium solution is 
missed by the theoretical analysis, it is supported by the asso-
ciated observations.  In summary, it seems likely that the ki-
netic equation of Phillips (1979, 1977) meets the first bench-
mark suggested in the preceding section, and possible that a 
mathematical reassessment of its equilibrium solutions will 
reveal that it meets the second of these benchmarks.  How-
ever, neither of these conclusions has yet been conclusively 
established. 

Nelson (1995a) obtained a specific kinetic equation 
for purposes of providing a concrete illustration of his pro-
posed general methodology for obtaining speeding-up (and 
slowing-down) terms based on first principles (i.e., appropri-
ate mechanical and correlation models).  In subsequent work 
(Nelson, Bui and Sopasakis, 1997) it was shown that this ki-
netic equation provides a theoretical traffic stream model that 
agrees well with classical traffic stream models, except near 
jam density.  It has further been shown (Bui, Nelson and So-
pasakis, 1996) that a simple modification of the underlying 
correlation model removes the incorrect behavior near jam 
density.  Thus, this kinetic equation has been shown to meet 

the first of the benchmarks suggested in the preceding section.  
However, the equilibrium solutions of the kinetic equation of 
Nelson (1995a) are such that it clearly does not meet the sec-
ond benchmark (i.e., does not predict scattered flow data un-
der congestion).  It is possible that the underlying mechanical 
model could be modified to attain this objective, but that has 
not been demonstrated. 

Klar and Wegener (1999) use numerical techniques 
to obtain equilibrium solutions of their kinetic equations.  
They do not explicitly present corresponding traffic stream 
models.  Their numerical equilibrium solutions do not display 
two modes.  It might be difficult to obtain the lower mode, 
which typically appears as a delta function, by a strictly nu-
merical approach. 

Table I summarizes the status of the various kinetic 
models mentioned here, as regards their ability to meet the two 
benchmarks delineated in Subsection 2.3. 

Table 11-I  Status of various kinetic models with respect to 
the benchmarks of Subsection 11.2.3  

           Benchmark  
Kinetic Model 

Bimodal equilib-
rium solutions? 

Equilibrium with 
scattered flows at 
high densities? 

Prigogine-Herman 
(1971) 

 
yes 

 
yes 

Paveri-Fontana (1975) ? ? 
Phillips (1977, 1979) no no 
Nelson (1995a) yes no 
Klar-Wegener (1999) no? no 

11.4 Continuum Models from Kinetic Equa-
tions 

Continuum models historically have played an important role 
in traffic flow theory.  They have been obtained either by sim-
ply writing them as analogs of some corresponding fluid dy-
namical system (e.g., Kerner and Konhäuser, 1993), or by 
rational developments from some presumably more basic mi-
croscopic (e.g., car-following) model of traffic flow.  In the 
latter case the continuum equations can be developed either 
directly from the underlying microscopic model that serves as 
the starting point, or a kinetic model can play an intermediary 
role between the microscopic and continuum models.  For 
early examples of the former approach, through the steady-
state solutions of car-following models, see numerous refer-
ences cited in Nelson, 1995b.  Nagel (1998) presents a more 
modern approach, through appropriate formal (“fluid-
dynamical”) limits of particle-hopping models. 
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Here the primary interest is, of course, in approaches 
to continuum models that use a kinetic intermediary to the 
underlying microscopic model.  Such approaches often (e.g., 
Helbing, 1995) follow the route of first taking the first few 
(one or two) low-order polynomial moments of the kinetic 
equation, then achieving closure via ad hoc approximations.  
An alternate approach, via certain formal asymptotic expan-
sions (e.g., Hilbert or Chapman-Enskog expansions) is often 
used in the kinetic theory of gases (e.g., Grad, 1958).  In this 
approach, the number of polynomial moments of the kinetic 
equation that are taken tend to be determined by the number of 
invariants that are defined by the dynamics of the microscopic 
model of the interaction between the constituent “particles” 
(vehicles, for traffic flow) of the system.  This approach leads 
to a hierarchy of continuum models (e.g., the Euler/Navier-
Stokes/Burnett/super-Burnett equations of fluid dynamics), as 
opposed to the single continuum equation that tends to result 
from formal limits of microscopic models.  At all levels of this 
hierarchy the parameters of the resulting continuum model are 
expressed in terms of those of the underlying microscopic 
model. 

Nelson and Sopasakis (1999) applied the Chapman-
Enskog expansion to the Prigogine-Herman (1971) kinetic 
equation.  In the region below the critical density described in 
Subsection 11.2 the lowest (zero) order expansion was found 
to be a Lighthill-Whitham (1955) continuum model, with as-
sociated traffic stream model corresponding to the one-
parameter family of equilibrium solutions. The next highest 
(first-order) solution was found to be a diffusively corrected 
Lighthill-Whitham model, 

 
           (11.2) 
 
 

where now both the flow function Q(c) and the diffusion coef-
ficient D(c) are known in terms of the density c and the pa-
rameters of the Prigogine-Herman kinetic model.  This result 
is perhaps somewhat surprising, as one might reasonably have 
expected rather a continuum higher-order model of the type 
suggested by Payne (1971).  Figure 11.2 illustrates how an 
initial discontinuity between an upstream higher-density re-
gion and a downstream lower-density region will tend to dis-
sipate according to the diffusively corrected Lighthill-
Whitham model, as opposed to the shock wave predicted by 
ordinary Lighthill-Whitham theory, which is given by Eq. 
(11.2) with D ≡ 0.  See Nelson (2000) for more details of the 
example underlying this figure.  Sopasakis (2000) has also 

developed the zero-order (again Lighthill-Whitham) and first-
order Hilbert expansions, and the second-order Chapman-
Enskog expansion, for the Prigogine-Herman kinetic model. 

Interest in continuum models of traffic flow seems 
likely to continue, as applications exist within the space of 
resolution/fidelity/scale requirements for which continuum 
models are deemed most suitable.  Along with this, interest in 
the use of kinetic models of vehicular traffic as a basis for 
continuum models seems likely to continue.  For example, the 
venerable Lighthill-Whitham (1955) model is widely viewed 
as the most basic continuum model of traffic flow.  But a suit-
able traffic stream model is an essential ingredient of the 
Lighthill-Whitham model.  Thus, traffic stream models are an 
important part of continuum models, as well as being of inter-
est in their own right.  Therefore, both of the benchmarks de-
marcated in the preceding section can be viewed as related to 
the issue of how well a particular kinetic model performs in 
terms of providing a particularly low-order continuum model, 
specifically the Lighthill-Whitham model. 

11.5 Direct Solution of Kinetic Equations 
Along with the traditional application of kinetic models of 
vehicular traffic to rational development of continuum models 
from microscopic models, as described in the preceding sec-
tion, modern computers permit consideration of the utility of 
kinetic models in their own right, rather than merely as tools 
that can be used to construct continuum models.  In this re-
spect, there are two substantive issues: 
i) How can one solve kinetic equations, to obtain the distri-

bution function (f)? 
ii) Given this distribution function, what applications of it 

can usefully be made? 
As regards the first issue, Hoogendoorn and Bovy (to appear) 
have employed Monte Carlo (i.e., simulation-based) tech-
niques for the computational solution of a kinetic equation of 
vehicular traffic that builds upon the earlier work of Paveri-
Fontana (1975).  By contrast, in the kinetic theory of gases 
there exists a significant body of knowledge (e.g., Neunzert 
and Struckmeier, 1995, and other works cited therein) relative 
to the deterministic computational solution of kinetic equa-
tions.  This knowledge base undoubtedly could be invaluable 
in attempting to develop similar capabilities for vehicular traf-
fic, but the equations are sufficiently different from those aris-
ing in the kinetic theory of gases so that considerable further 
development is likely to be necessary.  This  
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Figure 11-2 Evolution of the flow, according to a diffusively corrected Lighthill-Whitham model, from initial conditions con-
sisting of  190 vpm downstream of x=0 and 30 vpm upstream.  See Nelson (2000) for details of the traffic stream model (flow 
function) and diffusion coefficient. 

 
development is unlikely to occur in the absence of a relatively 
clear vision as to the uses that would be made of it.  Therefore, 
the focus here primarily will be on the second of these issues. 

Any consideration of applications of the distribution 
function of a kinetic theory requires a consideration of its in-
terpretation.  It is a statistical distribution function.  The tradi-
tional interpretation of such a distribution function is that it 
describes the frequency with which certain properties occur 
among samples drawn from some sample space.  In the kinetic 
theory of vehicular traffic, the samples are vehicles, and the 
properties of interest are the positions and speeds of the vehi-
cles; however, there are two fundamentally different possible 
interpretations of the underlying sample space: 

1. Single-instance sampling:  The sample space consists of 
all vehicles present on a specified road network at a spe-
cific designated time. 

2. Ensemble sampling:  The sample space consists of all 
vehicles present, at a designated time, on one of an en-
semble of identical road networks. 

For example, the Houston freeway network at 5:00 p.m. on 
Wednesday, July 15, 1998 would be a reasonable sample 
space for single-instance sampling.  On the other hand, the 
Houston freeway network at 5:00 p.m. on all midweek work-
days during 1998 for which dry weather conditions prevailed 
would be a reasonable approximation of a sample space suit-
able for ensemble sampling. 

The difference between these two interpretations is 
subtle, but it has profound consequences.  Traffic theorists 
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normally tend to think in terms that are most consistent with 
single-instance sampling.  But any attempt to apply the kinetic 
theory within that interpretation implies the intention to pre-
dict, at some level of approximation, the evolution of traffic 
for that specific instance, given suitable initial and boundary 
conditions for the distribution function.  It seems somewhat 
questionable that this is attainable over any significant dura-
tion.  (The ``rolling horizon’’ approach often applied to pre-
diction of traffic flow is a tacit admission of the significance 
of this issue.)  On the other hand, the ensemble sampling in-
terpretation implies only the intent to predict the likelihood 
with which various outcomes will occur.  This intuitively 
seems much more achievable (cf. p. 10 of Asimov, 1988).  
Thus the more subtle ensemble sampling interpretation leads 
to an apparently more achievable objective than does the more 
obvious single-instance interpretation.  For that reason, the 
ensemble sampling interpretation seems more likely to lead to 
potential direct applications of the kinetic theory. 

The fundamental advantage of kinetic models over 
continuum models is that the kinetic distribution function pro-
vides an estimate of the variability (over various instances of 
the ensemble, under the ensemble-sampling interpretation) of 
densities and speed at specific times and locations, whereas 
continuum models provide estimates of only the mean (pre-
sumably over the ensemble) of these quantities.  If the quantity 
(function of position and time) of interest in a particular appli-
cation is not highly variable between instances within the en-
semble, or if that variability is not of interest, then presumably 
one should choose a continuum model, or perhaps an even 
more highly aggregated model.  On the other hand, if this 
variability is both of significant magnitude and important to 
the issue under study, then kinetic models might be a useful 
alternative to the computationally more expensive possibility 
of running a sufficiently large number of microscopic simula-
tions so as to capture the nature of the variation between in-
stances. 

Some specific instances of quantities for which vari-
ability might be of significant interest are travel times and 
driving cycles.  The latter require knowledge about the statis-
tical distribution of accelerations, as well as velocities and 
densities, but such acceleration information is inherent in the 
distribution function, along with the mechanical and correla-
tion models that underlie any kinetic model.  In fact, kinetic 
models seem to be the natural connecting link between contin-
uum models, which provide the  “cross sectional” view of 
traffic that most transportation planning is based on, and the 
“longitudinal” view that underlies the standard driving cycle 

approach to estimation of fuel emissions (cf. Carson and Aus-
tin, 1997). 

The crucial question underlying any potential appli-
cation of kinetic models is whether a kinetic model can be 
found that has sufficient fidelity and resolution for the particu-
lar application, and that can be solved on the necessary scale 
using available computational resources.  The answer to that 
clearly depends upon the specific details of the particular ap-
plication, and any such proposed application of a specific ki-
netic model must be validated against actual observations.  
However, data of sufficiently high quality to permit such vali-
dations are both rare and expensive to obtain.  Under these 
circumstances, it seems appropriate to use microscopic models 
(e.g., cellular automata) as a framework within which initially 
to vet proposed kinetic models. 

Specifically, it seems worthwhile to employ micro-
scopic models to study the following: 
HYPOTHESIS:  The multiparameter family of equilibrium solu-
tions of the Prigogine-Herman kinetic model found by Nelson 
and Sopasakis (1998), with its attendant traffic stream surface 
(rather than the classical curve), reflects the fact that actual 
traffic has a number of spatially homogeneous equilibrium 
states (with different average speeds) corresponding to the 
same density. 
If this hypothesis is true, then presumably different initial con-
figurations of a traffic stream have the possibility to approach 
different states in the long-time limit, even though their densi-
ties are the same on the macroscopic scale.  Results reported 
by Nagel (1996, esp. Sec. V) tend to confirm this hypothesis. 
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