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CHAPTER 2 - Frequently used Symbols

k density of a traffic stream in a specified length of road

L length of vehicles of uniform length

c constant of proportionality between occupancy andk

density, under certain simplifying assumptions

k the (average) density of vehicles in substream Ii

q the average rate of flow of vehicles in substream Ii

Å average speed of a set of vehicles

A A(x,t) the cumulative vehicle arrival function over
space and time

k jam density, i.e. the density when traffic is so heavy thatj

it is at a complete standstill

u free-flow speed, i.e. the speed when there are nof

constraints placed on a driver by other vehicles on the
road
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Chapter 2: Traffic Stream Characteristics 
 
Author’s note:  This material has benefited greatly from the assistance of Michael Cassidy, of 
the University of California at Berkeley.  He declined the offer to be listed as a co-author of the 
chapter, although that would certainly have been warranted.  With his permission, and that of 
the publisher, several segments of this material have been reproduced directly from his chapter, 
“Traffic Flow and Capacity”, which appears as Chapter 6 in Handbook of transportation 
science, edited by Randolph W.  Hall, and published by Kluwer Academic Publishers in 1999.  
That material appears in italics below, in section 2.1.  The numbering of Figures and equations 
has been altered from his numbers to correspond to numbering within this chapter. 
 
In this chapter, properties that describe highway traffic are introduced, such as flow, density, and 
average vehicle speed; issues surrounding their measurements are discussed; and various models 
that have been proposed for describing relationships among these properties are presented.  Most 
of the work dealing with these relationships has been concerned with uninterrupted traffic flow, 
primarily on freeways or expressways, but the general relationships will apply to all kinds of 
traffic flow.  
 
This chapter  starts with  a  section  on definitions of key variables and terms.  Because of the 
importance of measurement capability to theory development, the second section deals with 
measurement issues, including historical developments in measurement procedures, and criteria 
for selecting good measurement characteristics.  The third section discusses a number of the 
bivariate models that have been proposed in the past to relate key variables.  That is followed by 
a short section on attempts to deal simultaneously with the three key variables.  The final, 
summary section provides links to a number of the other chapters in this monograph. 
 
2.1 Definitions and terms 
 
This section provides definitions of some properties commonly used to characterize traffic 
streams, together with some generalized definitions that preserve useful relations among these 
properties.  Before turning to the definitions, however, a useful graphical tool is introduced, 
namely trajectories plotted on a time-space diagram.  This is followed by definitions of traffic 
stream properties, time-mean and space-mean properties, and the generalized definitions.  
Following that is a discussion of the relationship between density, which is often used in the 
generalized definitions, and occupancy, which is measured by many freeway systems.  The final 
topic covered is three-dimensional representations of traffic streams.  The discussion in this 
section follows very closely or repeats some of that in the chapter by Cassidy (1999), which in 
turn credits notes composed by Newell (unpublished) and a textbook written by Daganzo (1997). 
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2.1.1  The Time-Space Diagram.   
 
  The Time-Space Diagram.  Objects are commonly constrained to move along a one-
dimensional guideway, be it, for example, a highway lane, walkway, conveyor belt, charted course 
or flight path.  Thus, the relevant aspects of their motion can often be described in cartesian 
coordinates of time, t, and space, x.  Figure 2-1 illustrates the trajectories of some objects traversing 
a facility of length L during time interval T; these objects may be vehicles, pedestrians or cargo. 
Each trajectory is assigned an integer label in the ascending order that the object would be seen by 
a stationary observer.  If one object overtakes another, their trajectories may exchange labels, as 
shown for the fourth and fifth trajectories in the figure.  Thus, the lth trajectory describes the 
location of a reference point (e.g. the front end) of object l as a function of time t, xl (t).  

 
 
 

 

Figure 2-1. Time-space diagram. 

 
The characteristic geometries of trajectories on a time-space diagram describe the motion of 

objects in detail. These diagrams thus offer the most complete way of displaying the observations 
that may have actually been measured along a facility.  As a practical matter, however, one is not 
likely to collect all the data needed to construct trajectories.  Rather, time-space diagrams derive 
their (considerable) value by providing a means to highlight the key features of a traffic stream using 
only coarsely approximated data or hypothetical data from “thought experiments.” 
 
2.1.2  Definitions of Some Traffic Stream Properties.  It is evident from Figure 2-1 that the 
slope of the lth trajectory is object l’s instantaneous velocity, vl (t), i.e., 
 v�(t) ≡  dx�(t)/dt , (2.1) 
and that the curvature is its acceleration.  Further, there exist observable properties of a traffic 
stream that relate to the times that objects pass a fixed location, such as location x1, for example.  
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These properties are described with trajectories that cross a horizontal line drawn through the time-
space diagram at x1. 

 
Referring to Figure 2-1, the headway of some ith object at x1, hi(x1), is the difference between the 

arrival times of i and i-1 at x1, i.e., 
 hi(x1 ) ≡  ti(x1 ) -  ti-1(x1 )    (2.2) 
 
Flow at x1 is m, the number of objects passing x1, divided by the observation interval T, 

 q(T, x1 ) ≡  m/T.    (2.3) 
 
For observation intervals containing large m, 
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i.e., flow is the reciprocal of the average headway. 
 
Analogously, some properties relate to the locations of objects at a fixed time, as observed, for 
example, from an aerial photograph.  These properties may be described with trajectories that cross 
a vertical line in the t-x plane.  For example, the spacing of object j at some time t1, sj(t1 ), is the 
distance separating j from the next downstream object; i.e., 

 sj(t1 ) ≡  xj-1(t1 ) -  xj(t1 ).                           (2.6) 
 
Density at instant t1 is n, the number of objects on a facility at that time, divided by L, the facility’s 
physical length; i.e., 

 k(L, t1 ) ≡  n /L.                           (2.7) 
 
If the L contains large n, 
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giving a relation between density and the average spacing parallel to that of flow and the average 
headway. 
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2.1.3  Time-Mean and Space-Mean Properties.  For an object’s attribute α, where α might be 
its velocity, physical length, number of occupants, etc., one can define an average of the m 
objects passing some fixed location x1 over observation interval T, 
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i.e., a time-mean of attribute α.  If α is headway, for example, α(T, x1) is the average headway or the 
reciprocal of the flow. 
 
Conversely, the space-mean of attribute α at some time t1, α(L, t1), is obtained from the observations 
taken at that time over a segment of length L, i.e., 
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If, for example, α is spacing, α(L, t1) is the average spacing or the reciprocal of the density. 
 
For any attribute α, there is no obvious relation between its time and space means.  The reader may 
confirm this (using the example of α as velocity) by envisioning a rectangular time-space region L × 
T traversed by vehicles of two classes, fast and slow, which do not interact.  For each class, the 
trajectories are parallel, equidistant and of constant slope; such conditions are said to be stationary. 
  
The fraction of fast vehicles distributed over L as seen on an aerial photograph taken at some instant 
within T will be smaller than the fraction of fast vehicles crossing some fixed point along L during 
the interval T.  This is because the fast vehicles spend less time in the region than do the slow ones.  
Analogously, one might envision a closed loop track and note that a fast vehicle passes a stationary 
observer more often than does a slow one. 

 
 
2.1.4  Generalized Definitions of Traffic Stream Properties. To describe a traffic stream, one 
usually seeks to measure properties that are not sensitive to the variations in the individual objects 
(e.g. the vehicles or their operators) without averaging-out features of interest.  This is the trade-off 
inherent in choosing between short and long measurement intervals, as previously noted.  It was 
partly to address this trade-off that Edie (1965, 1974) proposed some generalized definitions of flow 
and density that averaged these properties in the manner described below. 
 
To begin this discussion, the thin, horizontal rectangle in Figure 2-2 corresponds to a fixed 
observation point.  As per its conventional definition provided earlier, the flow at this point is m / T, 
where m = 4 in the figure.  Since this point in space is a region of temporal duration T and elemental 
spatial dimension dx, the flow can be expressed equivalently as .

dxT
dxm
⋅
⋅  The denominator is the 

euclidean area of the thin horizontal rectangle, expressed in units of distance × time.  The numerator  
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Figure 2-2. Trajectories in time-space region. 

 
is the total distance traveled by all objects in this thin region, since objects cannot enter or exit the 
region via its elementally small left and right sides. 

 
That flow, then, is the ratio of the distance traveled in a region to the region’s area is valid for any 
time-space region, since all regions are composed of elementary  rectangles.   Taking,  for  example, 
 region  A  in  Figure 2-2, Edie’s generalized definition of the flow in A, q(A), is d(A) / |A|, where d(A) 
is the total distance traveled in A and |A| is used to denote the region’s area. 
 
As the analogue to this, the thin, vertical rectangle in Figure 2-2 corresponds to an instant in time.  
As per its conventional definition, density is n / L (where n = 2 in this figure) and this can be 
expressed equivalently as .

dtL
dtn
⋅
⋅  It follows that Edie’s generalized definition of density in a region A, 

k(A), is t(A) / |A|, where t(A) is the total time spent in A. 
 
It should be clear that these generalized definitions merely average the flows collected over all 
points, and the densities collected at each instant, within the region of interest.  Dividing this flow by 
this density gives d(A) / t(A), which can be taken as the average velocity of objects in A, v(A).  The 
reader will note that, with Edie’s definitions, the average velocity is the ratio of flow to density.  
Traffic measurement devices, such as loop detectors installed beneath the road surface, can be used 
to measure flows, densities and average vehicle velocities in ways that are consistent with these 
generalized definitions.  Discussion of this is offered in Cassidy and Coifman (1997). 
 
As a final note regarding v(A), when A is taken as a thin horizontal rectangle of spatial dimension 
dx, the time spent in the region by object i is dx / vi, where vi is i’s velocity.  Thus, for this thin,  
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horizontal region A, t(A) = .1
1
∑
=

m

i iv
dx   Given that for the same region, d(A) = m·dx, the generalized 
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i.e., the reciprocal of the mean of the reciprocal velocities, or the harmonic mean velocity.  The 1 / vi 
is often referred to as the pace of i, pi, and thus  
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Eq. 2.15 applies for regions with L > dx provided that all i span the L and that each pi (or vi) is i’s 
average over the L. 
 
It follows that when conditions in a region A are stationary, the harmonic mean of the velocities 
measured at a fixed point in A is the v(A).  By the same token, the v(A) is the space-mean velocity 
measured at any instant in A (provided, again, that conditions are stationary).  
 
 
2.1.5  The Relation Between Density and Occupancy.   Occupancy is conventionally defined as 
the percentage of time that vehicles spend atop a loop detector.  It is a commonly-used property for 
describing highway traffic streams; it is used later in this chapter, for example, for diagnosing 
freeway traffic conditions.  In particular, occupancy is a proxy for density.  The following discussion 
demonstrates that the former is merely a dimensionless version of the latter. 
 
One can readily demonstrate this relation by adopting a generalized definition of occupancy 
analogous to the definitions proposed by Edie.  Such a definition is made evident by illustrating each 
trajectory with two parallel lines tracing the vehicle’s front and rear (as seen by a detector) and this 
is exemplified in Figure 2-3.  The (generalized) occupancy in the region A, ρ(A), can be taken as the 
fraction of the region’s area covered by the shaded strips in the figure.  From this, it follows that the 
ρ(A) and the k(A) are related by an average of the vehicle lengths.  This average vehicle length is, by 
definition, the area of the shaded strips within A divided by the t(A); i.e., it is the ratio of the ρ(A) to 
the k(A), 
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Figure 2-3. Trajectories of vehicle fronts and rears. 

Notably, an average of the vehicle lengths also relates the k(A) to �, where the latter is the 
occupancy as conventionally defined (i.e., the percentage of time vehicles spend atop the 
detector).  Toward illustrating this relation, the L in Figure 6-4 is assumed to be the length of 
road “visible” to the loop detector, the so-called detection zone. The T is some interval of time; 
e.g. the interval over which the detector collects measurements.  The time each ith vehicle spends 
atop the detector is denoted as �i. Thus, if m vehicles pass the detector during time T, the
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As shown in Figure 6-4, L  i is the summed length of the detection zone and the length of vehicle i.
Therefore,
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it follows that 
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where the term in brackets is the average vehicle length relating � to the k(A); it is the so-
called average effective vehicle length weighted by the paces. If pace and vehicle length are 
uncorrelated, the term in brackets in (2.17) can be approximated by the unweighted average 
of the vehicle lengths in the interval T.

When measurements are taken by two closely spaced detectors, a so-called speed trap, the pi
are computed from each vehicle’s arrival times at the two detectors.  The Li are thus 
computed by assuming that the pi are constant over the length of the speed trap.  When only a 
single loop detector is available, vehicle velocities are often estimated by using an assumed 
average value of the (effective) vehicle lengths. 

2.1.6  Three-Dimensional Representation of Vehicle Streams. It is useful to display flows 
and densities using a three-dimensional representation described by Makagami et al. (1971).
For this representation, an axis for the cumulative number of objects, N, is added to the t-x 
coordinate system so that the resulting surface N(t, x) is like a staircase with each trajectory 
being the edge of a step.  As shown in Figure 2-4, curves of cumulative count versus time are 
obtained by taking cross-sections  of  this surface  at  some fixed  locations and  viewing the  
exposed regions in the t-N plane. Analogously, cross-sections at fixed times viewed in the N-x 
plane reveal curves of cumulative count versus space.

Figure 2-4 shows cumulative curves at two locations and for two instants in time.  The former 
display the trip times of objects and the time-varying accumulations between the two 
locations, as labeled on the figure.  These cumulative curves can be transformed into a 
queueing diagram (as described in Chapter 5) by translating the curve at upstream x1
forward by the free-flow (i.e., the undelayed) trip time from x1 to x2.  Also displayed in Figure 
2-4, the curves of cumulative count versus space show the number of objects crossing a fixed 
location during the interval t2 - t1 and the distances traveled by individual objects during this 
same interval.

If one is dealing with many objects so that measuring the exact integer numbers is not 
important, it is advantageous to construct the cumulative curves with piece-wise linear 
approximations; e.g. the curves may be smoothed using linear interpolations that pass 
through the crests of the steps.  The time-dependent flows past some location are the slopes of 
the smoothed curve of t versus N 

2. TRAFFIC STREAM CHARACTERISTICS

2-8



constructed at that location (Moskowitz, 1954; Edie and Foote, 1960; Newell, 1971, 1982).  
Analogously, the location-dependent densities at some instant are the negative slopes of a smoothed 
curve of N versus x; densities are the negative slopes because objects are numbered in the reverse 
direction to their motion. This three-dimensional model has been applied by Newell (1993) in work 
on kinematic waves in traffic (see Chapter 5).  In addition, Part I of his paper contains some 
historical notes on the use of this approach for modelling. 

 
 

 

Figure 2-4. Three-dimensional representation. 

 
2.2 Measurement issues 
 
This section addresses issues related to the measurement of the key variables defined in the 
previous section.  Four topics are covered.  First, there is a discussion of measurement 
procedures that have traditionally been used.  Second, potential measurement errors arising from 
the mismatch between the definitions and the measurement methods are discussed.  Third, 
measurement difficulties that can potentially arise from the particular location used for collecting 
measurements are considered.  The final topic is the nature of the time intervals from which to 
collect data, drawing on the cumulative curves just presented. 
 
2.2.1 Measurement procedures   Measurement technology for obtaining traffic data has 
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changed over the 60-year span of interest in traffic flow, but most of the basic procedures remain 
largely the same. Five measurement procedures are discussed in this section:   
 
• measurement at a point;  
• measurement over a short section (by which is meant less than about 10 meters (m); 
• measurement over a length of road [usually at least 0.5 kilometers (km)];  
• the use of an observer moving in the traffic stream; and  
• wide-area samples obtained simultaneously from a number of vehicles, as part of Intelligent 

Transportation Systems (ITS). 
 
The first two were discussed with reference to the time-space diagram in Fig 2.2, and the 
remaining three are also readily interpreted on that diagram.  Details on each of these methods 
can be found in the ITE's Manual of Transportation Engineering Studies (Robertson, 1994).  The 
wide-area samples from ITS are similar to having a number of moving observers at various 
points and times within the system.  New developments such as this will undoubtedly change the 
way some traffic measurements are obtained in the future, but they have not been in operation 
long enough to have a major effect on the material to be covered in this chapter. 
 
Measurement at a point by hand tallies or pneumatic tubes, was the first procedure used for 
traffic data collection.  This method is easily capable of providing volume counts and therefore 
flow rates directly, and can provide headways if arrival times are recorded.  The technology for 
making measurements at a point on freeways changed over 30 years ago from using pneumatic 
tubes placed across the roadway to using point detectors (May et al. 1963; Athol 1965).  The 
most commonly used point detectors are based on inductive loop technology, but other methods 
in use include microwave, radar, photocells, ultrasonics, and closed circuit television cameras. 
 
Except for the case of a stopped vehicle, speeds at a 'point' can be obtained only by radar or 
microwave detectors:  dx/dt obviously requires some dx, however small.  (Radar and microwave 
frequencies of operation mean that a vehicle needs to move only about one centimeter during the 
speed measurement.)  In the absence of such instruments for a moving vehicle, a second 
observation location is necessary to obtain speeds, which moves the discussion to that of 
measurements over a short section.  
 
Measurements over a short section  Early studies used a second pneumatic tube, placed very 
close to the first, to obtain speeds.  More recent systems have used paired presence detectors, 
such as inductive loops spaced perhaps five to six meters apart.  With video camera technology, 
two detector 'lines' placed close together provide the same capability for measuring speeds.  All 
of these presence detectors continue to provide direct measurement of volume and of time 
headways, as well as of speed when pairs of them are used. 
 
Most point detectors currently used, such as inductive loops or microwave beams, take up space 
on the road, and are therefore a short section measurement. These detectors also measure 
occupancy, which was not available from earlier technology.  This variable is available because 
the loop gives a continuous reading (at 50 or 60 Hz usually), which pneumatic tubes or manual 
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counts could not do.  Because occupancy depends on the size of the detection zone of the 
instrument, the measured occupancy may differ from site to site for identical traffic, depending 
on the nature and construction of the detector. 
 
Measurements along a length of road come either from aerial photography, or from cameras 
mounted on tall buildings or poles.  On the basis of a single frame from such sources, only 
density can be measured.  The single frame gives no sense of time, so neither volumes nor speed 
can be measured.  Once several frames are available, as from a video-camera or from time-lapse 
photography over short time intervals, speeds and volumes can also be measured, as per the 
generalized definitions provided above. 
 
Despite considerable improvements in technology, and the presence of closed circuit television 
on many freeways, there is very little use of measurements taken over a long section at the 
present time.  The one advantage such measurements might provide would be to yield true 
journey times over a lengthy section of road, but that would require better computer vision 
algorithms (to match vehicles at both ends of the section) than are currently possible.  There 
have been some efforts toward the objective of collecting journey time data on the basis of the 
details of the 'signature' of particular vehicles or platoons of vehicles across a series of loops 
over an extended distance (Kühne and Immes 1993), but few practical implementations as yet.  
 
The moving observer method was used in some early studies, but is not used as the primary data 
collection technique now because of the prevalence of the other technologies.  There are two 
approaches to the moving observer method.  The first is a simple floating car procedure in which 
speeds and travel times are recorded as a function of time and location along the road.  While the 
intention in this method is that the floating car behaves as an average vehicle within the traffic 
stream, the method cannot give precise average speed data.  It is, however, effective for 
obtaining qualitative information about freeway operations without the need for elaborate 
equipment or procedures.  One form of this approach uses a second person in the car to record 
speeds and travel times.  A second form uses a modified recording speedometer of the type 
regularly used in long-distance trucks or buses.  One drawback of this approach is that it means 
there are usually significantly fewer speed observations than volume observations.  An example 
of this kind of problem appears in Morton and Jackson (1992). 
 
The other approach was developed by Wardrop and Charlesworth (1954) for urban traffic 
measurements and is meant to obtain both speed and volume measurements simultaneously.  
Although the method is not practical for major urban freeways, it is included here because it may 
be of some value for rural expressway data collection, where there are no automatic systems.  
While it is not appropriate as the primary mode of data collection on a busy freeway, there are 
some useful points that come out of the literature that should be noted by those seeking to obtain 
average speeds through the moving car method. 
 
The method developed by Wardrop and Charlesworth is based on a survey vehicle that travels in 
both directions on the road. The formulae allow one to estimate both speeds and flows for one 
direction of travel. The two formulae are 
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where  
q  is the estimated flow on the road in the direction of interest, 

x  is the number of vehicles traveling in the direction of interest, which are met by the 
survey vehicle while traveling in the opposite direction, 

y  is the net number of vehicles that overtake the survey vehicle while traveling in the 
direction of interest (i.e. those passing minus those overtaken), 

ta  is the travel time taken for the trip against the stream,  
tw  is the travel time for the trip with the stream, and 

        t     is the estimate of mean travel time in the direction of interest. 
 
Wright (1973) revisited the theory behind this method.  His paper also serves as a review of the 
papers dealing with the method in the two decades between the original work and his own. He 
finds that, in general, the method gives biased results, although the degree of bias is not 
significant in practice, and can be overcome. Wright's proposal is that the driver should fix the 
journey time in advance, and keep to it. Stops along the way would not matter, so long as the 
total time taken is as determined prior to travel. Wright's other point is that turning traffic 
(exiting or entering) can upset the calculations done using this method. This fact means that the 
route to be used for this method needs to avoid major exits or entrances.  It should be noted also 
that a large number of observations are required for reliable estimation of speeds and flows; 
without that, the method has very limited precision. 
 
2.2.2 Error caused by the mismatch between definitions and usual measurements 
 The overview in the previous section described methods that have historically been used 
to collect observations on the key traffic variables.  As was mentioned within that section, the 
methods do not always accord with the definitions of these variables, as they were presented in 
Section 2.1.  One of the most common methods for collecting these data currently is based on 
inductive loops embedded in the roadway.  When speed data are also to be collected, a pair of 
closely spaced loops (often called a speed trap) is needed, a known distance apart.  Equivalent 
systems are based on microwave beams that cover a part of a roadway surface.  Cassidy and 
Coifman (1997) point out the criteria that need to be met for the data from these systems to meet 
the definitional requirements.   
 

 
 

 In practical terms, these criteria can be reduced to ensuring that any vehicle entering the 
speed trap also clears it within the time interval for which the data are obtained – or that the 
number of vehicles in the time interval is quite large.  Neither of these criteria is met by the 
ordinary implementation of inductive loop speed trap detectors.  Whether or not the last vehicle 
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entering a speed trap will clear it within the interval is a simple random variable.  There is no 
guarantee that this criterion will regularly be met.  If the number of vehicles were very large, this 
would not be an issue, but because of the need for timely information, many systems poll the 
loop detector controllers at least every minute, with some systems going to 30 second or even 20 
second data collection.  For intervals of that size, the volume counts on a single freeway lane 
will be at most 40 (or 25 or 20) vehicles, which is not large enough to overcome the error 
introduced by missing one of the vehicle’s speeds.  While the data from these detector systems 
are certainly good enough for operational decision-making, the data may give misleading results 
if used directly with these equations because of the mismatch between the collection and the 
definitions. 
 
2.2.3  Importance of location to the nature of the data 
 
 Almost all of the bivariate models to be discussed represent efforts to explain the 
behaviour of traffic variables over the full range of operation.  In turning the models from 
abstract representations into numerical models with specific parameter values, an important 
practical question arises:  can one expect that the data collected will cover the full range that the 
model is intended to cover?  If the answer is no, then the difficult question follows of how to do 
curve fitting (or parameter estimation) when there may be essential data missing. 
 
 This issue can be explained more easily with an example.  At the risk of oversimplifying 
a relationship prior to a more detailed discussion of it, consider the simple representation of the 
speed-flow curve as shown in Figure 2.5, for three distinct sections of roadway.  The underlying 
curve is assumed to be the same at all three locations.  Between locations A and B, a major 
entrance ramp adds considerable traffic to the road.  If location B reaches capacity due to this 
entrance ramp volume, there will be a queue of traffic on the mainstream at location A. These 
vehicles can be considered to be waiting their turn to be served by the bottleneck section 
immediately downstream of the entrance ramp. The data superimposed on graph A reflect the 
situation whereby traffic at A had not reached capacity before the added ramp flow caused the 
backup.  There is a good range of uncongested data (on the top part of the curve), and congested 
data concentrated in one area of the lower part of the curve.  The flows for that portion reflect the 
capacity flow at B less the entering ramp flows. 
 
 At location B, the full range of uncongested flows is observed, right out to capacity, but 
the location never becomes congested, in the sense of experiencing stop-and-go traffic. It does, 
however, experience congestion in the sense that speeds are below those observed in the absence 
of the upstream congestion.  Drivers arrive at the front end of the queue moving very slowly, and 
accelerate away from that point, increasing speed as they move through the bottleneck section.  
This segment of the speed-flow curve has been referred to as queue discharge flow, QDF (Hall et 
al. 1992).  The particular speed observed at B will depend on how far it is from the front end of 
the queue (Persaud and Hurdle 1988). Consequently, the only data that will be observed at B are 
on the top portion of the curve, and at some particular speed in the QDF segment. 
 
 If the exit ramp between B and C removes a significant portion of  the traffic that was 
observed at B, flows at C will not reach the levels they did at B.  If there is no downstream 
situation similar to that between A and B, then C will not experience congested operations, and 
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the data observable there will be as shown in Figure 2.5. 
 
 None of these locations taken alone can provide the data to identify the full speed-flow 
curve.  Location C can help to identify the uncongested portion, but cannot deal with capacity, or 
with congestion.  Location B can provide information on the uncongested portion and on 
capacity operation, but cannot contribute to the discussion of congested operations.  Location A 
can provide some information on both uncongested and congested operations, but cannot tell 
anything about capacity operations.  This would all seem obvious enough.  A similar discussion 
appears in Drake et al (1967).  It is also explained by May (1990).  Other aspects of the effect of 
location on data patterns are discussed by Hsu and Banks (1993). Yet a number of important 
efforts to fit data to theory have ignored this key point (for example Ceder and May 1976; Easa 
and May 1980).  They have recognized that location-A data are needed to fit the congested 
portion of the curve, but have not recognized that at such a location data are missing that are 
needed to identify capacity.  Consequently, discussion of bivariate models will look at the nature 
of the data used in each study, and at where the data were collected (with respect to bottlenecks) 
in order to evaluate the theoretical ideas.  It is possible that the apparent need for several 
different models, or for different parameters for the same model at different locations, or even 
for discontinuous models instead of continuous ones, arose because of the nature (location) of 
the data each was using. 
 
2.2.4  Selecting intervals from which to extract data 

In addition to the location for the data, there are also several issues relating to the time 
intervals for collecting data.  The first is the issue of obtaining representative data.  By 
examining trends on the cumulative curves, one can observe how flows and densities change 
with time and space.  By selecting flows and densities as they appear on the cumulative curves, 
their values may be taken over intervals that exhibit near-constant slopes.  In this way, the values 
assigned to these properties are not affected by some arbitrarily selected measurement 
interval(s).  Choosing intervals arbitrarily is undesirable because data extracted over short 
measurement intervals are highly susceptible to the effects of statistical fluctuations while the 
use of longer intervals may average-out the features of interest.  Further discussion and 
demonstration of this in the context of freeway traffic is offered in (Cassidy, 1998). 
 There is also an issue of how many observations are needed to obtain good estimates of key 
variables such as the capacity.  A bottleneck’s capacity, qmax , is the maximum flow it can sustain for 
a very long time (in the absence of any influences from restrictions further downstream).  It can be 
expressed mathematically as  
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deviate from qmax is controlled by the sample size, N.  A formula for determining N to estimate a 
bottleneck’s capacity to a specified precision is derived below. 

To begin this derivation, the estimator may be taken as 
 

(2.21) 
where nm is the count collected in the mth interval and each of these M intervals has a duration of τ. 
 If the {nm} can be taken as independent, identically distributed random variables (e.g. the counts 
were collected from consecutive intervals with τ sufficiently large), then the variance of qmax can be 
expressed as  
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(2.22) 

 
since qmax is a linear function of the independent nm and the (finite) observation period T is the 
denominator in (2.21). 

The bracketed term variance(n) / τ is a constant.  Thus, by multiplying the top and bottom of this 
quotient by E(n), the expected value of the counts, and by noting that E(n) / τ = qmax , one obtains 

 
(2.23) 

where γ is the index of dispersion; i.e., the ratio variance(n)/E(n). 
The variance(qmax ) is the square of the standard error.  Thus, by isolating T in (2.23) and then 

multiplying both sides of the resulting expression by qmax , one arrives at 
 

(2.24) 
 

where qmax�T  N, the number of observations (i.e., the count) needed to estimate capacity to a 
specified percent error ε.  Note, for example, that ε = 0.05 to obtain an estimate within 5 percent of 
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2.3.1  Speed-flow models 
 
 The speed-flow relationship is the bivariate relationship on which there has been the 
greatest amount of work recently, so is the first one discussed.  This section starts from current 
understanding, which provides some useful insights for interpreting earlier work, and then moves 
to a chronological review of some of the major models.   
 
 The bulk of then recent empirical work on the relationship between speed and flow (as 
well as the other relationships) was summarized in a paper by Hall, Hurdle, and Banks (1992).  
In it, they proposed the model for traffic flow shown in Figure 2.6.  This figure is the basis for 
the background speed-flow curve in Figure 2.5. 
 
 It is useful to summarize some of the antecedents of the understanding depicted in Figure 
2.6. The initial impetus came from a paper by Persaud and Hurdle (1988), in which they 
demonstrated (Figure 2.7) that the vertical line for queue discharge flow in Figure 2.6 was a 
reasonable result of measurements taken at various distances downstream from a queue. This 
study was an outgrowth of an earlier one by Hurdle and Datta (1983) in which they raised a 
number of questions about the shape of the speed-flow curve near capacity.   
 
 Additional empirical work dealing with the speed-flow relationship was conducted by 
Banks (1989, 1990), Hall and Hall (1990), Chin and May (1991), Wemple, Morris and May 
(1991), Agyemang-Duah and Hall (1991) and Ringert and Urbanik (1993).  All of these studies 
supported the idea that speeds remain nearly constant even at quite high flow rates.  Another of 
the important issues they dealt with is one that had been around for over thirty years 
(Wattleworth 1963): is there a reduction in flow rates within the bottleneck at the time that the 
queue forms upstream?  Figure 2.6 shows such a drop on the basis of two studies. Banks (1991a, 
1991b) reports roughly a 3% drop from pre-queue flows, on the basis of nine days of data at one 
site in California.  Agyemang-Duah and Hall (1991) found about a 5% decrease, on the basis of 
52 days of data at one site in Ontario.  This decrease in flow is often not observable, however, as 
in many locations high flow rates do not last long enough prior to the onset of congestion to 
yield the stable flow values that would show the drop. 
 
 Two empirical studies in Germany support the upper part of the curve in Figure 2.6 quite 
well.  Heidemann and Hotop (1990) found a piecewise-linear 'polygon' for the upper part of the 
curve (Figure 2.8).  Unfortunately, they did not have data beyond 1700 veh/hr/lane, so could not 
address what happens at capacity.  Stappert and Theis (1990) conducted a major empirical study 
of speed-flow relationships on various kinds of roads.  However, they were interested only in 
estimating parameters for a specific functional form, 
 

 V = (A - eBQ) e-c - K edQ (2.25) 

 

 
 

where V is speed, Q is traffic volume, c and d are constant "Krummungs factors" taking values 
between 0.2 and 0.003, and A, B, and K are parameters of the model.  This function tended to 
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give the kind of result shown in Figure 2.9, despite the fact that the curve does not accord well 
with the data near capacity.  In Figure 2.9, each point represents a full hour of data, and the 
graph represents five months of hourly data.  Note that flows in excess of 2200 veh/h/lane were 
sustained on several occasions, over the full hour. 
 
 The problem for traffic flow theory is that these curves are empirically derived.  There is 
not really any theory that would explain these particular shapes, except perhaps for Edie et 
al.(1980), who propose qualitative flow regimes that relate well to these curves. The task that lies 
ahead for traffic flow theorists is to develop a consistent set of equations that can replicate this 
reality.  The models that have been proposed to date, and will be discussed in subsequent 
sections, do not necessarily lead to the kinds of speed-flow curves that data suggest are needed. 
 
 It is instructive to review the history of depictions of speed-flow curves in light of this 
current understanding.  Probably the seminal work on this topic was the paper by Greenshields in 
1935, in which he derived the following parabolic speed-flow curve on the basis of a linear 
speed-density relationship together with the equation, flow = speed * density: 
 

 q = kj (u -
u2
uf

) (2.26) 

 
Figure 2.10 contains that curve, and the data it is based on, redrawn.  The numbers against the 
data points represent the "number of 100-vehicle groups observed", on Labor Day 1934, in one 
direction on a two-lane two-way road (p. 464).  In counting the vehicles on the road, every 10th 
vehicle started a new group (of 100), so there is 90% overlap between two adjacent groups (p. 
451):  the groups are not independent observations.  Equally important, the data have been 
grouped in flow ranges of 200 veh/h and the averages of these groups taken prior to plotting.  
The one congested point, representing 51 (overlapping) groups of 100 observations, came from a 
different roadway entirely, with different cross-section and pavement, which were collected on a 
different day. 
 
 These details are mentioned here because of the importance to traffic flow theory of 
Greenshields' work.  The parabolic shape he derived was accepted as the proper shape of the 
curve for decades.  In the 1965 Highway Capacity Manual, for example, the shape shown in 
Figure 2.10 appears exactly, despite the fact that data displayed elsewhere in the 1965 HCM 
showed that contemporary empirical results did not match the figure.  In the 1985 HCM, the 
same parabolic shape was retained, although broadened considerably.  In short, Greenshields' 
model dominated the field for over 50 years, despite the fact that by current standards of research 
the method of analysis of the data, with overlapping groups and averaging prior to curve-fitting, 
would not be acceptable. 
 
 There is another criticism that can be addressed to Greenshields' work as well, although it 
is one of which a number of current researchers seem unaware.  Duncan (1976; 1979) has shown 
that calculating density from speed and flow, fitting a line to the speed-density data, and then 
converting that line into a speed-flow function, gives a biased result relative to direct estimation 
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of the speed-flow function.  This is a consequence of three things discussed earlier:  the non-
linear transformations involved in both directions, the stochastic nature of the observations, and 
the inability to match the time and space measurement frames exactly. 
 
  It is interesting to contrast the emphasis on speed-flow models in recent years with that 
20 years ago, as represented in TRB SR 165 (Gerlough and Huber 1975).  In that volume, the 
discussion of speed-flow models took up  less than a page of text, and none of the five 
accompanying diagrams dealt with freeways.  (Three dealt with the artificial situation of a test 
track.)  In contrast, five pages and eleven figures were devoted to the speed-density relationship. 
 Speed-flow models are important for freeway management strategies, and will be of 
fundamental importance for intelligent vehicle/highway systems (IVHS) implementation of 
alternate routing; hence there is considerably more work on this topic than on the remaining two 
bivariate topics.  Twenty and more years ago, the other topics were of more interest.  As 
Gerlough and Huber stated the matter (p. 61), "once a speed-concentration model has been 
determined, a speed-flow model can be determined from it."  That is in fact the way most earlier 
speed-flow work was treated (including that of Greenshields).  Hence it is sensible to turn to 
discussion of speed-concentration models, and to deal with any other speed-flow models as a 
consequence of speed-concentration work, which is the way they were developed. 
 
2.3.2  Speed-concentration models 
 
 Greenshields' (1935) linear model of speed and density was mentioned in the previous 
section.  It is: 
 

 u = uf (1-k /kj) (2.27) 

 
where uf is the free-flow speed, and kj is the jam density.  The measured data were speeds and 
flows; density was calculated using equation 2.27.  The most interesting aspect of this particular 
model is that its empirical basis consisted of half a dozen points in one cluster near free-flow 
speed, and a single observation under congested conditions (Figure 2.11).  The linear 
relationship comes from connecting the cluster with the single point:  "since the curve is a 
straight line it is only necessary to determine accurately two points to fix its direction" (p. 468).  
What is surprising is not that such simple analytical methods were used in 1935, but that their 
results (the linear speed-density model) have continued to be so widely accepted for so long.  
While there have been studies that claimed to have confirmed this model, such as that in Figure 
2.12a (Huber 1957), they tended to have similarly sparse portions of the full range of data, 
usually omitting both the lowest flows, and flow in the range near capacity.  There have also 
been a number of studies that found contradictory evidence, most importantly that by Drake, et 
al.  (1965), which will be discussed in more detail subsequently.  
 
 A second early model was that put forward by Greenberg (1959), showing a logarithmic 
relationship: 
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 u = umln(k/kj) (2.28) 

 
The paper showed the fit of the model to two data sets, both of which visually looked very 
reasonable.  However, the first data set was derived from speed and headway data on individual 
vehicles, which "was then separated into speed classes and the average headway was calculated 
for each speed class" (p. 83).  In other words, the vehicles that appear in one data point (speed 
class) may not even have been travelling together!  While a density can always be calculated as 
the reciprocal of average headway, when that average is taken over vehicles that may well not 
have been travelling together, it is not clear what that density is meant to represent.  The second 
data set used by Greenberg was Huber's.  This is the same data that appears in Figure 2.12a; 
Greenberg's graph is shown in Figure 2.12b.  Visually, the fit is quite good, but Huber reported 
an R of 0.97, which does not leave much room for improvement. 
 
 A third model from the same period is that by Edie (1961).  His model was an attempt to 
deal with a discontinuity that had consistently been found in data near the critical density, which 
“suggested the existence of some kind of change of state” (p. 72).  He proposed two linear 
models for the two states of flow.  The first related density to the logarithm of velocity above the 
“optimum velocity”, i.e. “non-congested flow”.  The second related velocity to the logarithm of 
spacing (i.e. the inverse of density) for congested flow.  The model was fitted to the same 
Lincoln Tunnel data as used by Greenberg. 
 
 These three forms of the speed-density curve, plus four others, were investigated in an 
empirical test by Drake et al. in 1967.  The test used data from the middle lane of the Eisenhower 
Expressway in Chicago, one-half mile (800 m) upstream from a bottleneck whose capacity was 
only slightly less than the capacity of the study site.  This location was chosen specifically in 
order to obtain data over as much of the range of operations as possible.  A series of 1224 1-
minute observations were initially collected.  The measured data consisted of volume, time-mean 
speed, and occupancy.  Density was calculated from volume and time-mean speed.  A sample 
was then taken from among the 1224 data points in order to create a data set that was uniformly 
distributed along the density axis, as is assumed by regression analysis of speed on density.  
 
 The intention in conducting the study was to compare the seven speed-density hypotheses 
statistically, and thereby to select the best one.  In addition to Greenshields' linear form, 
Greenberg's exponential curve, and Edie’s two-part logarithmic model, the other four 
investigated were a two-part and three-part piecewise linear models, Underwood's (1961) 
transposed exponential curve, and a bell-shaped curve.  Despite the intention to use "a rigorous 
structure of falsifiable tests" (p. 75) in this comparison, and the careful way the work was done, 
the statistical analyses proved inconclusive:  "almost all conclusions were based on intuition 
alone since the statistical tests provided little decision power after all" (p. 76).  To assert that 
intuition alone was the basis is no doubt a bit of an exaggeration.  Twenty-one graphs help 
considerably in differentiating among the seven hypotheses and their consequences for both 
speed-volume and volume-density graphs. 
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 Figure 2.13 provides an example of the three types of graphs used, in this case the ones 
based on the Edie model.  Their comments about this model (p. 75) were: "The Edie formulation 
gave the best estimates of the fundamental parameters.  While its R2 was the second lowest, its 
standard error was the lowest of all hypotheses."  One interesting point with respect to Figure 
2.13 is that the Edie  model was the only one of the seven to replicate capacity operations closely 
on the volume-density and speed-volume plots.  The other models tended to underestimate the 
maximum flows, often by a considerable margin, as is illustrated in Figure 2.14, which shows the 
speed-volume curve resulting from Greenshields' hypothesis of a linear speed-density 
relationship.  (It is interesting to note that the data in these two figures are quite consistent with 
the currently accepted speed-flow shape identified earlier in Figures 2.5 and 2.6.)  The overall 
conclusion one might draw from the Drake et al. study is that none of the seven models they 
tested provide a particularly good fit to or explanation of the data, although it should be noted 
that they did not state their conclusion this way, but rather dealt with each model separately. 
 
 There are four additional issues that arise from the Drake et al. study that are worth 
noting here.  The first is the methodological one identified by Duncan (1976; 1979), and 
discussed earlier with regard to Greenshields' work. Duncan showed that calculating density 
from speed and flow data, fitting a speed-density function to that data, and then transforming the 
speed-density function into a speed-flow function results in a curve that does not fit the original 
speed-flow data particularly well.  This is the method used by Drake et al, and certainly most of 
their resulting speed-flow functions did not fit the original speed-flow data very well.  Duncan's 
1979 paper expanded on the difficulties to show that minor changes in the speed-density function 
led to major changes in the speed-flow function, suggesting the need for further caution in using 
this method of double transformations to get a speed-flow curve. 
 

The second is that of the data collection location, as discussed above.  The data were 
collected upstream of a bottleneck, which produced the kind of discontinuity that Edie had 
earlier identified.  The Drake et al. approach was to try to fit the data as they had been obtained, 
without considering whether there was a portion of the data that was missing.  They had 
intentionally tried to obtain data from as wide a range as possible, but as discussed above it may 
not be possible to get data from all three parts of the curve at one location. 

 
The third issue is that identified by Cassidy, relating to the time period for collection of 

the data.  The Drake et al. data came from standard loop detectors, working on fixed time 
intervals.  As a consequence, there will be some measurement error, which may well affect the 
estimation of the bivariate relationships. 
 
 The fourth issue is the relationship between car-following models (see Chapter 5) and the 
models tested by Drake et al.  They noted that four of the models they tested "have been shown 
to be directly related to specific car-following rules", and cited articles by Gazis and co-authors 
(1959; 1961).  The interesting question to raise in the context of the overall appraisal of the 
Drake et al. results is whether those results raise doubts about the validity of the car-following 
models for freeways.  The car-following models gave rise to four of the speed-density models 
tested by Drake et al.  The results of the testing suggest that the speed-density models are not 
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particularly good. Modus tollens in logic says that if the consequences of a set of premises are 
shown to be false, then one (at least) of the premises is not valid.  It is possible, then, that the 
car-following models are not valid for freeways.  (This is not surprising, as they were not 
developed for this context.  Nor, it seems, are they used as the basis for contemporary 
microscopic freeway simulation models.)  On the other hand, any of the three issues just 
identified may be the source of the failure of the models, rather than their development from car-
following models. 
 
 
 
2.3.3  Flow-concentration models 
 
 Although Gerlough and Huber did not give the topic of flow-concentration models such 
extensive treatment as they gave the speed-concentration models, they nonetheless thought this 
topic to be very important, as evidenced by their introductory paragraph for the section dealing 
with these models (p. 55): 
 
 Early studies of highway capacity followed two principal approaches.  Some 

investigators examined speed-flow relationships at low concentrations; others discussed 
headway phenomena at high concentrations. Lighthill and Whitham [1955] have 
proposed use of the flow-concentration curve as a means of unifying these two 
approaches.  Because of this unifying feature, and because of the great usefulness of the 
flow-concentration curve in traffic control situations (such as metering a freeway), 
Haight [1960; 1963] has termed the flow-concentration curve "the basic diagram of 
traffic". 

 
Nevertheless, most flow-concentration models have been derived from assumptions about the 
shape of the speed-concentration curve.  This section deals primarily with work that has focused 
on the flow-concentration relationship directly.  Under that heading is included work that uses 
either density or occupancy as the measure of concentration. 
 
 Edie was perhaps the first to point out that empirical flow-concentration data frequently 
have discontinuities in the vicinity of what would be maximum flow, and to suggest that 
therefore discontinuous curves might be needed for this relationship.  (An example of his type of 
curve appears in Figure 2.13 above.)  This suggestion led to a series of investigations by May 
and his students (Ceder 1975; 1976; Ceder and May 1976; Easa and May 1980) to specify more 
tightly the nature and parameters of these "two-regime" models (and to link those parameters to 
the parameters of car-following models).  The difficulty with their resulting models is that the 
models often do not fit the data well at capacity (with results similar to those shown in Figure 
2.14 for Greenshields' single-regime model).  In addition, there seems little consistency in 
parameters from one location to another.  Even more troubling, when multiple days from the 
same site were calibrated, the different days required quite different parameters. 
 
 Koshi, Iwasaki and Ohkura (1983) gave an empirically-based discussion of the flow-
density relationship, in which they suggested that a reverse lambda shape was the best 
description of the data (p. 406):  "the two regions of flow form not a single downward concave 
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curve... but a shape like a mirror image of the Greek letter lamda [sic] (λ)".  These authors also 
investigated the implications of this phenomenon for car-following models, as well as for wave 
propagation.  Data with a similar shape to theirs appears in Figure 2.13; Edie’s equations fit 
those data with a shape similar to the lambda shape Koshi et al.  suggested. 
 
 Although most of the flow-concentration work that relies on occupancy rather than 
density dates from the past decade, Athol suggested its use nearly 30 years earlier (in 1965).  His 
work presages a number of the points that have come out subsequently and are discussed in more 
detail below:  the use of volume and occupancy together to identify the onset of congestion; the 
transitions between uncongested and congested operations at volumes lower than capacity; and 
the use of time-traced plots (i.e. those in which lines connected the data points that occurred 
consecutively over time) to better  understand the operations. 
 
 After Athol's early efforts, there seems to have been a dearth of efforts to utilize the 
occupancy data that was available, until the mid-1980s.  One paper from that time (Hall et al. 
1986) that utilized occupancy drew on the same approach Athol had used, namely the 
presentation of time-traced plots.  Figure 2.15 shows results for four different days from the 
same location, 4 km upstream of a primary bottleneck.  The data are for the left-most lane only 
(the high-speed, or passing lane), and are for 5-minute intervals.  The first point in the time-
connected traces is the one that occurred in the 5-minute period after the data-recording system 
was turned on in the morning.  In part D of the Figure, it is clear that operations had already 
broken down prior to data being recorded.  Part C is perhaps the most intriguing: operations 
move into higher occupancies (congestion) at flows clearly below maximum flows.  Although 
Parts A and B may be taken to confirm the implicit assumption many traffic engineers have that 
operations pass through capacity prior to breakdown, Part C gives a clear indication that this 
does not always happen.  Even more important, all four parts of Figure 2.15 show that operations 
do not go through capacity in returning from congested to uncongested conditions.  Operations 
can 'jump' from one branch of the curve to the other, without staying on the curve.  (This same 
result, not surprisingly, occurs for speed-flow data.) 
 
 Each of the four parts of Figure 2.15 show at least one data point between the two 
'branches' of the usual curve during the return to uncongested conditions.  Because these were 5-
minute data, the authors recognized that these points might be the result of averaging of data 
from the two separate branches.  Subsequently, however, additional work utilizing 30-second 
intervals confirmed the presence of these same types of data (Persaud and Hall 1989).  Hence 
there appears to be strong evidence that traffic operations on a freeway can move from one 
branch of the curve to the other without going all the way around the capacity point.  This is an 
aspect of traffic behaviour that none of the mathematical models discussed above either explain 
or lead one to expect.  Nonetheless, the phenomenon has been at least implicitly recognized 
since Lighthill and Whitham's (1955) discussion of shock waves in traffic, which assumes 
instantaneous jumps from one branch to the other on a speed-flow or flow-occupancy curve.  As 
well, queueing models (e.g. Newell 1982) imply that immediately upsteam from the back end of 
a queue there must be points where the speed is changing rapidly from the uncongested branch 
of the speed-flow curve to that of the congested branch.  It would be beneficial if flow-
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concentration (and speed-flow) models explicitly took this possibility into account. 
 
 One of the conclusions of the paper by Hall et al. (1986) from which Figure 2.15 is drawn 
is that an inverted 'V' shape is a plausible representation of the flow-occupancy relationship.  
Although that conclusion was based on limited data from near Toronto, Hall and Gunter (1986) 
supported it with data from a larger number of stations.  Banks (1989) tested their proposition 
using data from the San Diego area, and confirmed the suggestion of the inverted 'V'.  He also 
offered a mathematical statement of this proposition and a behavioural interpretation of it (p. 
58): 
 
 The inverted-V model implies that drivers maintain a roughly constant average 

time gap between their front bumper and the back bumper of the vehicle in front 
of them, provided their speed is less than some critical value.  Once their speed 
reaches this critical value (which is as fast as they want to go), they cease to be 
sensitive to vehicle spacing.... 

 
2.4  Three-dimensional models  
 
 There has not been a lot of work that attempts to treat all three traffic flow variables 
simultaneously.  Gerlough and Huber presented one figure (reproduced as Figure 2.16) that 
represented all three variables, but said little about this, other than (1) "The model must be on the 
three-dimensional surface u = q/k," and (2)  "It is usually more convenient to show the model of 
[Figure 2.16] as one or more of the three separate relationships in two dimensions..." (p. 49). As 
was noted earlier, however, empirical observations rarely accord exactly with the relationship 
q=u k, especially when the observations are taken during congested conditions.   Hence focusing 
on the two-dimensional relationships will not often provide even implicitly a valid three-
dimensional relationship.      
 
 In this context, a paper by Gilchrist and Hall (1989) is interesting because it 
presents three-dimensional representations of empirical observations, without attempting 
to fit them to a theoretical representations.  The study is limited, in that data from only 
one location, upstream of a bottleneck, was presented. To enable better visualization of 
the data, a time-connected trace was used.  The projections onto the standard two-
dimensional surfaces of the data look much as one might expect.  The surprises came in 
looking at oblique views of the three-dimensional representation, as in Figures 2.17 and 
2.18.  From one perspective (Figure 2.17), the traditional sideways U-shape that we have 
been led to expect is quite apparent, and projections of that are easily visualized onto, for 
example, the speed-flow surface (the face labeled with a 3, on the left side of the ‘box’).  
From a different perspective (Figure 2.18) that shape is hardly apparent at all, although 
indications of an inverted 'V' can be seen, which would project onto a flow-occupancy 
plot on face 1 of the box..  Black and white were alternated for five speed ranges. In both 
figures, the dark lines at the left represent the data with speeds above 80 km/hr.  The light 
lines closest to the left  cover the range 71 to 80 km/hr; the next, very small, area of dark 
lines contains the range 61 to 70 km/hr; the remaining light lines represent the range 51 
to 60 km/hr; and the dark lines to the right of the diagram represent speeds below 50 
km/hr. 
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 One recent approach to modelling the three traffic operations variables directly has been 
based on the mathematics of catastrophe theory.  (The name comes from the fact that while most 
of the variables being modelled change in a continuous fashion, at least one of the variables can 
make sudden discontinuous changes, referred to as catastrophes by Thom (1975), who originally 
developed the mathematics for seven such models, ranging from two dimensions to eight.)  The 
first effort to apply these models to traffic data was that by Dendrinos (1978), in which he 
suggested that the two-dimensional catastrophe model could represent the speed-flow curve.  A 
more fruitful model was proposed by Navin (1986), who suggested that the three-dimensional 
'cusp' catastrophe model was appropriate for the three traffic variables.  The feature of the cusp 
catastrophe surface that makes it of interest in the traffic flow context is that while two of the 
variables (the control variables) exhibit smooth continuous change, the third one (the state 
variable) can undergo a sudden 'catastrophic' jump in its value.  Navin suggested that speed was 
the variable that underwent this catastrophic change, while flow and occupancy were the control 
variables. 
 
 While Navin's presentation was primarily an intuitive one, without recourse to data, Hall 
and co-authors picked up on the idea and attempted to flesh it out both mathematically and 
empirically.  The initial effort appears in Hall (1987), in which the basic idea was presented, and 
some data applied.  Figure 2.19 is a representation, showing the partially-folded (and torn) 
surface that is the Maxwell version of the cusp catastrophe surface, approximately located traffic 
data on that surface, and axes external to the surface representing the general correspondence 
with traffic variables.  Further elaboration of this model is provided by Persaud and Hall (1989). 
 Acha-Daza and Hall (1993) compared the ability of this model with the ability of some of the 
earlier models discussed above, to estimate speeds from flows obtained using inductive loop 
detectors and 30-second data, and found the catastrophe theory model to be slightly better than 
they were.  Despite its empirical success, the problem with the model is that it appears to be 
inconsistent with the basic definitions and relationships with which this chapter opened. 
 
2.5  Summary and links to other chapters 
 
 The current status of mathematical models for speed-flow-concentration relationships is 
in a state of flux.  The models that dominated the discourse for nearly 30 years are incompatible 
with the data currently being obtained, and with currently accepted depictions of speed-flow 
curves, but no replacement models have yet been developed.  The analyses of Cassidy and 
Newell have shown that the data used to develop most of the earlier models were flawed, as has 
been described above.  An additional difficulty was noted by Duncan (1976; 1979):  
transforming variables, fitting equations, and then transforming the equations back to the original 
variables can lead to biased results, and is very sensitive to small changes in the initial curve-
fitting.  Progress has been made in understanding the relationships among the key traffic 
variables, but there is considerable scope for better models still. 
 It is important to note that the variables and analyses that have been discussed in this 
chapter are closely related to topics in several of the succeeding chapters.  The human factors 
discussed in Chapter 3, for example, help to explain some of the variability in the data that have 
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Figure 2.19 
Catastrophe Theory Surface Showing Sketch of a Possible Freeway Function, and 

Projections and Transformations from That (Hall 1987). 
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been discussed here.  As mentioned earlier, some of the bivariate models discussed above have 
been derived from car-following models, which are covered in Chapter 4.  In addition, brief 
mention was made here of Lighthill and Witham’s work, which has spawned a large literature 
related to the behavior of shocks and waves in traffic flow, covered in Chapter 5.  All of these 
topics are inter-related, but have been addressed separately for ease of understanding. 
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