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I 


variance of the number of arrivals per cycle
mean number of arrivals per cycle

B 


variance of number of departures during cycle
mean number of departures during cycle

Chapter 9 - Frequently used Symbols

I = cumulative lost time for phase i (sec)i

L = total lost time in cycle (sec)
q = A(t) =  cumulative number of arrivals from beginning of cycle starts until t,
B   = index of dispersion for the departure process,

c = cycle length (sec)
C = capacity rate (veh/sec, or veh/cycle, or veh/h)
d = average delay (sec)
d = average uniform delay (sec)1

d = average overflow delay (sec)2

D(t) = number of departures after the cycle starts until time t (veh)
e = green extension time beyond the time to clear a queue (sec)g

g = effective green time (sec)
G = displayed green time (sec)
h = time headway (sec)
i = index of dispersion for the arrival process
q = arrival flow rate (veh/sec)
Q = expected overflow queue length (veh)0

Q(t) = queue length at time t (veh)
r = effective red time (sec)
R = displayed red time (sec)
S = departure (saturation) flow rate from queue during effective green (veh/sec)
t = time
T = duration of analysis period in time dependent delay models
U = actuated controller unit extension time (sec)
Var(.) = variance of (.)
W = total waiting time of all vehicles during some period of time ii

x = degree of saturation, x = (q/S) / (g/c), or x = q/C
y = flow ratio, y = q/S
Y = yellow (or clearance) time (sec)
� = minimum headway
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9.
TRAFFIC FLOW AT SIGNALIZED INTERSECTIONS

9.1 Introduction

The theory of traffic signals focuses on the estimation of delays have received greater attention since the pioneering work by
and queue lengths that result from the adoption of a signal Webster  (1958) and have been incorporated in many
control strategy at individual intersections, as well as on a intersection control and analysis tools throughout the world.  
sequence of intersections.  Traffic delays and queues are
principal  performance measures that enter into the This chapter traces the evolution of  delay and queue length
determination of intersection level of service (LOS),  in the models for traffic signals.  Chronologically speaking, early
evaluation of the adequacy of lane lengths, and in the estimation modeling efforts  in this area focused on the adaptation of steady-
of  fuel consumption and emissions. The following material state queuing theory to estimate the random component of delays
emphasizes the theory of descriptive models of traffic flow, as
opposed to  prescriptive (i.e. signal timing)  models. The
rationale for concentrating  on descriptive models is that a better
understanding of the interaction between  demand (i.e. arrival
pattern) and supply (i.e. signal indications and types)  at traffic
signals is a prerequisite to the formulation of optimal signal
control strategies.  Performance estimation is based on
assumptions regarding the characterization of the traffic arrival
and service processes.  In general, currently used delay models
at intersections are described  in terms of a deterministic and
stochastic component to reflect both the fluid and random
properties of traffic flow. 

The deterministic component of traffic is founded on the fluid
theory of traffic in which demand and service are treated as
continuous variables described by flow rates which vary over the
time and space domain.  A complete treatment of the  fluid
theory application to traffic signals has been presented in
Chapter 5 of the monograph. 

The stochastic component of delays is founded on steady-state
queuing theory which defines the traffic arrival and service time
distributions.  Appropriate queuing models are then used to
express the resulting distribution of the performance measures.
The theory of unsignalized intersections, discussed in Chapter 8
of this monograph, is representative of a purely stochastic
approach to determining traffic performance.  

Models which incorporate both deterministic (often called
uniform) and stochastic (random or overflow) components of
traffic performance  are very appealing in the area of traffic
signals since they can be applied to a wide range of traffic
intensities, as well as to various types of signal control.  They are
approximations of the more theoretically rigorous models, in
which delay terms that are numerically inconsequential to the
final result have been dropped.  Because of their simplicity,  they

and queues at intersections.  This approach was valid so long as
the average flow rate did not exceed the average capacity rate.
In this case, stochastic equilibrium  is achieved and expectations
of queues and delays are finite and therefore can be estimated by
the theory.  Depending on the assumptions regarding the
distribution of traffic arrivals and departures, a plethora of
steady-state queuing models were developed in the literature.
These are described in Section 9.3 of this chapter. 

As traffic flow rate approaches or exceeds the capacity rate, at
least for a finite period of time, the steady-state models
assumptions are violated since a state of stochastic equilibrium
cannot be achieved.  In response to the need for improved
estimation of traffic performance in both under and oversaturated
conditions, and the lack of a theoretically rigorous approach to
the problem, other methods were pursued.  A prime example is
the  time-dependent approach originally conceived by Whiting
(unpublished)  and further developed by Kimber and Hollis
(1979). The time-dependent approach has been adopted in many
capacity guides in the U.S., Europe and Australia.  Because it is
currently in wide use, it is discussed in some detail in Section 9.4
of this chapter.  

Another limitation of the steady-state queuing approach is the
assumption of certain types of arrival processes (e.g Binomial,
Poisson, Compound Poisson) at the signal. While valid in  the
case of an isolated signal, this assumption does not reflect the
impact of adjacent signals and control which may alter the
pattern and number of arrivals at a downstream signal. Therefore
performance in a system of signals will differ  considerably from
that at an isolated signal.  For example, signal coordination will
tend to reduce delays and stops since the arrival process will be
different in the red and green portions of the phase. The benefits
of coordination are somewhat subdued due to the dispersion of
platoons between signals. Further, critical signals in a system
could  have a metering effect on traffic which proceeds
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downstream. This metering reflects the finite capacity of the  without reference to their impact on signal performance.  The
critical intersection which tends to truncate the arrival manner in which these controls affect performance is quite
distribution at the next signal. Obviously, this phenomenon has diverse and therefore difficult to model in a generalized
profound implications on signal performance as well, fashion. In this chapter, basic methodological approaches  and
particularly if the critical signal is oversaturated.  The impact of concepts are introduced and discussed in Section 9.6.   A
upstream  signals  is   treated   in   Section 9.5  of   this  chapter. complete survey of adaptive signal theory is beyond the scope of

With the proliferation of traffic-responsive signal control
technology, a treatise on signal theory would not be complete

this document. 

9.2  Basic Concepts of Delay Models at Isolated Signals

As stated earlier, delay models contain both deterministic and  time is that portion of green where flows are sustained at the
stochastic components of traffic performance.  The deterministic saturation flow rate level.  It is typically calculated at the
component is estimated according to the following assumptions: displayed  green time minus an initial start-up lost time (2-3
a) a zero initial queue at the start of the green phase, b) a seconds) plus an end gain during the clearance interval (2-4
uniform arrival pattern at the arrival flow rate (q) throughout the
cycle c) a uniform departure pattern at the saturation flow rate
(S) while a queue is present, and at the arrival rate when the
queue vanishes, and d) arrivals do not exceed the signal capacity,
defined as the product of the approach saturation flow rate (S)
and its effective green to cycle ratio (g/c).  The effective green

seconds depending on the length of the clearance phase).   

A simple diagram describing the delay process in shown in
Figure 9.1.  The queue profile resulting from this application is
shown  in  Figure  9.2.   The area under the queue profile
diagram represents the total (deterministic) cyclic delay.  Several

Figure 9.1  
Deterministic Component of Delay Models.
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Figure 9.2
Queuing Process During One Signal Cycle 

(Adapted from McNeil 1968).

performance measures can be derive including the average delay Interestingly, at extremely congested conditions, the stochastic
per vehicle (total delay divided by total cyclic arrivals) the queuing effect are minimal in comparison with the size of
number of vehicle stopped (Q  ), the maximum number ofs

vehicles in the queue (Q ) , and the average queue lengthmax

(Q ).   Performance models  of this type are applicable to  lowavg

flow  to capacity ratios (up to about 0.50), since the assumption
of zero initial and end queues is not violated in most cases.   

As traffic intensity increases, however, there is a increased
likelihood of “cycle failures”. That is, some cycles will begin to
experience an overflow queue of vehicles that could not
discharge from a previous cycle. This  phenomenon occurs at
random, depending on which cycle happens to experience
higher-than-capacity flow rates.  The presence of an initial queue
(Q ) causes an additional delay which must be considered in theo

estimation of traffic performance.  Delay models  based on queue
theory (e.g. M/D/n/FIFO) have  been applied to account for this
effect.  

oversaturation queues. Therefore, a fluid theory approach may
be appropriate to  use for highly oversaturated intersections.
This leaves a gap in delay models  that are applicable to  the
range of  traffic flows  that are numerically close to the signal
capacity. Considering that most real-world signals are timed to
operate within that domain, the value of time-dependent models
are of particular relevance for this range of conditions.

In the case of vehicle actuated control, neither the cycle length
nor green times are known in advance.  Rather, the length of the
green is determined partly by controller-coded  parameters such
as minimum and maximum green times, and partly by the pattern
of traffic arrivals. In the simplest case of a basic actuated
controller, the green time is extended beyond its minimum so
long as  a) the time headway between vehicle arrivals does not
exceed the controllers unit extension (U), and b) the maximum
green has not been reached.   Actuated control models are
discussed further  in Section 9.6.
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(9.1)

(9.10)

(9.3)

(9.4)

(9.5)

(9.6)

9.3  Steady-State Delay Models

9.3.1  Exact Expressions

This category of models attempts to characterize traffic delays
based on statistical distributions of the arrival and departure
processes.  Because of the purely theoretical foundation of the
models, they require very strong assumptions to be considered
valid.  The following section describes how delays are estimated
for this class of models, including the necessary data
requirements. 

The expected delay at fixed-time signals was first derived by
Beckman (1956) with the assumption of the binomial arrival
process and deterministic service:

where,

c   = signal cycle,
g   = effective green signal time,
q   = traffic arrival flow rate,
S   = departure flow rate from queue during green,
Q  = expected overflow queue from previous cycles.o

The expected overflow queue used in the formula and the
restrictive assumption of the binomial arrival process reduce the
practical usefulness of Equation 9.1.  Little (1961) analyzed the
expected delay at or near traffic signals to a turning vehicle
crossing a Poisson traffic stream.  The analysis, however, did not
include the effect of turners on delay to other vehicles.  Darroch
(1964a) studied a single stream of vehicles arriving at a
fixed-time signal.  The arrival process is the generalized Poisson
process with the Index of Dispersion:

where,
var(.)= variance of ( . )
q = arrival flow rate,
h = interval length,
A = number of arrivals during interval h = qh.

The departure process is described by a flexible service mecha-
nism and may include the effect of an opposing stream by defin-
ing an additional queue length distribution caused by this factor.
Although this approach leads to expressions for the expected
queue length and expected delay, the resulting models are
complex and they include elements requiring further modeling
such as the overflow queue or the additional queue component
mentioned earlier.  From this perspective, the formula is not of
practical importance.   McNeil (1968) derived a formula for the
expected signal delay with the assumption of a general arrival
process, and constant departure time.  Following his work, we
express the total vehicle delay during one signal cycle as a sum
of two components 

where
W  =  total delay experienced in the red phase and1

W  = total delay experienced in the green phase.2

and

where,
Q(t) = vehicle queue at time t,
A(t) = cumulative arrivals at t,

Taking expectations in Equation 9.4 it is found that:

Let us define a random variable Z  as the total vehicle delay2

experienced during green when the signal cycle is infinite.  The
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(9.7)

(9.8)

(9.9)

(9.10)

(9.11)

(9.12)

(9.13)

(9.14)

(9.15)

(9.16)

variable Z  is considered as the total waiting time in a busy2

period for a queuing process Q(t) with compound Poisson
arrivals of intensity q, constant service time 1/S and an initial
system state Q(t=t ).  McNeil showed that provided q/S<1:0

Now W  can be expressed using the variable Z :2 2

and

The queue is in statistical equilibrium, only if the degree of
saturation x is below 1,

For the above condition, the average number of arrivals per cycle
can discharge in a  single  green  period.   In  this  case E[ Q(0)
]  =  E [ Q(c) ] and E [ Q (0) ]  =  E [Q (c)  ].  Also Q (c-g)  = 2  2

Q(0)  +  A(c), so that:

and

Equations 9.9, 9.11, and 9.12 yield:

and using Equations 9.3, 9.4 and 9.13, the following is obtained:

The average vehicle delay d is obtained by dividing E(W) by the
average number of vehicles in the cycle (qc):  

which is in essence the formula obtained by Darroch when the
departure process is deterministic.  For a binomial arrival
process I=1-q/S, and Equation 9.15 becomes identical to that
obtained by Beckmann (1956) for binomial arrivals.  McNeil
and Weiss (in Gazis 1974) considered the case of the compound
Poisson arrival process and general departure process obtaining
the following model:

An examination of the above equation indicates that in the case
of no overflow (Q = 0), and no randomness in the traffic processo

(I=0), the resultant delay becomes the uniform delay component.
This component can be derived from a simple input-output
model of uniform arrivals throughout the cycle and departures as
described in Section 9.2.  The more general case in Equation
9.16 requires knowledge of the size of the average overflow
queue (or queue at the beginning of green), a major limitation on
the practical usefulness of the derived formulae, since these are
usually unknown. 
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(9.17)

(9.18)

(9.19)

(9.20)

(9.21)

A substantial research effort followed to obtain a closed-form signal performance, since vehicles are served only during the
analytical estimate of the overflow queue.  For example, Haight effective green, obviously at a higher rate than the capacity rate.
(1959) specified the conditional probability of the overflow The third term, calibrated based on simulation experiments, is a
queue at the end of the cycle when the queue at the beginning of corrective term to the estimate, typically in the range of 10
the cycle is known, assuming a homogeneous Poisson arrival percent of the first two terms in Equation 9.17.  
process at fixed traffic signals.  The obtained results were then
modified to the case of semi-actuated signals.  Shortly thereafter, Delays were also estimated indirectly, through the estimation of
Newell (1960) utilized a bulk service queuing model with an
underlying binomial arrival process and constant departure time,
using generating function technique.  Explicit expressions for
overflow queues were given for special cases of the signal split.

Other related work can be found in Darroch (1964a) who used
a more general arrival distribution but did not produce a closed
form expression of queue length, and Kleinecke (1964), whose
work included a set of exact but complicated series expansion
for Q , for the case of constant service time and Poisson arrivalo

process.

9.3.2  Approximate Expressions

The difficulty in obtaining exact expressions for delay which are
reasonably simple and can cover a variety of real world condi-
tions, gave impetus to a broad effort for signal delay estimation
using approximate models and bounds.  The first, widely used
approximate delay formula was developed by Webster (1961,
reprint of 1958 work with minor amendments) from a
combination of theoretical and numerical simulation approaches:

where,
d = average delay per vehicle (sec),
c = cycle length (sec),
g = effective green time (sec),
x = degree of saturation (flow to capacity ratio),
q = arrival rate (veh/sec).

The first term in Equation 9.17 represents delay when traffic can
be considered arriving at a uniform rate, while the second term
makes some allowance for the random nature of the arrivals.
This is known as the "random delay",  assuming a Poisson arrival
process and departures at constant rate which corresponds to the
signal capacity.  The latter assumption does not reflect actual

Q , the average overflow queue.  Miller (1963) for example ob-o

tained a approximate formulae for Q  that are applicable to anyo

arrival and departure distributions.  He started with the general
equality true for any general arrival and departure processes:

where,
Q(c) = vehicle queue at the end of cycle,
Q(0) = vehicle queue at the beginning of cycle,
A = number of arrivals during cycle,
C = maximum possible number of departures

during green,
�C = reserve capacity in cycle equal to 

(C-Q(0)-A) if Q(0)+A < C , zero otherwise.

Taking expectation of both sides of Equation 9.18, Miller
obtained:

since in equilibrium Q(0) = Q(c).

Now Equation 9.18 can be rewritten as:

Squaring both sides, taking expectations, the following is
obtained:
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(9.22)

(9.23)

(9.24)

(9.25)

(9.26)

(9.27)

(9.28)

(9.29)

For equilibrium conditions, Equation 9.21 can be rearranged as which can now be substituted in Equation 9.15.  Further
follows: approximations of Equation 9.15 were aimed at simplifying it for

where,

  C  = maximum possible number of departures in
one cycle,

  A  = number of arrivals in one cycle,
�C  = reserve capacity in one cycle.

The component Var(�C) is positive and approaches 0 when
E(C) approaches E(A).  Thus an upper bound on the expected
overflow queue is obtained by deleting that term.  Thus:

For example, using Darroch's arrival process (i.e. E(A)=qc,
Var(A)=Iqc) and constant departure time during green
(E(C)=Sg, Var(C)=0) the upper bound is shown to be:

where x=(qc)/(Sg).

Miller also considered an approximation of the excluded term
Var(�C).  He postulates that:

and thus, an approximation of the overflow queue is

practical purposes by neglecting the third and fourth terms which
are typically of much lower order of magnitude than the first two
terms.   This approach is exemplified by Miller (1968a) who
proposed the approximate formula:

which can be obtained by deleting the second and third terms in
McNeil's formula 9.15. Miller also gave an expression for the
overflow queue formula under Poisson arrivals and fixed service
time during the green: 

Equations 9.15, 9.16, 9.17, 9.27, and 9.28 are limited to specific
arrival and departure processes.  Newell (1965) aimed at devel-
oping delay formulae for general arrival and departure distribu-
tions.  First, he concluded from a heuristic graphical argument
that for most reasonable arrival and departure processes, the
total delay per cycle differs from that calculated with the
assumption of uniform arrivals and fixed service times (Clayton,
1941), by a negligible amount if the traffic intensity is sufficient-
ly small.  Then, by assuming a queue discipline LIFO (Last In
First Out) which does not effect the average delay estimate, he
concluded that the expected delay when the traffic is sufficiently
heavy can be approximated:

This formula gives identical results to formula (Equation 9.15)
if one neglects components of 1/S order in (Equation 9.15) and
when 1-q/S=1-g/c.  The last condition, however, is never met if
equilibrium conditions apply.  To estimate the overflow queue,
Newell (1965) defines F  as the cumulative distribution of theQ

overflow queue length, F  as the cumulative distribution of theA-D

overflow in the cycle, where the indices A and D represent
cumulative arrivals and departures, respectively.  He showed that
under equilibrium conditions:
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(9.30)

(9.31)

(9.32)

(9.33)

(9.34)

The integral in Equation 9.30 can be solved only under the
restrictive assumption that the overflow in a cycle is normally
distributed.  The resultant Newell formula is as follows:

A more convenient expression has been proposed by Newell in
the form:

where,

The function H(µ) has been provided in a graphical form.

Moreover, Newell compared the results given by expressions
(Equation 9.29) and (Equation 9.31) with Webster's formula and
added additional correction terms to improve the results for
medium traffic intensity conditions.  Newell's final formula is:

Table 9.1
Maximum Relative Discrepancy between the Approximate Expressions
and Ohno's Algorithm (Ohno 1978).

Range of y = 0.0 ww 0.5 Range of g/c = 0.4 �� 1.0

Approximate Expressions s = 0.5 v/s s = 1.5 v/s s = 0.5 v/s s = 1.5 v/s
 (Equation #, Q  computed according    0

to Equation #)

c = 90 s c = 30 s c = 90 s c = 30 s c = 30 s c = 90 s

g = 46 s g = 16 s g = 45.33 s g = 15.33 s q = 0.2 s q = 0.6 s

Modified Miller's expression (9.15, 0.22 2.60 -0.53 0.22 2.24 0.26
9.28)

Modified Newell's expression (9.15, 0.82 2.53 0.25 0.82 2.83 0.25-
9.31)

McNeil's expression (9.15, Miller 1969) 0.49 1.79 0.12 0.49 1.51 0.08

Webster's full expression (9.17) -8.04 -21.47 3.49 -7.75 119.24 1381.10

Newell's expression (9.34, 9.31) -4.16 10.89 -1.45 -4.16 -15.37 -27.27
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(9.35)

(9.36)

(9.37)

(9.38)

More recently, Cronje (1983b) proposed an analytical overflow queue calculated with the method described by
approximation of the function H(µ):

where,

He also proposed that the correction (third) component in Equa-
tion 9.34 could be neglected.  

Earlier evaluations of delay models by Allsop (1972) and
Hutchinson (1972) were based on the Webster model form.
Later on, Ohno (1978) carried out a comparison of the existing categorized by the g/c ratio.   Further efforts to improve on their
delay formulae for a Poisson arrival process and constant estimates will not give any appreciable reduction in the errors.
departure time during green.  He developed a computational The modified Miller expression was recommended by Ohno
procedure to provide the basis for evaluating the selected because of its simpler form compared to McNeil's and Newell's.
models, namely McNeil's expression, Equation 9.15 (with

Miller 1969), McNeil's formula with overflow queue according
to Miller (Equation 9.28) (modified Miller's expression),
McNeil's formula with overflow queue according to Newell
(Equation 9.31) (modified Newell's expression), Webster
expression (Equation 9.17) and the original Newell expression
(Equation 9.34).  Comparative results are depicted in Table 9.1
and Figures 9.3 and 9.4.  Newell's expression appear to be more
accurate than Webster, a conclusion shared by Hutchinson
(1972) in his evaluation of three simplified models (Newell,
Miller, and Webster).   Figure 9.3 represents the percentage
relative errors of the approximate delay models measured against
Ohno’s algorithm (Ohno 1978) for a range of flow ratios.  The
modified Miller's and Newell's expressions give almost exact
average delay values, but they are not superior to the original
McNeil formula.  Figure 9.4 shows the same type of errors,

9.4 Time-Dependent Delay Models

The stochastic equilibrium assumed in steady-state models parabolic, or triangular functions) and calculates the correspond-
requires an infinite time period of stable traffic conditions ing delay. In May and Keller (1967) delay and queues are calcu-
(arrival, service and control processes) to be achieved.  At low lated for an unsignalized bottleneck.  Their work is nevertheless
flow to capacity ratios equilibrium is reached in a reasonable representative of the deterministic modeling approach and can
period of time, thus the equilibrium models are an acceptable be easily modified for signalized intersections.  The general
approximation of the real-world process.  When traffic flow ap- assumption in their research is that the random queue
proaches signal capacity, the time to reach statistical equilibrium fluctuations can be neglected in delay calculations.  The model
usually exceeds the period over which demand is sustained. defines a cumulative number of arrivals A(t):
Further, in many cases the traffic flow exceeds capacity, a
situation where steady-state models break down.  Finally, traffic
flows during the peak hours are seldom stationary, thus violating
an important assumption of steady-state models.  There has
been many attempts at circumventing the limiting assumption
of steady-state conditions.  The first and simplest way is to deal
with arrival and departure rates as a function of time in a
deterministic fashion.  Another view is to model traffic at signals,
assuming stationary arrival and departure processes but not
necessarily under stochastic equilibrium conditions, in order to
estimate the average delay and queues over the modeled period
of time.  The latter approach approximates the time-dependent
arrival profile by some mathematical function (step-function,

and departures D(t) under continuous presence of vehicle
queue over the period [0,t]:
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Figure 9.3
Percentage Relative Errors for Approximate Delay 

Models by Flow Ratios (Ohno 1978).

Figure 9.4
Relative Errors for Approximate Delay Models 

by Green to Cycle Ratios (Ohno 1978).
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The current number of vehicles in the system (queue) is

and the average delay of vehicles queuing during the time period
[0,T] is

The above models have been applied by May and Keller to a
trapezoidal-shaped arrival profile and constant departure rate.
One can readily apply the above models to a signal with known
signal states over the analysis period by substituting C(-) for
S(-) in Equation 9.38:

C(-) = 0 if signal is red,
= S(-)  if signal is green and Q(-) > 0,
= q(-)  if signal is green and Q(-) = 0.

Deterministic models of a single term like Equation 9.39 yield
acceptable accuracy only when x<<1 or x>>1.  Otherwise, they version of the Pollaczek-Khintchine equation (Taha 1982), he
tend to underestimate queues and delays since the extra queues illustrated the calculation of average queue and delay for each
causes by random fluctuations in q and C are neglected. 

According to Catling (1977), the now popular coordinate
transformation technique was first proposed by Whiting, who did
not publish it.  The technique when applied to a steady-state
curve derived from standard queuing theory, produces a time-
dependent formula for delays.  Delay estimates from the new
models when flow approaches capacity are far more realistic
than those obtained from the steady-state model.  The following
observations led to the development of this technique.  

� At low degree of saturation (x<<1) delay is almost equal
to that occurring when the traffic intensity is uniform
(constant over time).  

� At high degrees of saturation (x>>1) delay can be
satisfactory described by the following deterministic model
with a reasonable degree of accuracy:

where d  is the delay experienced at very low traffic1

intensity, (uniform delay) T = analysis period over which
flows are sustained.

� steady-state delay models are asymptotic to the y-axis (i.e
generate infinite delays) at unit traffic intensity (x=1).  The
coordinate transformation method shifts the original
steady-state curve to become asymptotic to the
deterministic oversaturation delay line--i.e.-- the second
term in Equation 9.41--see Figure 9.5.  The horizontal
distance between the proposed delay curve and its
asymptote is the same as that between the steady-state
curve and the vertical line x=1.  

There are two restrictions regarding the application of the
formula:  (1) no initial queue exists at the beginning of the
interval [0,T], (2) traffic intensity is constant over the interval
[0,T].  The time-dependent model behaves reasonably within the
period [0,T] as indicated from simulation experiments.  Thus,
this technique is very useful in practice.  Its principal drawback,
in addition to the above stated restrictions (1) and (2) is the lack
of a theoretical foundation.  Catling overcame the latter diffi-
culties by approximating the actual traffic intensity profile with
a step-function.  Using an example of the  time-dependent

time interval starting from an initial, non-zero queue. 

Kimber and Hollis (1979) presented a computational algorithm
to calculate the expected queue length for a system with random
arrivals, general service times and single channel service
(M/G/1).  The initial queue can be defined through its
distribution.  To speed up computation, the average initial queue
is used unless it is substantially different from the queue at
equilibrium.  In this case, the full computational algorithm
should be applied. The non-stationary arrival process is approxi-
mated with a step-function.  The total delay in a time period is
calculated by integrating the queue size over time.  The
coordinate transformation method is described next in some
detail. 

Suppose, at time T=0 there are Q(0) waiting vehicles in queue
and that the degree of saturation changes rapidly to x.  In a deter-
ministic model the vehicle queue changes as follows:
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Figure 9.5
The Coordinate Transformation Method.

The steady-state expected queue length from the modified The following derivation considers the case of exponential
Pollaczek-Khintczine formula is:

where B is a constant depending on the arrival and departure
processes and is expressed by the following equation.

where )  and µ are the variance and mean of the service time2

distribution, respectively.

service times, for which )  = µ , B =1.  Let x  be the degree of2 2
d

saturation in the deterministic model (Equation 9.42), x refers to
the steady-state conditions in model (Equation 9.44), while xT

refers to the time-dependent model such that Q(x,T)=Q(x ,T).T

To meet the postulate of equal distances between the curves and
the appropriate asymptotes, the following is true from Figure
9.5:

and hence
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and from Equation 9.42:

the transformation is equivalent to setting: The equation for the average delay for vehicles arriving during

From Figure 9.5, it is evident that the queue length at time T,
Q(T) is the same at x, x , and x .  By substituting for Q(T) inT d

Equation 9.44, and rewriting Equation 9.48 gives: and the steady-state delay d ,

By eliminating the index T in x  and solving the second degreeT

polynomial in Equation 9.49 for Q(T), it can be shown that:

where

and

If the more general steady state Equation 9.43 is used, the result
for Equation 9.51 and 9.52 is:

and

the period of analysis is also derived starting from the average
delay per arriving vehicle d  over the period [0,T],d

s

The transformed time dependent equation is

with the corresponding parameters:

and

The derivation of the coordinate transformation technique has
been presented. The steady-state formula (Equation 9.43) does
not appear to adequately reflect traffic signal performance, since
a) the first term (queue for uniform traffic) needs further
elaboration and b) the constant B must be calibrated for cases
that do not exactly fit the assumptions of the theoretical queuing
models. 
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Akçelik (1980) utilized the coordinate transformation technique
to obtain a time-dependent formula which is intended to be more
applicable to signalized intersection performance than Kimber-
Hollis's.  In order to facilitate the derivation of a time-dependent
function for the average overflow queue Q , Akçelik used the Cronje (1983a), and Miller (1968a); Olszewski (1990) usedo

following expression for undersaturated signals as a simple non-homogeneous Markov chain techniques to calculate the
approximation to Miller's second formula for steady-state queue
length (Equation 9.28):

where

Akçelik's time-dependent function for the average overflow
queue is

The formula for the average uniform delay during the interval
[0,T] for vehicles which arrive in that interval is

Generalizations of Equations 9.60 and 9.61 were discussed by
Akçelik (1988) and Akçelik and Rouphail (1994).  It should be
noted that the average overflow queue, Q  is an approximation0

of the McNeil (Equation 9.15) and Miller (Equation 9.28)
formulae applied to the time-dependent conditions, and differs
from Newell's approximations Equation 9.29 and Equation 9.34
of the steady-state conditions.  According to Akçelik (1980), this

approximation is relevant to high degrees of saturation x and its
effect is negligible for most practical purposes. 

Following certain aspects of earlier works by Haight (1963),

stochastic queue distribution using the arrival distribution P(t,A)
and capacity distribution P(C).  Probabilities of transition from
a queue of i to j vehicles during one cycle are expressed by the
following equation:

and 

and 

The probabilities of queue states transitions at time t form the
transition matrix P(t).  The system state at time t is defined with
the overflow queue distribution in the form of a row vector P (t).Q

The initial system state variable distribution at time t =0 is
assumed to be known:  P (0)=[P (0), P (0),...P (0)], where P(0)Q 1 2 m i

is the probability of queue of length i at time zero.  The vector of
state probabilities in any cycle t can now be found by matrix
multiplication:

Equation 9.67, when applied sequentially, allows for the calcula-
tion of queue probability evolution from any initial state.

In their recent work, Brilon and Wu (1990) used a similar
computational technique to Olszewski's (1990a) in order to
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evaluate existing time-dependent formulae by Catling (1977), which incorporate the impact of the arrival profile shape (e.g. the
Kimber-Hollis (1979), and Akçelik (1980).  A comparison of peaking intensity) on delay.  In this examination of delay models
the models results is given in Figures 9.6 and 9.7 for a parabolic in the time dependent mode, delay is defined according to the
arrival rate profile in the analysis period T . They found that theo

Catling method gives the best approximation of the average
delay.  The underestimation of delays observed in the Akçelik's vehicle, even if this time occurs beyond the analysis period T.
model is interpreted as a consequence of the authors' using an The path trace method will tend to generate delays that are
average arrival rate over the analyzed time period instead of the typically longer than the queue sampling method, in which
step function, as in the Catling's method.  When the peak flow stopped vehicles are sampled every 15-20 seconds for the
rate derived from a step function approximation of the parabolic duration of the analysis period.  In oversaturated conditions, the
profile is used in Akçelik's formula, the results were virtually measurement of delay may yield vastly different results as
indistinguishable from Brilon and Wu's (Akçelik and Rouphail vehicles may discharge 15 or 30 minutes beyond the analysis
1993).  period.  Thus it is important to maintain consistency between

Using numeric results obtained from the Markov Chains discussion of the delay measurement methods and their impact
approach, Brilon and Wu developed analytical approximate (and on oversaturation delay estimation, the reader is referred to
rather complicated) delay formulae of a form similar to Akçelik's Rouphail and Akçelik (1992a).

Figure 9.6
Comparison of Delay Models Evaluated by Brilon
and Wu (1990) with Moderate Peaking (z=0.50).   

path trace method of measurement (Rouphail and Akçelik
1992a).  This method keeps track of the departure time of each

delay measurements and estimation methods.  For a detailed

Figure 9.7
Comparison of Delay Models Evaluated by Brilon

and Wu (1990) with High Peaking (z=0.70).  



f(-) 
 D

-2) 2%
exp	

( D
-
	

D

-
)2

2)2

q2(t2)dt2 
 Pt1

q1(t1) f(t2	t1) dt1 dt2

q2(j) 
 Mi q1(i)g(j	i)

q2(j) 

1

1�a-
q1(j) � (1	 1

1�a-
) q2(j	1)

-

9.  TRAFFIC FLOW AT SIGNALIZED INTERSECTIONS

9 - 16

(9.68)

(9.69)

(9.70)

(9.71)

9.5  Effect of Upstream Signals

The arrival process observed at a point located downstream of
some traffic signal is expected to differ from that observed
upstream  of the same signal.  Two principal observations are
made:  a) vehicles pass the signal in "bunches" that are separated
by a time equivalent to the red signal (platooning effect), and b)
the number of vehicles passing the signal during one cycle does
not exceed some maximum value corresponding to the signal
throughput (filtering effect).

9.5.1  Platooning Effect On Signal 
     Performance

The effect of vehicle bunching weakens as the platoon moves
downstream, since vehicles in it travel at various speeds,
spreading over the downstream road section.  This phenomenon,
known as platoon diffusion or dispersion, was modeled by Pacey
(1956). He derived the travel time distribution f(-) along a road
section assuming normally distributed speeds and unrestricted
overtaking:   

where,

D = distance from the signal to the point where arrivals
are observed,

- = individual vehicle travel time along distance D,
= mean travel time, and

) = standard deviation of speed.

The travel time distribution is then used to transform a traffic
flow profile along the road section of distance D:

where,

q (t )dt  = total number of vehicles passing some2 2 2

point downstream of the signal in the
interval (t, t+dt), 

q (t )dt = total number of vehicles passing the1 1 1

signal in the interval (t, t+dt), and
f(t -t ) = probability density of travel time (t  - t )2 1 2 1

according to Equation 9.68.

The discrete version of the diffusion model in Equation 9.69 is

where i and j are discrete intervals of the arrival histograms.

Platoon diffusion effects were observed by Hillier and Rothery
(1967) at several consecutive points located downstream of
signals (Figure 9.8).  They analyzed vehicle delays at pretimed
signals using the observed traffic profiles and drew the following
conclusions:  

� the deterministic delay (first term in approximate delay
formulae) strongly depends on the time lag between the
start of the upstream and downstream green signals
(offset effect);  

� the minimum delay, observed at the optimal offset,
increases substantially as the distance between signals
increases; and

� the signal offset does not appear to influence the
overflow delay component.

The TRANSYT model (Robertson 1969) is a well-known
example of a platoon diffusion model used in the estimation of
deterministic delays in a signalized network.  It incorporates the
Robertson's diffusion model, similar to the discrete version of the
Pacey's model in Equation 9.70, but derived with the assumption
of the binomial distribution of vehicle travel time:

where - is the average travel time and a is a parameter which
must be calibrated from field observations.  The Robertson
model of dispersion gives results which are satisfactory for the
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Figure 9.8
Observations of Platoon Diffusion

by Hillier and Rothery ( 1967).

 purpose of signal optimization and traffic performance analysis In the TRANSYT model, a flow histogram of traffic served
in signalized networks.  The main advantage of this model over (departure profile) at the stopline of the upstream signal is first
the former one is much lower computational demand which is a constructed, then transformed between two signals using model
critical issue in the traffic control optimization for a large size (Equation 9.71) in order to obtain the arrival patterns at the
network. stopline of the downstream signal.  Deterministic delays at 

the downstream signal are computed using the transformed
arrival and output histograms.
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To incorporate the upstream signal effect on vehicle delays, the The remainder of this section briefly summarizes recent work
Highway Capacity Manual (TRB 1985) uses a progression factor pertaining to the filtering effect of upstream signals, and the
(PF) applied to the delay computed assuming an isolated signal.
A PF is selected out of the several values based on a platoon
ratio f  .  The platoon ratio is estimated from field measurementp

and by applying the following formula:

where,

PVG = percentage of vehicles arriving during the
effective green,

g = effective green time,
c = cycle length.

Courage et al. (1988) compared progression factor values
obtained from Highway Capacity Manual (HCM) with those
estimated based on the results given by the TRANSYT model.
They indicated general agreement between the methods,
although the HCM method is less precise (Figure 9.9).  To avoid
field measurements for selecting a progression factor, they
suggested to compute the platoon ratio f  from the ratios ofp

bandwidths measured in the time-space diagram.  They showed
that the proposed method gives values of the progression factor
comparable to the original method.

Rouphail (1989) developed a set of analytical models for direct
estimation of the progression factor based on a time-space
diagram and traffic flow rates.  His method can be considered a
simplified version of TRANSYT, where the arrival histogram
consists of two uniform rates with in-platoon and out-of-platoon
traffic intensities.  In his method, platoon dispersion is also based
on a simplified TRANSYT-like model.  The model is thus
sensitive to both the size and flow rate of platoons.  More
recently, empirical work by Fambro et al. (1991) and theoretical
analyses by Olszewski (1990b) have independently confirmed
the fact that signal progression does not influence overflow
queues and delays.  This finding is also reflected in the most
recent update of the Signalized Intersections chapter of the
Highway Capacity Manual (1994).  More recently, Akçelik
(1995a) applied the HCM progression factor concept to queue
length, queue clearance time, and proportion queued at signals.

resultant overflow delays and queues that can be anticipated at
downstream traffic signals.

9.5.2  Filtering Effect on Signal Performance

The most general steady-state delay models have been derived
by Darroch (1964a), Newell (1965), and McNeil (1968) for the
binomial and compound Poisson arrival processes.  Since these
efforts did not deal directly with upstream signals effect, the
question arises whether they are appropriate for estimating
overflow delays in such conditions.  Van As (1991) addressed
this problem using the Markov chain technique to model delays
and arrivals at two closely spaced signals.  He concluded that the
Miller's model (Equation 9.27) improves random delay estima-
tion in comparison to the Webster model (Equation 9.17).
Further, he developed an approximate formula to transform the
dispersion index of arrivals, I , at some traffic signal into the
dispersion index of departures, B,  from that signal:

with the factor F given by

This model (Equation 9.73) can be used for closely spaced
signals, if one assumes the same value of the ratio I along a road
section between signals.

Tarko et al. (1993) investigated the impact of an upstream signal
on random delay using cycle-by-cycle macrosimulation.  They
found that in some cases the ratio I does not properly represent
the non-Poisson arrival process, generally  resulting in delay
overestimation (Figure 9.10).  

They proposed to replace the dispersion index I with an
adjustment factor f which is a function of the difference between
the maximum possible number of arrivals m  observable duringc

one cycle, and signal capacity Sg:
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Figure 9.9
HCM Progression Adjustment Factor vs Platoon Ratio 

Derived from TRANSYT-7F (Courage et al. 1988).
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Figure 9.10
Analysis of  Random Delay with Respect to the Differential Capacity Factor (f) 

and Var/Mean Ratio of Arrivals (I)- Steady State Queuing Conditions (Tarko et al. 1993) .

where a is a model parameter, a < 0.

A recent paper by Newell (1990) proposes an interesting
hypothesis.  The author questions the validity of using random
delay expressions derived for isolated intersections at internal
signals in an arterial system.  He goes on to suggest that the sum
of random delays at all intersections in an arterial system with no
turning movements is equivalent to the random delay at the
critical intersection, assuming that it is isolated.  Tarko et al.
(1993) tested the Newell hypothesis using a computational

 model which considers a bulk service queuing model and a set
of arrival distribution transformations. They concluded that
Newell's model estimates provide a close upper bound to the
results from their model.  The review of traffic delay models at
fixed-timed traffic signals indicate that the state of the art has
shifted over time from  a purely theoretical approach grounded
in queuing theory,  to heuristic models that have deterministic
and stochastic components in a time-dependent domain. This
move was motivated by the need to incorporate additional factors
such as non-stationarity of traffic demand, oversaturation, traffic
platooning and  filtering effect of upstream signals.  It  is
anticipated  that  further  work  in  that direction will continue,
with a view towards using the performance-based models for
signal design and route planning purposes.

9.6  Theory of Actuated and Adaptive Signals

The material presented in previous sections assumed fixed time traffic-adaptive systems requires new delay formulations that are
signal control, i.e. a fixed signal capacity. The introduction of sensitive to this process. In this section,  delay models for
traffic-responsive control, either in the form of actuated or actuated signal control are presented in some detail, which
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incorporate controller settings such as minimum and maximum and maximum greens, the phase will be extended for each
greens and unit extensions. A brief discussion of the state of the arriving vehicle, as long as its headway does not exceed the
art in adaptive signal control follows, but no models are value of unit extension.   An intersection with two one-way
presented. For additional details on this topic, the reader is streets was studied.  It was found that, associated with each
encouraged to consult the references listed at the end of the traffic flow condition, there is an optimal vehicle interval for
chapter. which the average delay per vehicle is minimized.  The value of

9.6.1 Theoretically-Based Expressions

As stated by Newell (1989), the theory on vehicle actuated
signals and related work on queues with alternating priorities is
very large, however, little of it has direct practical value.  For
example, "exact" models of queuing theory are too idealized to
be very realistic.  In fact the issue of performance modeling of
vehicle actuated signals is too complex to be described by a
comprehensive theory which is simple enough to be useful.
Actuated controllers are normally categorized into: fully-
actuated, semi-actuated, and volume-density control.  To date,
the majority of the theoretical work related to vehicle actuated
signals is limited to fully and semi-actuated controllers, but not
to the more sophisticated volume-density controllers with
features such as variable initial and extension intervals.  Two
types of detectors are used in practice: passage and presence.
Passage detectors, also called point or small-area detectors,
include a small loop and detect motion or passage when a
vehicle crosses the detector zone.  Presence detectors, also called
area detectors, have a larger loop and detect presence of vehicles
in the detector zone.  This discussion focuses on traffic actuated
intersection analysis with passage detectors only.

Delays at traffic actuated control intersections largely depend on
the controller setting parameters, which include the following
aspects: unit extension, minimum green, and maximum green.
Unit extension (also called vehicle interval, vehicle extension, or
gap time) is the extension green time for each vehicle as it
arrives at the detector.  Minimum green: summation of the initial
interval and one unit extension.  The initial interval is designed
to clear vehicles between the detector and the stop line.
Maximum green: the maximum green times allowed to a specific
phase, beyond which, even if there are continuous calls for the
current phase, green will be switched to the competing approach.

The relationship between delay and controller setting parameters
for a simple vehicle actuated type was originally studied by
Morris and Pak-Poy (1967).  In this type of control, minimum
and maximum greens are preset.  Within the range of minimum

the optimal vehicle interval decreases and becomes more critical,
as the traffic flow increases.  It was also found that by using the
constraints of minimum and maximum greens, the efficiency and
capacity of the signal are decreased.  Darroch (1964b) also
investigated a method to obtain optimal estimates of the unit
extension which minimizes total vehicle delays.

The behavior of vehicle-actuated signals at the intersection of
two one-way streets was investigated by Newell (1969).  The
arrival process was assumed to be stationary with a flow rate just
slightly below the saturation rate, i.e. any probability
distributions associated with the arrival pattern are time
invariant.  It is also assumed that the system is undersaturated
but that traffic flows are sufficiently heavy, so that the queue
lengths are considerably larger than one car.  No turning
movements were considered.  The minimum green is
disregarded since the study focused on moderate heavy traffic
and the maximum green is assumed to be arbitrarily large.  No
specific arrival process is assumed, except that it is stationary. 

Figure 9.11 shows the evolution of the queue length when the
queues are large.  Traffic arrives at a rate of q , on one approach,1

and q , on the other.  r , g , and Y  represent the effective red,2  j  j  j

green, and yellow times in cycle j.  Here the signal timings are
random variables, which may vary from cycle to cycle.  For any
specific cycle j, the total delay of all cars W  is the area of aij

triangular shaped curve and can be approximated by:
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Figure 9.11
Queue Development Over Time Under 

Fully-Actuated Intersection Control (Newell 1969).    

where

E{W }, E{W } = the total wait of all cars during1j 2j

cycle j for approach 1 and 2;
S , S  = saturation flow rate for approach 11 2

and 2;
E{r } , E{g } = expectation of the effective redj j

and green times;
Var(r ), Var(g ) = variance of the effective red andj j

green time;
I  , I  = variance to mean ratio of arrivals1 2

for approach 1 and 2; and
V  , V  = the constant part of the variance of1 2

departures for approach 1 and 2.

Since the arrival process is assumed to be stationary,

The first moments of r and g were also derived based on the
properties of the Markov process:

Variances of r and g were also derived, they are not listed here
for the sake of brevity.   Extensions to the multiple lane case
were investigated by Newell and Osuna (1969). 

A delay model with vehicle actuated control was derived by
Dunne (1967) by assuming that the arrival process follows a
binomial distribution.  The departure rates were assumed to be
constant and the control strategy was to switch the signal when
the queue vanishes.  A single intersection with two one-lane one-
way streets controlled by a two phase signal was considered.  

For each of the intervals (k-, k-+-), k=0,1,2... the probability of
one arrival in approach i = 1, 2 is denoted by q  and thei

probability of no arrival by p =1-q .  The time interval, -, isi i

taken as the time between vehicle departures.  Saturation flow
rate  was  assumed  to   be  equal  for  both approaches.   Denote
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(9.85)
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(9.87)

(9.88)

(9.89)

(9.90)

(9.91)

(9.92)

W  as the total delay for approach 2 for a cycle having effective (2)
r

red time of length r, then it can be shown that:

where c is the cycle length,  , and   are increases in delay at1 2

the beginning and at the end of the cycle, respectively, when one
vehicle arrives in the extra time unit at the beginning of the
phase and:  

Equation 9.83 means that if there is no arrivals in the extra time
unit at the beginning of the phase,  then W =W , otherwise (2)  (2)

r+1 r

W =W  +   + c +  . (2)  (2)
r+1 r 1 2

 
Taking the expectation of Equation 9.83 and substituting for
E( ), E( ):1 2

Solving the above difference equation for the initial condition W
=0 gives,(2)

0

Finally, taking the expectation of Equation 9.86 with respect to
r gives 

Therefore, if the mean and variance of (r) are known, delay can
be obtained from the above formula.  E(W ) for approach 2 is (i)

obtained by interchanging the subscripts. 

Cowan (1978) studied an intersection with two single-lane one-
way approaches controlled by a two-phase signal.  The control
policy is that the green is switched to the other approach at the
earliest time, t, such that there is no departures  in  the  interval
[ t-�  -1, t].  In general �  � 0.  It was assumed that departurei  i

headways are 1 time unit, thus the arrival headways are at least
1 time unit.  The arrival process on approach j is assumed to
follow a bunched exponential distribution.  It comprises random-

sized bunches separated by inter-bunch headways.  All bunched
vehicles are assumed to have the same headway of 1 time unit.
All inter-bunch headways follow the exponential distribution.
Bunch size was assumed to have a general probability
distribution with mean, µ , and variance, ) .  The cumulativej j

2

probability distribution of a headway less than t seconds, F(t), is

where,
� = minimum headway in the arrival stream, �=1

time unit;
Q = proportion of free (unbunched) vehicles; and
' = a delay parameter.

Formulae for average signal timings (r and g) and average delays
for the cases of �  = 0 and �  > 0 are derived separately.  �  = 0j j j

means that the green ends as soon as the queues for the approach
clear while �  > 0 means that after queues clear there will be aj

post green time assigned to the approach.  By analyzing the
property of Markov process, the following formula are derived
for the case of �  = 0.j
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(9.96)

(9.97)

(9.98)

(9.99)

(9.100)

where, The saturated portion of green period can be estimated from the

E(g ), E(g ) = expected effective green for1 2

approach 1 and 2;
E(r ), E(r ) = expected effective red for approach 11 2

and 2;
L = lost time in cycle;
l , l  = lost time for phase 1 and 2; and1 2

q , q  = the stationary flow rate for1 2

approach 1 and 2.

The average delay for approach 1 is:

Akçelik (1994, 1995b) developed an analytical method for
estimating average green times and cycle time at a basic vehicle
actuated controller that uses a fixed unit extension setting by
assuming that the arrival headway follows the bunched where,
exponential distribution  proposed by Cowan (1978).  In his
model, the minimum headway in the arrival stream � is not
equal to one.  The delay parameter, ', is taken as Qq /�, wheret

q  is the total arrival flow rate and �=1-�q .  In the model, the change after queue clearance; andt t

free (unbunched) vehicles are defined as those with headways
greater than the minimum headway �.  Further, all bunched
vehicles are assumed to have the same headway �.  Akçelik
(1994) proposed two different models to estimate the proportion
of free (unbunched) vehicles Q.  The total time, g, allocated to a
movement can be estimated as where g  is the minimum greenmin

time and g , the green extension time.  This green time, g, ise

subject to the following constraint

where g  and g  are maximum green and extension timemax emax

settings separately.  If it is assumed that the unit extension is set
so that a gap change does not occur during the saturated portion
of green period, the green time can be estimated by:

where g  is the saturated portion of the green period and e  is thes g

extension time assuming that gap change occurs after the queue
clearance period.  This green time is subject to the boundaries:

following formula:

where,

f  = queue length calibration factor to allow forq

variations in queue clearance time;
S  = saturation flow;
r  = red time; and
y  = q/S, ratio of arrival to saturation flow rate.

The average extension time beyond the saturated portion can be
estimated from:

n = average number of arrivals before a gapg

change after queue clearance;
h = average headway of arrivals before a gapg

e = terminating time at gap change (in most caset

it is equal to the unit extension U).

For the case when e = U, Equation 9.98 becomest

9.6.2  Approximate Delay Expressions

Courage and Papapanou (1977) refined Webster's (1958) delay
model for pretimed control to estimate delay at vehicle-actuated
signals.  For clarity, Webster's simplified delay formula is
restated below.

Courage and Papapanou used two control strategies: (1) the
available green time is distributed in proportion to demand on
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(9.102)

(9.103)

(9.104)

(9.105)

(9.106)

(9.107)

the critical approaches; and (2) wasted time is minimized by
terminating each green interval as the queue has been properly
serviced.  They propose the use of the cycle lengths shown in
Table 9.2 for delay estimation under pretimed and actuated
signal control:  

Table 9.2  
Cycle Length Used For Delay Estimation for Fixed-
Time and Actuated Signals Using  Webster’s
Formula (Courage and Papapanou 1977 ).

Type of Signal in 1st Term in 2nd Term
Cycle Length Cycle Length

Pretimed Optimum Optimum The delay factor DF=0.85, reduces the queuing delay to account

Actuated Average Maximum

The optimal cycle length, c , is Webster's:0

where L is total cycle lost time and y  is the volume to saturationci

flow ratio of critical movement i.  The average cycle length, c  isa

defined as: 

and the maximum cycle length, c , is the controller maximummax

cycle setting.  Note that the optimal cycle length under pretimed
control will generally be longer than that under actuated control.
The model was tested by simulation and satisfactory results
obtained for a wide range of operations.

In the U. S. Highway Capacity Manual (1994), the average
approach delay per vehicle is estimated for fully-actuated
signalized lane groups according to the following:

where, d, d , d , g, and c are as defined earlier and1 2

DF = delay factor to account for signal coordination and
controller type;

x = q/C, ratio of arrival flow rate to capacity;
m = calibration parameter which depends on the arrival

pattern;
C = capacity in veh/hr; and
T = flow period in hours (T=0.25 in 1994 HCM).

for the more efficient operation with fully-actuated operation
when compared to isolated, pretimed control.  In an upcoming
revision to the signalized intersection chapter in the HCM, the
delay factor will continue to be applied to the uniform delay term
only.

As delay estimation requires knowledge of signal timings in the
average cycle, the HCM provides a simplified estimation
method.  The average signal cycle length is computed from:

where x  = critical q/C ratio under fully-actuated control (x =0.95c c

in HCM).   For the critical lane group i, the effective green:

This signal timing parameter estimation method has been the
subject of criticism in the literature.  Lin (1989), among others,
compared the predicted cycle length from Equation 9.106 with
field observations in New York state.  In all cases, the observed
cycle lengths were higher than predicted, while the observed xc

ratios were lower.

Lin and Mazdeysa(1983) proposed a general delay model of the
following form consistent with Webster's approximate delay
formula:
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(9.110)

(9.111)
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(9.113)

where g, c, q, x are as defined earlier and K  and K  are two1 2

coefficients of sensitivity which reflect different sensitivities of
traffic actuated and pretimed delay to both g/c and x ratios.  In
this study, K  and K  are calibrated from the simulation model1  2

for semi-actuated and fully-actuated control separately.  More
importantly, the above delay model has to be used in conjunction
with the method for estimating effective green and cycle length.
In earlier work, Lin (1982a, 1982b) described a model to
estimate the average green duration for a two phase fully-
actuated signal control.  The model formulation is based on the
following assumption: (1) the detector in use is small area
passage detector; (2) right-turn-on-red is either prohibited or its
effect can be ignored; and (3) left turns are made only from
exclusive left turn lanes.  The arrival pattern for each lane was
assumed to follow a  Poisson distribution.  Thus, the headway
distribution follows a shifted negative exponential distribution.

Figure 9.12 shows the timing sequence for a two phase fully
actuated controller.  For phase i, beyond the initial green
interval, g , green extends for F  based on the control logic andmini i

the settings of the control parameters.  F  can be further dividedi

into two components: (1) e  — the additional green extended byni

n vehicles that form moving queues upstream of the detectors
after the initial interval G ;  (2) E  — the additional greenmini  ni

extended by n vehicles with headways of no more than one unit
extension, U, after G  or e .  Note that e  and E  are randommini ni ni ni

variables that vary from cycle to cycle.  Lin (1982a, 1982b)
developed the procedures to estimate e and E , the expectedi i

value of e  and E , as follows.  A moving queue upstream of ani ni

detector may exist when G  is timed out in case the flow ratemini

of the critical lane q  is high.  If there are n vehicles arriving inc

the critical lane during time T , then the time required for the nthi

vehicle to reach the detector after G  is timed out can bemini

estimated by the following equation: 

where w is the average time required for each queuing vehicle to
start moving after the green phase starts,  L is the average
vehicle length,  a is the vehicle acceleration rate from a standing
position., and s is the detector setback.   If t �0, there is non

moving queue exists and thus e=0; otherwise the green will bei

extended by the moving queue.  Let s be the rate at
which the queuing vehicle move across the detector.
Considering that additional vehicles may join the queue during
the time interval t , if t >0 and s>0, then:n n

To account for the probability that no moving queues exist
upstream of the detector at the end of the initial interval, the
expected value of e , e  is expressed as:ni i

where n is the minimum number of vehicles required to formmin 

a moving queue.

To estimate E , let us suppose that after the initial G  andi mini

additional green e  have elapsed, there is a sequence of kni

consecutive headways that are shorter than U followed by a
headway longer than U.  In this case the green will be extended
k times and the resultant green extension time is kJ+U with
probability [F(h � U)]  F(h � U), where J is the average lengthk

of each extension and F(h) is the cumulative headway
distribution function. 

and therefore

where  � is the minimum headway in the traffic stream.
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Figure 9.12
Example of a Fully-Actuated Two-Phase Timing Sequence (Lin 1982a).

Referring to Figure 9.12, after the values of T  and T  are1 2

obtained, G  can be estimated as: i

subject to

where P(n/T ) is the probability of n arrivals in the critical lanei

of the ith phase during time interval T .  Since both T  and T  arei 1 2

unknown, an iterative procedure was used to determine G  and1

G .  2

Li et al. (1994) proposed an approach for estimating overflow
delays  for a simple intersection with fully-actuated signal

control.  The proposed approach uses the delay format in the
1994 HCM (Equations 9.104 and 9.105) with some variations,
namely  a) the delay factor, DF, is taken out of the formulation
of delay model and b) the multiplier x  is omitted from the2

formulation of the overflow delay term to ensure convergence to
the deterministic oversaturated delay model.  Thus, the overflow
delay term is expressed as:

where the parameter (k) is derived from a numerical calibration
of the steady-state for of Equation 9.105 as shown below.
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This expression is based on a more general formula by Akçelik models would satisfy the requirement that both controls yield
(1988) and discussed by Akçelik and Rouphail (1994).  The identical performance under very light and very heavy traffic
calibration results for the parameter k along with the overall
statistical model evaluation criteria (standard error and R ) are2

depicted in Table 9.3.  The parameter k which corresponds to
pretimed control, calibrated by Tarko (1993) is also listed.  It is
noted that the pretimed steady-state model was also calibrated
using the same approach, but with fixed signal settings.  The first
and most obvious observation is that the pretimed model
produced the highest k (delay) value compared to the actuated
models.  Secondly, the parameter was found to increase with the
size of the controller's unit extension (U). 

Procedures for estimating the average cycle length and green
intervals for semi-actuated signal operations have been
developed by Lin (1982b, 1990) and Akçelik (1993b). Recently,
Lin (1992) proposed a model for estimating average cycle length
and green intervals under semi-actuated signal control operations
with exclusive pedestrian-actuated phase.  Luh (1991) studied
the probability distribution of and delay estimation for semi-
actuated signal controllers.

In summary, delay models for vehicle-actuated controllers are
derived from assumptions related to the traffic arrival process,
and are constrained by the actuated controller parameters. The
distribution of vehicle headways directly impact the amount of
green time allocated to an actuated phase, while controller
parameters bound the green times within specified minimums
and maximums. In contrast to fixed-time models,  performance
models for actuated have the additional  requirement of
estimating  the expected signal phase lengths. Further research
is needed to incorporate additional aspects of actuated operations
such as phase skipping, gap reduction and variable maximum
greens. Further, there is a need to develop generalized models
that are applicable to both fixed time and actuated control.  Such

demands.  Recent work along these lines has been reported by
Akçelik and Chung (1994, 1995).

9.6.3  Adaptive Signal Control

Only a very brief discussion of the topic is presented here.
Adaptive signal control systems are generally considered
superior to actuated control because of their true demand
responsiveness.  With recent advances in microprocessor
technology, the gap-based strategies discussed in the previous
section are becoming increasingly outmoded and demonstrably
inefficient.  In the past decade, control algorithms that rely on
explicit intersection/network delay minimization in a time-
variant environment, have emerged and been successfully tested.
While the algorithms have matured both in Europe and the U.S.,
evident by the development of the MOVA controller in the U.K.
(Vincent et al. 1988), PRODYN in France (Henry et al. 1983),
and OPAC in the U.S. (Gartner et al. 1982-1983), theoretical
work on traffic performance estimation under adaptive control
is somewhat limited.  An example of such efforts is the work by
Brookes and Bell (1991), who investigated the use of Markov
Chains and three heuristic approaches in an attempt to calculate
the expected delays and stops for discrete time adaptive signal
control. Delays are computed by tracing the queue evolution
process over time using a `rolling horizon' approach.  The main
problem lies in the estimation (or prediction) of the initial queue
in the current interval.  While the Markov Chain approach yields
theoretically correct answers, it is of limited value in practice due
to its extensive computational and storage requirements.
Heuristics that were investigated include the use of the mean
queue length, in the last interval as the starting queue in this
interval; the `two-spike' approach, in which the queue length 

Table 9.3
Calibration Results of the Steady-State Overflow Delay Parameter ( k) (Li et al. 1994). 

Control Pretimed  U=2.5 U=3.5 U=4.0 U=5.0

k (m=8k) 0.427 0.084 0.119 0.125 0.231

s.e. NA 0.003 0.002 0.002 0.006

R2 0.903 0.834 0.909 0.993 0.861
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distribution has non-zero probabilities at zero and at an integer Overall, the latter method was recommended because it not only
value closest to the mean; and finally a technique that propagates produces estimates that are sufficiently close to the theoretical
the first and second moment of the queue length distribution estimate, but more importantly it is independent of the traffic
from period to period.  arrival distribution.  

9.7 Concluding Remarks

In this chapter, a summary and evolution of traffic theory arrival  process  at  the  intersection,  and  of  traffic  metering
pertaining to the performance of intersections controlled by which may causes a truncation in the departure distribution from
traffic signals has been presented.  The focus of the discussion a highly saturated intersection.  Next,  an overview of delay
was on the development of stochastic delay models. models which are applicable to intersections operating under

Early models focused on the performance of a single intersection
experiencing random arrivals and deterministic service times
emulating fixed-time control.  The thrust of these models has
been to produce point estimates--i.e. expectations of-- delay and
queue length that can be used for timing design and quality of
service evaluation.  The model form typically include a
deterministic component to account for the red-time delay and a
stochastic component to account for queue delays.  The latter
term is derived from a queue theory approach.

While theoretically appealing, the steady-state queue theory
approach breaks down at high degrees of saturation.  The
problem lies in the steady-state assumption of sustained arrival
flows needed to reach stochastic equilibrium (i.e the probability
of observing a queue length of size Q is time-independent) .  In further attention and require additional research.  To begin with,
reality, flows are seldom sustained for long periods of time and the assumption of uncorrelated arrivals found in most models is
therefore, stochastic equilibrium is not achieved in the field at not appropriate to describe platooned flow--where arrivals are
high degrees of saturation. highly correlated.  Secondly, the estimation of the initial

 A compromise approach, using the coordinate transformation and documented. There is also a need to develop queuing/delay
method was presented which overcomes some of these models that are constrained by the physical space available for
difficulties. While not theoretically rigorous, it provides a means queuing.  Michalopoulos (1988) presented such an application
for traffic performance estimation across all degrees of saturation using a continuous flow model approach.  Finally, models that
which is also dependent on the time interval in which arrival describe the interaction between downstream queue lengths and
flows are sustained.  upstream departures are needed. Initial efforts in this direction

Further extensions of the models were presented to take into Rouphail and Akçelik (1992b). 
account  the  impact  of  platooning,  which  obviously  alter  the

vehicle actuated control was presented. They include stochastic
models which characterize the randomness in the arrival and
departure process-- capacity itself is a random variable which
can vary from cycle to cycle, and fixed-time equivalent models
which treat actuated control as equivalent pretimed models
operating at the average cycle and average splits. 

Finally, there is a short discussion of concepts related to adaptive
signal control schemes such as the MOVA systems in the United
Kingdom and OPAC in the U.S.  Because these approaches
focus primarily on optimal signal control rather
than performance modeling, they are somewhat beyond the
scope of this document. 

There are many areas in traffic signal performance that deserve

overflow queue at a signal is an area that is not well understood

have been documented by Prosser and Dunne (1994) and
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