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1.
INTRODUCTION

It is hardly necessary to emphasize the importance of By 1959 traffic flow theory had developed to the point where it
transportation in our lives.  In the United States, we spend about appeared desirable to hold an international symposium.  The
20 percent of Gross National Product (GNP) on transportation, First International  Symposium on The Theory of Traffic Flow
of which about 85 percent is spent on highway transportation was held at the General Motors Research Laboratories in
(passenger and freight).  We own and operate 150 million Warren, Michigan in December 1959 (Herman 1961).  This was
automobiles and an additional 50 million trucks, bringing car the first of what has become a series of triennial symposia on
ownership to 56 per hundred population (highest in the world). The Theory of Traffic flow and Transportation.  The most recent
These vehicles are driven an average of 10,000 miles per year in this series, the 12th symposium was held in Berkeley,
for passenger cars and 50,000 miles per year for trucks on a California in 1993 (Daganzo 1993).  A glance through the
highway system that comprises more than 4 million miles.  The proceedings of these symposia will provide the reader with a
indices in other countries may be somewhat different, but the good indication of the tremendous developments in the
importance of the transportation system, and especially the understanding and the treatment of traffic flow processes in the
highway component of it, is just the same or even greater.  While past 40 years.  Since that time numerous other symposia and
car ownership in some countries may be lower, the available specialty conferences are being held on a regular basis dealing
highway network is also smaller leading to similar or more with a variety of traffic related topics.  The field of traffic flow
severe congestion problems. theory and transportation has become too diffuse to be covered

Traffic flow theories seek to describe in a precise mathematical flow theory, while better understood and more easily
way the interactions between the vehicles and their operators characterized through advanced computation technology, are just
(the mobile components) and the infrastructure (the immobile
component).  The latter consists of the highway system and all its
operational elements:  control devices, signage, markings, etc.
As such, these theories are an indispensable construct for all
models and tools that are being used in the design and operation
of streets and highways.  The scientific study of traffic flow had
its beginnings in the 1930’s with the application of probability
theory to the description of road traffic (Adams 1936) and the
pioneering studies conducted by Bruce D. Greenshields at the
Yale Bureau of Highway Traffic; the study of models relating
volume and speed (Greenshields 1935) and the investigation of
performance of traffic at intersections (Greenshields 1947).
After WWII, with the tremendous increase in use of automobiles
and the expansion of the highway system, there was also a surge
in the study of traffic characteristics and the development of
traffic flow theories.  The 1950’s saw theoretical developments
based on a variety of approaches, such as car-following, traffic
wave theory (hydrodynamic analogy) and queuing theory.  Some
of the seminal works of that period include the works by
Reuschel (1950a; 1950b; 1950c), Wardrop (1952), Pipes
(1953), Lighthill and Whitham (1955), Newell (1955), Webster
(1957), Edie and Foote (1958), Chandler et al. (1958) and other
papers by Herman et al. (see Herman 1992).

by any single type of meeting.  Yet, the fundamentals of traffic

as important today as they were in the early days.  They form the
foundation for all the theories, techniques and procedures that
are being applied in the design, operation, and development of
advanced transportation systems.

It is the objective of this monograph to provide an updated
survey of the most important models and theories that
characterize the flow of highway traffic in its many facets.  This
monograph follows in the tracks of two previous works that were
sponsored by the Committee on Theory of Traffic Flow of the
Transportation Research Board (TRB) and its predecessor the
Highway Research Board (HRB).  The first monograph, which
was published as HRB Special Report 79 in 1964, consisted of
selected chapters in the then fledgling Traffic Science each of
which was written by a different author (Gerlough and Capelle
1964).  The contents included:

Chapter 1.   Part I:  Hydrodynamic Approaches, by L. A. Pipes.
Part II:  On Kinematic Waves; A Theory of Traffic Flow on Long
Crowded   Roads, by M. J. Lighthill and G. B. Whitham.

Chapter 2.  Car Following and Acceleration Noise, by E. W.
Montroll and R. B. Potts.
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Chapter 3.  Queuing Theory Approaches, by D. E. Cleveland their entirety and include the latest research and information in
and D. G. Capelle. their respective areas.  Chapter 2 presents the various models

Chapter 4.  Simulation of Traffic Flow, by D. L. Gerlough. the traffic stream variables: speed, flow, and concentration.

Chapter 5.  Some Experiments and Applications, by R. S. Foote. flow, primarily on freeways or expressways.  The chapter

A complete rewriting of the monograph was done by Gerlough since to as large extent development of the first depends on the
and Huber (1975) and was published as TRB Special Report latter.
165 in 1975.  It consisted of nine chapters, as follows:

Chapter 1.  Introduction. aspects of the human element in the context of the person-

Chapter 2.  Measurement of Flow, Speed, and Concentration. first discrete components of performance, including:  perception-

Chapter 3.  Statistical Distributions of Traffic Characteristics. control devices, to the movement of other vehicles, to hazards in

Chapter 4.  Traffic Stream Models. in performance.  Next, the kind of control performance that

Chapter 5.  Driver Information Processing Characteristics. control functions -- is described.  Applications of open-loop and

Chapter 6.  Car Following and Acceleration Noise. keeping, car following, overtaking, gap acceptance, lane

Chapter 7.  Hydrodynamic and Kinematic Models of Traffic. the chapter, a few other performance aspects of the driver-

Chapter 8.  Queuing Models (including Delays at distractions on the highway, and responses to real-time driver
Intersections). information.  The most obvious application of human factors is

Chapter 9.  Simulation of Traffic Flow. following models examine the manner in which individual

This volume is now out of print and in 1987 the TRB Committee are developed from a stimulus-response relationship, where the
on Traffic Flow Theory and Characteristics recommended that response of successive drivers in the traffic stream is to
a new monograph be prepared as a joint effort of committee accelerate or decelerate in proportion to the magnitude of the
members and other authors.  While many of the basic theories stimulus at time t after a time lag T.  Car following models form
may not have changed much, it was felt that there were a bridge between the microscopic behavior of individual vehicles
significant developments to merit writing of a new version of the and the macroscopic characteristics of a single-lane traffic
monograph.  The committee prepared a new outline which stream with its corresponding flow and stability properties.
formed the basis for this monograph.  After the outline was
agreed upon, the Federal Highway Administration supported this Chapter 5 deals with Continuous Flow Models.  Because traffic
effort through an interagency agreement with the Oak Ridge involves flows, concentrations, and speeds, there is a natural
National Laboratory.  An Editorial Committee was appointed, tendency to attempt to describe traffic in terms of fluid behavior.
consisting of N. H. Gartner, C. J. Messer, and A. K. Rathi, which Car following models recognize that traffic is made up of
was charged with the editorial duties of the preparation of the discrete particles and it is the interactions between these
manuscripts for the different chapters. particles that have been developed for fluids (i.e., continuum

The first five chapters follow similarly titled chapters in the of the traffic stream rather than with the interactions between the
previous monograph; however, they all have been rewritten in particles.  In the fluid flow analogy, the traffic stream is treated

that have been developed to characterize the relationships among

Most of the relationships are concerned with uninterrupted traffic

stresses the link between theory and measurement capability,

Chapter 3, on Human Factors, discusses salient performance

machine system, i.e. the motor vehicle.  The chapter describes

reaction time, control movement time, responses to traffic

the roadway, and how different segments of the population differ

underlies steering, braking, and speed control -- the primary

closed-loop vehicle control to specific maneuvers such as lane

closures, and sight distances are also described.  To round out

vehicle system are covered, such as speed limit changes,

in the development of Car Following Models (Chapter 4).  Car

vehicles (and their drivers) follow one another.  In general, they

models) is concerned more with the over all statistical behavior
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as a one dimensional compressible fluid.  This leads to two basic intersections among two or more streams and provides
assumptions: (i) traffic flow is conserved, which leads to the calculations of capacities and quality of traffic operations based
conservation or continuity equation, and (ii) there is a one-to-one on queuing modeling.  
relationship between speed and density or between flow and
density.  The simple continuum model consists of the Traffic Flow at Signalized Intersections is discussed in Chapter
conservation equation and the equation of state (speed-density or 9.  The statistical theory of traffic flow is presented, in order to
flow-density relationship).  If these equations are solved together provide estimates of delays and queues at isolated intersections,
with the basic traffic flow equation (flow equals density times including the effect of upstream traffic signals.  This leads to the
speed) we can obtain the speed, flow and density at any time and discussion of traffic bunching, dispersion and coordination at
point of the roadway.  By knowing these basic traffic flow traffic signals.  The fluid (shock-wave) approach  to  traffic
variables, we know the state of the traffic system and can derive signal  analysis  is  not  covered  in  this chapter; it is treated to
measures of effectiveness, such as delays, stops, travel time, total some extent in Chapter 5.  Both pretimed and actuated signal
travel and other measures that allow the analysts to evaluate how control theory are  presented  in some detail.  Further, delay
well the traffic system is performing.  In this chapter, both models that are founded on steady-state queue theory as well as
simple and high order models are presented along with analytical those using the so-called coordinate transform method are
and numerical methods for their implementation. covered.  Adaptive signal control is discussed only in a

Chapter 6, on Macroscopic Flow Models, discards the development of optimal signal control strategies, which is
microscopic view of traffic in terms of individual vehicles or outside the scope of this chapter.
individual system components (such as links or intersections)
and adopts instead a macroscopic view of traffic in a network. The last chapter, Chapter 10, is on Traffic Simulation.
A variety of models are presented together with empirical Simulation modeling is an increasingly popular and effective tool
evidence of their applicability.  Variables that are being for analyzing a wide variety of dynamical problems which are
considered, for example, include the traffic intensity (the distance not amenable to study by other means.  These problems are
travelled per unit area), the road density (the length or area of usually associated with complex processes which can not readily
roads per unit area of city), and the weighted space mean speed. be described in analytical terms.  To provide an adequate test
The development of such models extends traffic flow theory into bed, the simulation model must reflect with fidelity the actual
the network level and can provide traffic engineers with the traffic flow process.  This chapter describes the traffic models
means to evaluate system-wide control strategies in urban areas. that are embedded in simulation packages and the procedures
Furthermore, the quality of service provided to motorists can be that are being used for conducting simulation experiments. 
monitored to assess the city's ability to manage growth.  Network
performance models could also be used to compare traffic Consideration was also given to the addition of a new chapter on
conditions among different cities in order to determine the Traffic Assignment Models.  Traffic assignment is the process
allocation of resources for transportation system improvements. of predicting how a given set of origin-destination (OD) trip
Chapter 7 addresses Traffic Impact Models, specifically, the demands will manifest themselves onto a transportation network
following models are being discussed: Traffic and Safety, Fuel of links and nodes in terms of flows and queues.  It has major
Consumption Models, and Air Quality Models. applications in both transportation planning models and in

Chapter 8 is on Unsignalized Intersection Theory.  Unsignalized Intelligent Transportation Systems (ITS).  Generally, the
intersections give no positive indication or control to the driver. assignment process consists of a macroscopic simulation of the
The driver alone must decide when it is safe to enter the behavior of travelers in a network of transportation facilities.  At
intersection, typically, he looks for a safe opportunity or "gap" in the same time it reflects the interconnection between the
the conflicting traffic.  This model of driver behavior is called microscopic models of traffic behavior that are discussed in this
"gap acceptance."  At unsignalized intersections the driver must monograph and the overall distribution of traffic demands
also respect the priority of other drivers.  This chapter discusses throughout the network.  This is expressed by link cost functions
in detail the gap acceptance theory and the headway distributions that serve as a basis for any assignment or route choice process.
used in gap acceptance calculations.  It also discusses the After much deliberation by the editorial and advisory committees

qualitative manner since this topic pertains primarily to the

dynamic traffic management models which are the bedrock of
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it was decided that the subject cannot be presented adequately in and Iida (1997).  This is a lively research area and new
a short chapter within this monograph.  It would be better served publications abound.
by a dedicated monograph of its own, or by reference to the
extensive literature in this area.  Early references include the Research and developments in transportation systems and,
seminal works of Wardrop (1952), and Beckmann, McGuire and concomitantly, in the theories that accompany them proceed at
Winsten (1956).  Later publications include books by Potts and a furious pace.  Undoubtedly, by the time this monograph is
Oliver (1972), Florian (1976), Newell (1980), and Sheffi printed, distributed, and read, numerous new developments will
(1985).  Recent publications, which reflect modern approaches have occurred.  Nevertheless, the fundamental theories will not
to equilibrium assignment and to dynamic traffic assignment, have changed and we trust that this work will provide a useful
include books by Patriksson (1994), Ran and Boyce (1994), source of information for both newcomers to the field and
Gartner and Improta (1995), Florian and Hearn (1995), and Bell experienced workers.
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CHAPTER 2 - Frequently used Symbols

k density of a traffic stream in a specified length of road

L length of vehicles of uniform length

c constant of proportionality between occupancy andk
density, under certain simplifying assumptions

k the (average) density of vehicles in substream Ii

q the average rate of flow of vehicles in substream Ii

� average speed of a set of vehicles

A A(x,t) the cumulative vehicle arrival function over
space and time

k jam density, i.e. the density when traffic is so heavy thatj
it is at a complete standstill

u free-flow speed, i.e. the speed when there are nof
constraints placed on a driver by other vehicles on the
road
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Chapter 2: Traffic Stream Characteristics 

Author’s note:  This material has benefited greatly from the assistance of Michael Cassidy, of 
the University of California at Berkeley.  He declined the offer to be listed as a co-author of the 
chapter, although that would certainly have been warranted.  With his permission, and that of 
the publisher, several segments of this material have been reproduced directly from his chapter, 
“Traffic Flow and Capacity”, which appears as Chapter 6 in Handbook of transportation 
science, edited by Randolph W.  Hall, and published by Kluwer Academic Publishers in 1999.  
That material appears in italics below, in section 2.1.  The numbering of Figures and equations 
has been altered from his numbers to correspond to numbering within this chapter. 
 
In this chapter, properties that describe highway traffic are introduced, such as flow, density, and 
average vehicle speed; issues surrounding their measurements are discussed; and various models 
that have been proposed for describing relationships among these properties are presented.  Most 
of the work dealing with these relationships has been concerned with uninterrupted traffic flow, 
primarily on freeways or expressways, but the general relationships will apply to all kinds of 
traffic flow.  
 
This chapter  starts with  a  section  on definitions of key variables and terms.  Because of the 
importance of measurement capability to theory development, the second section deals with 
measurement issues, including historical developments in measurement procedures, and criteria 
for selecting good measurement characteristics.  The third section discusses a number of the 
bivariate models that have been proposed in the past to relate key variables.  That is followed by 
a short section on attempts to deal simultaneously with the three key variables.  The final, 
summary section provides links to a number of the other chapters in this monograph. 
 
2.1 Definitions and terms 
 
This section provides definitions of some properties commonly used to characterize traffic 
streams, together with some generalized definitions that preserve useful relations among these 
properties.  Before turning to the definitions, however, a useful graphical tool is introduced, 
namely trajectories plotted on a time-space diagram.  This is followed by definitions of traffic 
stream properties, time-mean and space-mean properties, and the generalized definitions.  
Following that is a discussion of the relationship between density, which is often used in the 
generalized definitions, and occupancy, which is measured by many freeway systems.  The final 
topic covered is three-dimensional representations of traffic streams.  The discussion in this 
section follows very closely or repeats some of that in the chapter by Cassidy (1999), which in 
turn credits notes composed by Newell (unpublished) and a textbook written by Daganzo (1997). 
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2.1.1  The Time-Space Diagram.   
 
  The Time-Space Diagram.  Objects are commonly constrained to move along a one-
dimensional guideway, be it, for example, a highway lane, walkway, conveyor belt, charted course 
or flight path.  Thus, the relevant aspects of their motion can often be described in cartesian 
coordinates of time, t, and space, x.  Figure 2-1 illustrates the trajectories of some objects traversing 
a facility of length L during time interval T; these objects may be vehicles, pedestrians or cargo. 
Each trajectory is assigned an integer label in the ascending order that the object would be seen by 
a stationary observer.  If one object overtakes another, their trajectories may exchange labels, as 
shown for the fourth and fifth trajectories in the figure.  Thus, the �th trajectory describes the 
location of a reference point (e.g. the front end) of object � as a function of time t, x� (t).  

 
 

 

Figure 2-1. Time-space diagram. 

 
The characteristic geometries of trajectories on a time-space diagram describe the motion of 

objects in detail. These diagrams thus offer the most complete way of displaying the observations 
that may have actually been measured along a facility.  As a practical matter, however, one is not 
likely to collect all the data needed to construct trajectories.  Rather, time-space diagrams derive 
their (considerable) value by providing a means to highlight the key features of a traffic stream using 
only coarsely approximated data or hypothetical data from “thought experiments.” 

2.1.2  Definitions of Some Traffic Stream Properties.  It is evident from Figure 2-1 that the 
slope of the �th trajectory is object �’s instantaneous velocity, v� (t), i.e., 
 v (t) �  dx (t)/dt , (2.1) 
and that the curvature is its acceleration.  Further, there exist observable properties of a traffic 
stream that relate to the times that objects pass a fixed location, such as location x1, for example.  
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These properties are described with trajectories that cross a horizontal line drawn through the time-
space diagram at x1. 

 
Referring to Figure 2-1, the headway of some ith object at x1, hi(x1), is the difference between the 

arrival times of i and i-1 at x1, i.e., 
 hi(x1 ) �  ti(x1 ) -  ti-1(x1 )    (2.2) 
 
Flow at x1 is m, the number of objects passing x1, divided by the observation interval T, 

 q(T, x1 ) �  m/T.    (2.3) 
 
For observation intervals containing large m, 
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i.e., flow is the reciprocal of the average headway. 
 
Analogously, some properties relate to the locations of objects at a fixed time, as observed, for 
example, from an aerial photograph.  These properties may be described with trajectories that cross 
a vertical line in the t-x plane.  For example, the spacing of object j at some time t1, sj(t1 ), is the 
distance separating j from the next downstream object; i.e., 

 sj(t1 ) �  xj-1(t1 ) -  xj(t1 ).                           (2.6) 
 
Density at instant t1 is n, the number of objects on a facility at that time, divided by L, the facility’s 
physical length; i.e., 

 k(L, t1 ) �  n /L.                           (2.7) 
 
If the L contains large n, 
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giving a relation between density and the average spacing parallel to that of flow and the average 
headway. 
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2.1.3  Time-Mean and Space-Mean Properties.  For an object’s attribute �, where � might be 
its velocity, physical length, number of occupants, etc., one can define an average of the m 
objects passing some fixed location x1 over observation interval T, 
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i.e., a time-mean of attribute �.  If � is headway, for example, �(T, x1) is the average headway or the 
reciprocal of the flow. 
 
Conversely, the space-mean of attribute � at some time t1, �(L, t1), is obtained from the observations 
taken at that time over a segment of length L, i.e., 
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If, for example, � is spacing, �(L, t1) is the average spacing or the reciprocal of the density. 
 
For any attribute �, there is no obvious relation between its time and space means.  The reader may 
confirm this (using the example of � as velocity) by envisioning a rectangular time-space region L � 
T traversed by vehicles of two classes, fast and slow, which do not interact.  For each class, the 
trajectories are parallel, equidistant and of constant slope; such conditions are said to be stationary. 
  
The fraction of fast vehicles distributed over L as seen on an aerial photograph taken at some instant 
within T will be smaller than the fraction of fast vehicles crossing some fixed point along L during 
the interval T.  This is because the fast vehicles spend less time in the region than do the slow ones.  
Analogously, one might envision a closed loop track and note that a fast vehicle passes a stationary 
observer more often than does a slow one. 

 
 
2.1.4  Generalized Definitions of Traffic Stream Properties. To describe a traffic stream, one 
usually seeks to measure properties that are not sensitive to the variations in the individual objects 
(e.g. the vehicles or their operators) without averaging-out features of interest.  This is the trade-off 
inherent in choosing between short and long measurement intervals, as previously noted.  It was 
partly to address this trade-off that Edie (1965, 1974) proposed some generalized definitions of flow 
and density that averaged these properties in the manner described below. 
 
To begin this discussion, the thin, horizontal rectangle in Figure 2-2 corresponds to a fixed 
observation point.  As per its conventional definition provided earlier, the flow at this point is m / T, 
where m = 4 in the figure.  Since this point in space is a region of temporal duration T and elemental 
spatial dimension dx, the flow can be expressed equivalently as .

dxT
dxm

�
�  The denominator is the 

euclidean area of the thin horizontal rectangle, expressed in units of distance � time.  The numerator  
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Figure 2-2. Trajectories in time-space region. 

 
is the total distance traveled by all objects in this thin region, since objects cannot enter or exit the 
region via its elementally small left and right sides. 

 
That flow, then, is the ratio of the distance traveled in a region to the region’s area is valid for any 
time-space region, since all regions are composed of elementary  rectangles.   Taking,  for  example, 
 region  A  in  Figure 2-2, Edie’s generalized definition of the flow in A, q(A), is d(A) / |A|, where d(A) 
is the total distance traveled in A and |A| is used to denote the region’s area. 
 
As the analogue to this, the thin, vertical rectangle in Figure 2-2 corresponds to an instant in time.  
As per its conventional definition, density is n / L (where n = 2 in this figure) and this can be 
expressed equivalently as .

dtL
dtn

�
�  It follows that Edie’s generalized definition of density in a region A, 

k(A), is t(A) / |A|, where t(A) is the total time spent in A. 
 
It should be clear that these generalized definitions merely average the flows collected over all 
points, and the densities collected at each instant, within the region of interest.  Dividing this flow by 
this density gives d(A) / t(A), which can be taken as the average velocity of objects in A, v(A).  The 
reader will note that, with Edie’s definitions, the average velocity is the ratio of flow to density.  
Traffic measurement devices, such as loop detectors installed beneath the road surface, can be used 
to measure flows, densities and average vehicle velocities in ways that are consistent with these 
generalized definitions.  Discussion of this is offered in Cassidy and Coifman (1997). 
 
As a final note regarding v(A), when A is taken as a thin horizontal rectangle of spatial dimension 
dx, the time spent in the region by object i is dx / vi, where vi is i’s velocity.  Thus, for this thin,  
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horizontal region A, t(A) = .1
1
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m
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dx   Given that for the same region, d(A) = m·dx, the generalized 
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(2.12) ,11

1
)(
)()(

1
�

��

�

m

i ivm
At
AdAv

 
 

i.e., the reciprocal of the mean of the reciprocal velocities, or the harmonic mean velocity.  The 1 / vi 
is often referred to as the pace of i, pi, and thus  

 .1)(
1

1

	

�

�
�


�
�

��
m

i
ip

m
Av

(2.13) 
 
 
Eq. 2.15 applies for regions with L > dx provided that all i span the L and that each pi (or vi) is i’s 
average over the L. 
 
It follows that when conditions in a region A are stationary, the harmonic mean of the velocities 
measured at a fixed point in A is the v(A).  By the same token, the v(A) is the space-mean velocity 
measured at any instant in A (provided, again, that conditions are stationary).  
 

2.1.5  The Relation Between Density and Occupancy.   Occupancy is conventionally defined as 
the percentage of time that vehicles spend atop a loop detector.  It is a commonly-used property for 
describing highway traffic streams; it is used later in this chapter, for example, for diagnosing 
freeway traffic conditions.  In particular, occupancy is a proxy for density.  The following discussion 
demonstrates that the former is merely a dimensionless version of the latter. 
 
One can readily demonstrate this relation by adopting a generalized definition of occupancy 
analogous to the definitions proposed by Edie.  Such a definition is made evident by illustrating each 
trajectory with two parallel lines tracing the vehicle’s front and rear (as seen by a detector) and this 
is exemplified in Figure 2-3.  The (generalized) occupancy in the region A, �(A), can be taken as the 
fraction of the region’s area covered by the shaded strips in the figure.  From this, it follows that the 
�(A) and the k(A) are related by an average of the vehicle lengths.  This average vehicle length is, by 
definition, the area of the shaded strips within A divided by the t(A); i.e., it is the ratio of the �(A) to 
the k(A), 
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Figure 2-3. Trajectories of vehicle fronts and rears. 

Notably, an average of the vehicle lengths also relates the k(A) to �, where the latter is the 
occupancy as conventionally defined (i.e., the percentage of time vehicles spend atop the 
detector).  Toward illustrating this relation, the L in Figure 6-4 is assumed to be the length of 
road “visible” to the loop detector, the so-called detection zone. The T is some interval of time; 
e.g. the interval over which the detector collects measurements.  The time each ith vehicle spends 
atop the detector is denoted as �i. Thus, if m vehicles pass the detector during time T, the
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i
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As shown in Figure 6-4, L  i is the summed length of the detection zone and the length of vehicle i.
Therefore,
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it follows that 
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where the term in brackets is the average vehicle length relating � to the k(A); it is the so-
called average effective vehicle length weighted by the paces. If pace and vehicle length are 
uncorrelated, the term in brackets in (2.17) can be approximated by the unweighted average 
of the vehicle lengths in the interval T.

When measurements are taken by two closely spaced detectors, a so-called speed trap, the pi
are computed from each vehicle’s arrival times at the two detectors.  The Li are thus 
computed by assuming that the pi are constant over the length of the speed trap.  When only a 
single loop detector is available, vehicle velocities are often estimated by using an assumed 
average value of the (effective) vehicle lengths. 

2.1.6  Three-Dimensional Representation of Vehicle Streams. It is useful to display flows 
and densities using a three-dimensional representation described by Makagami et al. (1971).
For this representation, an axis for the cumulative number of objects, N, is added to the t-x 
coordinate system so that the resulting surface N(t, x) is like a staircase with each trajectory 
being the edge of a step.  As shown in Figure 2-4, curves of cumulative count versus time are 
obtained by taking cross-sections  of  this surface  at  some fixed  locations and  viewing the  
exposed regions in the t-N plane. Analogously, cross-sections at fixed times viewed in the N-x 
plane reveal curves of cumulative count versus space.

Figure 2-4 shows cumulative curves at two locations and for two instants in time.  The former 
display the trip times of objects and the time-varying accumulations between the two 
locations, as labeled on the figure.  These cumulative curves can be transformed into a 
queueing diagram (as described in Chapter 5) by translating the curve at upstream x1
forward by the free-flow (i.e., the undelayed) trip time from x1 to x2.  Also displayed in Figure 
2-4, the curves of cumulative count versus space show the number of objects crossing a fixed 
location during the interval t2 - t1 and the distances traveled by individual objects during this 
same interval.

If one is dealing with many objects so that measuring the exact integer numbers is not 
important, it is advantageous to construct the cumulative curves with piece-wise linear 
approximations; e.g. the curves may be smoothed using linear interpolations that pass 
through the crests of the steps.  The time-dependent flows past some location are the slopes of 
the smoothed curve of t versus N 
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constructed at that location (Moskowitz, 1954; Edie and Foote, 1960; Newell, 1971, 1982).  
Analogously, the location-dependent densities at some instant are the negative slopes of a smoothed 
curve of N versus x; densities are the negative slopes because objects are numbered in the reverse 
direction to their motion. This three-dimensional model has been applied by Newell (1993) in work 
on kinematic waves in traffic (see Chapter 5).  In addition, Part I of his paper contains some 
historical notes on the use of this approach for modelling. 

 
 

 

Figure 2-4. Three-dimensional representation. 

 
2.2 Measurement issues 
 
This section addresses issues related to the measurement of the key variables defined in the 
previous section.  Four topics are covered.  First, there is a discussion of measurement 
procedures that have traditionally been used.  Second, potential measurement errors arising from 
the mismatch between the definitions and the measurement methods are discussed.  Third, 
measurement difficulties that can potentially arise from the particular location used for collecting 
measurements are considered.  The final topic is the nature of the time intervals from which to 
collect data, drawing on the cumulative curves just presented. 
 
2.2.1 Measurement procedures Measurement technology for obtaining traffic data has 
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changed over the 60-year span of interest in traffic flow, but most of the basic procedures remain 
largely the same. Five measurement procedures are discussed in this section:   
 
� measurement at a point;  
� measurement over a short section (by which is meant less than about 10 meters (m); 
� measurement over a length of road [usually at least 0.5 kilometers (km)];  
� the use of an observer moving in the traffic stream; and  
� wide-area samples obtained simultaneously from a number of vehicles, as part of Intelligent 

Transportation Systems (ITS). 
 
The first two were discussed with reference to the time-space diagram in Fig 2.2, and the 
remaining three are also readily interpreted on that diagram.  Details on each of these methods 
can be found in the ITE's Manual of Transportation Engineering Studies (Robertson, 1994).  The 
wide-area samples from ITS are similar to having a number of moving observers at various 
points and times within the system.  New developments such as this will undoubtedly change the 
way some traffic measurements are obtained in the future, but they have not been in operation 
long enough to have a major effect on the material to be covered in this chapter. 
 
Measurement at a point by hand tallies or pneumatic tubes, was the first procedure used for 
traffic data collection.  This method is easily capable of providing volume counts and therefore 
flow rates directly, and can provide headways if arrival times are recorded.  The technology for 
making measurements at a point on freeways changed over 30 years ago from using pneumatic 
tubes placed across the roadway to using point detectors (May et al. 1963; Athol 1965).  The 
most commonly used point detectors are based on inductive loop technology, but other methods 
in use include microwave, radar, photocells, ultrasonics, and closed circuit television cameras. 
 
Except for the case of a stopped vehicle, speeds at a 'point' can be obtained only by radar or 
microwave detectors:  dx/dt obviously requires some dx, however small.  (Radar and microwave 
frequencies of operation mean that a vehicle needs to move only about one centimeter during the 
speed measurement.)  In the absence of such instruments for a moving vehicle, a second 
observation location is necessary to obtain speeds, which moves the discussion to that of 
measurements over a short section.  
 
Measurements over a short section  Early studies used a second pneumatic tube, placed very 
close to the first, to obtain speeds.  More recent systems have used paired presence detectors, 
such as inductive loops spaced perhaps five to six meters apart.  With video camera technology, 
two detector 'lines' placed close together provide the same capability for measuring speeds.  All 
of these presence detectors continue to provide direct measurement of volume and of time 
headways, as well as of speed when pairs of them are used. 
 
Most point detectors currently used, such as inductive loops or microwave beams, take up space 
on the road, and are therefore a short section measurement. These detectors also measure 
occupancy, which was not available from earlier technology.  This variable is available because 
the loop gives a continuous reading (at 50 or 60 Hz usually), which pneumatic tubes or manual 
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counts could not do.  Because occupancy depends on the size of the detection zone of the 
instrument, the measured occupancy may differ from site to site for identical traffic, depending 
on the nature and construction of the detector. 
 
Measurements along a length of road come either from aerial photography, or from cameras 
mounted on tall buildings or poles.  On the basis of a single frame from such sources, only 
density can be measured.  The single frame gives no sense of time, so neither volumes nor speed 
can be measured.  Once several frames are available, as from a video-camera or from time-lapse 
photography over short time intervals, speeds and volumes can also be measured, as per the 
generalized definitions provided above. 
 
Despite considerable improvements in technology, and the presence of closed circuit television 
on many freeways, there is very little use of measurements taken over a long section at the 
present time.  The one advantage such measurements might provide would be to yield true 
journey times over a lengthy section of road, but that would require better computer vision 
algorithms (to match vehicles at both ends of the section) than are currently possible.  There 
have been some efforts toward the objective of collecting journey time data on the basis of the 
details of the 'signature' of particular vehicles or platoons of vehicles across a series of loops 
over an extended distance (Kühne and Immes 1993), but few practical implementations as yet.  
 
The moving observer method was used in some early studies, but is not used as the primary data 
collection technique now because of the prevalence of the other technologies.  There are two 
approaches to the moving observer method.  The first is a simple floating car procedure in which 
speeds and travel times are recorded as a function of time and location along the road.  While the 
intention in this method is that the floating car behaves as an average vehicle within the traffic 
stream, the method cannot give precise average speed data.  It is, however, effective for 
obtaining qualitative information about freeway operations without the need for elaborate 
equipment or procedures.  One form of this approach uses a second person in the car to record 
speeds and travel times.  A second form uses a modified recording speedometer of the type 
regularly used in long-distance trucks or buses.  One drawback of this approach is that it means 
there are usually significantly fewer speed observations than volume observations.  An example 
of this kind of problem appears in Morton and Jackson (1992). 
 
The other approach was developed by Wardrop and Charlesworth (1954) for urban traffic 
measurements and is meant to obtain both speed and volume measurements simultaneously.  
Although the method is not practical for major urban freeways, it is included here because it may 
be of some value for rural expressway data collection, where there are no automatic systems.  
While it is not appropriate as the primary mode of data collection on a busy freeway, there are 
some useful points that come out of the literature that should be noted by those seeking to obtain 
average speeds through the moving car method. 
 
The method developed by Wardrop and Charlesworth is based on a survey vehicle that travels in 
both directions on the road. The formulae allow one to estimate both speeds and flows for one 
direction of travel. The two formulae are 
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where  
q  is the estimated flow on the road in the direction of interest, 

x  is the number of vehicles traveling in the direction of interest, which are met by the 
survey vehicle while traveling in the opposite direction, 

y  is the net number of vehicles that overtake the survey vehicle while traveling in the 
direction of interest (i.e. those passing minus those overtaken), 

ta  is the travel time taken for the trip against the stream,  
tw  is the travel time for the trip with the stream, and 

        t     is the estimate of mean travel time in the direction of interest. 
 
Wright (1973) revisited the theory behind this method.  His paper also serves as a review of the 
papers dealing with the method in the two decades between the original work and his own. He 
finds that, in general, the method gives biased results, although the degree of bias is not 
significant in practice, and can be overcome. Wright's proposal is that the driver should fix the 
journey time in advance, and keep to it. Stops along the way would not matter, so long as the 
total time taken is as determined prior to travel. Wright's other point is that turning traffic 
(exiting or entering) can upset the calculations done using this method. This fact means that the 
route to be used for this method needs to avoid major exits or entrances.  It should be noted also 
that a large number of observations are required for reliable estimation of speeds and flows; 
without that, the method has very limited precision. 
 
2.2.2 Error caused by the mismatch between definitions and usual measurements 
 The overview in the previous section described methods that have historically been used 
to collect observations on the key traffic variables.  As was mentioned within that section, the 
methods do not always accord with the definitions of these variables, as they were presented in 
Section 2.1.  One of the most common methods for collecting these data currently is based on 
inductive loops embedded in the roadway.  When speed data are also to be collected, a pair of 
closely spaced loops (often called a speed trap) is needed, a known distance apart.  Equivalent 
systems are based on microwave beams that cover a part of a roadway surface.  Cassidy and 
Coifman (1997) point out the criteria that need to be met for the data from these systems to meet 
the definitional requirements.   
 

 
 

 In practical terms, these criteria can be reduced to ensuring that any vehicle entering the 
speed trap also clears it within the time interval for which the data are obtained – or that the 
number of vehicles in the time interval is quite large.  Neither of these criteria is met by the 
ordinary implementation of inductive loop speed trap detectors.  Whether or not the last vehicle 
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entering a speed trap will clear it within the interval is a simple random variable.  There is no 
guarantee that this criterion will regularly be met.  If the number of vehicles were very large, this 
would not be an issue, but because of the need for timely information, many systems poll the 
loop detector controllers at least every minute, with some systems going to 30 second or even 20 
second data collection.  For intervals of that size, the volume counts on a single freeway lane 
will be at most 40 (or 25 or 20) vehicles, which is not large enough to overcome the error 
introduced by missing one of the vehicle’s speeds.  While the data from these detector systems 
are certainly good enough for operational decision-making, the data may give misleading results 
if used directly with these equations because of the mismatch between the collection and the 
definitions. 
 
2.2.3  Importance of location to the nature of the data 
 
 Almost all of the bivariate models to be discussed represent efforts to explain the 
behaviour of traffic variables over the full range of operation.  In turning the models from 
abstract representations into numerical models with specific parameter values, an important 
practical question arises:  can one expect that the data collected will cover the full range that the 
model is intended to cover?  If the answer is no, then the difficult question follows of how to do 
curve fitting (or parameter estimation) when there may be essential data missing. 
 
 This issue can be explained more easily with an example.  At the risk of oversimplifying 
a relationship prior to a more detailed discussion of it, consider the simple representation of the 
speed-flow curve as shown in Figure 2.5, for three distinct sections of roadway.  The underlying 
curve is assumed to be the same at all three locations.  Between locations A and B, a major 
entrance ramp adds considerable traffic to the road.  If location B reaches capacity due to this 
entrance ramp volume, there will be a queue of traffic on the mainstream at location A. These 
vehicles can be considered to be waiting their turn to be served by the bottleneck section 
immediately downstream of the entrance ramp. The data superimposed on graph A reflect the 
situation whereby traffic at A had not reached capacity before the added ramp flow caused the 
backup.  There is a good range of uncongested data (on the top part of the curve), and congested 
data concentrated in one area of the lower part of the curve.  The flows for that portion reflect the 
capacity flow at B less the entering ramp flows. 
 
 At location B, the full range of uncongested flows is observed, right out to capacity, but 
the location never becomes congested, in the sense of experiencing stop-and-go traffic. It does, 
however, experience congestion in the sense that speeds are below those observed in the absence 
of the upstream congestion.  Drivers arrive at the front end of the queue moving very slowly, and 
accelerate away from that point, increasing speed as they move through the bottleneck section.  
This segment of the speed-flow curve has been referred to as queue discharge flow, QDF (Hall et 
al. 1992).  The particular speed observed at B will depend on how far it is from the front end of 
the queue (Persaud and Hurdle 1988). Consequently, the only data that will be observed at B are 
on the top portion of the curve, and at some particular speed in the QDF segment. 
 
 If the exit ramp between B and C removes a significant portion of  the traffic that was 
observed at B, flows at C will not reach the levels they did at B.  If there is no downstream 
situation similar to that between A and B, then C will not experience congested operations, and 
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the data observable there will be as shown in Figure 2.5. 
 
 None of these locations taken alone can provide the data to identify the full speed-flow 
curve.  Location C can help to identify the uncongested portion, but cannot deal with capacity, or 
with congestion.  Location B can provide information on the uncongested portion and on 
capacity operation, but cannot contribute to the discussion of congested operations.  Location A 
can provide some information on both uncongested and congested operations, but cannot tell 
anything about capacity operations.  This would all seem obvious enough.  A similar discussion 
appears in Drake et al (1967).  It is also explained by May (1990).  Other aspects of the effect of 
location on data patterns are discussed by Hsu and Banks (1993). Yet a number of important 
efforts to fit data to theory have ignored this key point (for example Ceder and May 1976; Easa 
and May 1980).  They have recognized that location-A data are needed to fit the congested 
portion of the curve, but have not recognized that at such a location data are missing that are 
needed to identify capacity.  Consequently, discussion of bivariate models will look at the nature 
of the data used in each study, and at where the data were collected (with respect to bottlenecks) 
in order to evaluate the theoretical ideas.  It is possible that the apparent need for several 
different models, or for different parameters for the same model at different locations, or even 
for discontinuous models instead of continuous ones, arose because of the nature (location) of 
the data each was using. 
 
2.2.4  Selecting intervals from which to extract data 

In addition to the location for the data, there are also several issues relating to the time 
intervals for collecting data.  The first is the issue of obtaining representative data.  By 
examining trends on the cumulative curves, one can observe how flows and densities change 
with time and space.  By selecting flows and densities as they appear on the cumulative curves, 
their values may be taken over intervals that exhibit near-constant slopes.  In this way, the values 
assigned to these properties are not affected by some arbitrarily selected measurement 
interval(s).  Choosing intervals arbitrarily is undesirable because data extracted over short 
measurement intervals are highly susceptible to the effects of statistical fluctuations while the 
use of longer intervals may average-out the features of interest.  Further discussion and 
demonstration of this in the context of freeway traffic is offered in (Cassidy, 1998). 
 There is also an issue of how many observations are needed to obtain good estimates of key 
variables such as the capacity.  A bottleneck’s capacity, qmax , is the maximum flow it can sustain for 
a very long time (in the absence of any influences from restrictions further downstream).  It can be 
expressed mathematically as  

 
,lim max

max ��
�
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q
T (2.20) 

 
where Nmax denotes that the vehicles counted during very long time T discharged through the 
bottleneck at a maximum rate.  The engineer assigns a capacity to a bottleneck by obtaining a value 
for the estimator qmax (since one cannot actually observe a maximum flow for a time period 
approaching infinity).  It is desirable that the expected value of this estimator equal the capacity, 
E(qmax) � qmax.  For this reason, one would collect samples (i.e., counts) immediately downstream of 
an active bottleneck so as to measure vehicles discharging at a maximum rate.  The amount qmax can 
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deviate from qmax is controlled by the sample size, N.  A formula for determining N to estimate a 
bottleneck’s capacity to a specified precision is derived below. 

To begin this derivation, the estimator may be taken as 
 

(2.21) 
where nm is the count collected in the mth interval and each of these M intervals has a duration of �. 
 If the {nm} can be taken as independent, identically distributed random variables (e.g. the counts 
were collected from consecutive intervals with � sufficiently large), then the variance of qmax can be 
expressed as  
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since qmax is a linear function of the independent nm and the (finite) observation period T is the 
denominator in (2.21). 

The bracketed term variance(n) / � is a constant.  Thus, by multiplying the top and bottom of this 
quotient by E(n), the expected value of the counts, and by noting that E(n) / � = qmax , one obtains 

 
(2.23) 

where � is the index of dispersion; i.e., the ratio variance(n)/E(n). 
The variance(qmax ) is the square of the standard error.  Thus, by isolating T in (2.23) and then 

multiplying both sides of the resulting expression by qmax , one arrives at 
 

(2.24) 
 

where qmax T � N, the number of observations (i.e., the count) needed to estimate capacity to a 
specified percent error �.  Note, for example, that � = 0.05 to obtain an estimate within 5 percent of 
qmax.  The value of � may be estimated by collecting a presample and, notably, N increases rapidly as 
� diminishes. 

^

The expression N = �/�2 may be used to determine an adequate sample size when vehicles, or any 
objects, discharging through an active bottleneck exhibit a nearly stationary flow; i.e., when the 
cumulative count curve exhibits a nearly constant slope.  If necessary, the N samples may be 
obtained by concatenating observations from multiple days.  Naturally, one would take samples 
during time periods thought to be representative of the conditions of interest.  For example, one 
should probably not use vehicle counts taken in inclement weather to estimate the capacity for 
fair weather conditions. 
 
 
2.3  Bivariate models 

 This section provides an overview of work to establish relationships among pairs of the 
variables described in the opening section.  Some of these efforts begin with mathematical 
models; others are primarily empirical, with little or no attempt to generalize.  Both are 
important components for understanding the relationships.  For reasons discussed above, two 
aspects of these efforts are emphasized here: the measurement methods used to obtain the data; 
and the location at which the measurements were obtained.   

^
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2.3.1  Speed-flow models 
 
 The speed-flow relationship is the bivariate relationship on which there has been the 
greatest amount of work recently, so is the first one discussed.  This section starts from current 
understanding, which provides some useful insights for interpreting earlier work, and then moves 
to a chronological review of some of the major models.   
 
 The bulk of then recent empirical work on the relationship between speed and flow (as 
well as the other relationships) was summarized in a paper by Hall, Hurdle, and Banks (1992).  
In it, they proposed the model for traffic flow shown in Figure 2.6.  This figure is the basis for 
the background speed-flow curve in Figure 2.5. 
 
 It is useful to summarize some of the antecedents of the understanding depicted in Figure 
2.6. The initial impetus came from a paper by Persaud and Hurdle (1988), in which they 
demonstrated (Figure 2.7) that the vertical line for queue discharge flow in Figure 2.6 was a 
reasonable result of measurements taken at various distances downstream from a queue. This 
study was an outgrowth of an earlier one by Hurdle and Datta (1983) in which they raised a 
number of questions about the shape of the speed-flow curve near capacity.   
 
 Additional empirical work dealing with the speed-flow relationship was conducted by 
Banks (1989, 1990), Hall and Hall (1990), Chin and May (1991), Wemple, Morris and May 
(1991), Agyemang-Duah and Hall (1991) and Ringert and Urbanik (1993).  All of these studies 
supported the idea that speeds remain nearly constant even at quite high flow rates.  Another of 
the important issues they dealt with is one that had been around for over thirty years 
(Wattleworth 1963): is there a reduction in flow rates within the bottleneck at the time that the 
queue forms upstream?  Figure 2.6 shows such a drop on the basis of two studies. Banks (1991a, 
1991b) reports roughly a 3% drop from pre-queue flows, on the basis of nine days of data at one 
site in California.  Agyemang-Duah and Hall (1991) found about a 5% decrease, on the basis of 
52 days of data at one site in Ontario.  This decrease in flow is often not observable, however, as 
in many locations high flow rates do not last long enough prior to the onset of congestion to 
yield the stable flow values that would show the drop. 
 
 Two empirical studies in Germany support the upper part of the curve in Figure 2.6 quite 
well.  Heidemann and Hotop (1990) found a piecewise-linear 'polygon' for the upper part of the 
curve (Figure 2.8).  Unfortunately, they did not have data beyond 1700 veh/hr/lane, so could not 
address what happens at capacity.  Stappert and Theis (1990) conducted a major empirical study 
of speed-flow relationships on various kinds of roads.  However, they were interested only in 
estimating parameters for a specific functional form, 
 

 V = (A - eBQ) e-c - K edQ (2.25) 

 

 
 

where V is speed, Q is traffic volume, c and d are constant "Krummungs factors" taking values 
between 0.2 and 0.003, and A, B, and K are parameters of the model.  This function tended to 
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give the kind of result shown in Figure 2.9, despite the fact that the curve does not accord well 
with the data near capacity.  In Figure 2.9, each point represents a full hour of data, and the 
graph represents five months of hourly data.  Note that flows in excess of 2200 veh/h/lane were 
sustained on several occasions, over the full hour. 
 
 The problem for traffic flow theory is that these curves are empirically derived.  There is 
not really any theory that would explain these particular shapes, except perhaps for Edie et 
al.(1980), who propose qualitative flow regimes that relate well to these curves. The task that lies 
ahead for traffic flow theorists is to develop a consistent set of equations that can replicate this 
reality.  The models that have been proposed to date, and will be discussed in subsequent 
sections, do not necessarily lead to the kinds of speed-flow curves that data suggest are needed. 
 
 It is instructive to review the history of depictions of speed-flow curves in light of this 
current understanding.  Probably the seminal work on this topic was the paper by Greenshields in 
1935, in which he derived the following parabolic speed-flow curve on the basis of a linear 
speed-density relationship together with the equation, flow = speed * density: 
 

 q = kj (u -
u2
uf

) (2.26) 

 
Figure 2.10 contains that curve, and the data it is based on, redrawn.  The numbers against the 
data points represent the "number of 100-vehicle groups observed", on Labor Day 1934, in one 
direction on a two-lane two-way road (p. 464).  In counting the vehicles on the road, every 10th 
vehicle started a new group (of 100), so there is 90% overlap between two adjacent groups (p. 
451):  the groups are not independent observations.  Equally important, the data have been 
grouped in flow ranges of 200 veh/h and the averages of these groups taken prior to plotting.  
The one congested point, representing 51 (overlapping) groups of 100 observations, came from a 
different roadway entirely, with different cross-section and pavement, which were collected on a 
different day. 
 
 These details are mentioned here because of the importance to traffic flow theory of 
Greenshields' work.  The parabolic shape he derived was accepted as the proper shape of the 
curve for decades.  In the 1965 Highway Capacity Manual, for example, the shape shown in 
Figure 2.10 appears exactly, despite the fact that data displayed elsewhere in the 1965 HCM 
showed that contemporary empirical results did not match the figure.  In the 1985 HCM, the 
same parabolic shape was retained, although broadened considerably.  In short, Greenshields' 
model dominated the field for over 50 years, despite the fact that by current standards of research 
the method of analysis of the data, with overlapping groups and averaging prior to curve-fitting, 
would not be acceptable. 
 
 There is another criticism that can be addressed to Greenshields' work as well, although it 
is one of which a number of current researchers seem unaware.  Duncan (1976; 1979) has shown 
that calculating density from speed and flow, fitting a line to the speed-density data, and then 
converting that line into a speed-flow function, gives a biased result relative to direct estimation 
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of the speed-flow function.  This is a consequence of three things discussed earlier:  the non-
linear transformations involved in both directions, the stochastic nature of the observations, and 
the inability to match the time and space measurement frames exactly. 
 
  It is interesting to contrast the emphasis on speed-flow models in recent years with that 
20 years ago, as represented in TRB SR 165 (Gerlough and Huber 1975).  In that volume, the 
discussion of speed-flow models took up  less than a page of text, and none of the five 
accompanying diagrams dealt with freeways.  (Three dealt with the artificial situation of a test 
track.)  In contrast, five pages and eleven figures were devoted to the speed-density relationship. 
 Speed-flow models are important for freeway management strategies, and will be of 
fundamental importance for intelligent vehicle/highway systems (IVHS) implementation of 
alternate routing; hence there is considerably more work on this topic than on the remaining two 
bivariate topics.  Twenty and more years ago, the other topics were of more interest.  As 
Gerlough and Huber stated the matter (p. 61), "once a speed-concentration model has been 
determined, a speed-flow model can be determined from it."  That is in fact the way most earlier 
speed-flow work was treated (including that of Greenshields).  Hence it is sensible to turn to 
discussion of speed-concentration models, and to deal with any other speed-flow models as a 
consequence of speed-concentration work, which is the way they were developed. 
 
2.3.2  Speed-concentration models 
 
 Greenshields' (1935) linear model of speed and density was mentioned in the previous 
section.  It is: 
 

 u = uf (1-k /kj) (2.27) 

 
where uf is the free-flow speed, and kj is the jam density.  The measured data were speeds and 
flows; density was calculated using equation 2.27.  The most interesting aspect of this particular 
model is that its empirical basis consisted of half a dozen points in one cluster near free-flow 
speed, and a single observation under congested conditions (Figure 2.11).  The linear 
relationship comes from connecting the cluster with the single point:  "since the curve is a 
straight line it is only necessary to determine accurately two points to fix its direction" (p. 468).  
What is surprising is not that such simple analytical methods were used in 1935, but that their 
results (the linear speed-density model) have continued to be so widely accepted for so long.  
While there have been studies that claimed to have confirmed this model, such as that in Figure 
2.12a (Huber 1957), they tended to have similarly sparse portions of the full range of data, 
usually omitting both the lowest flows, and flow in the range near capacity.  There have also 
been a number of studies that found contradictory evidence, most importantly that by Drake, et 
al.  (1965), which will be discussed in more detail subsequently.  
 
 A second early model was that put forward by Greenberg (1959), showing a logarithmic 
relationship: 
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 u = umln(k/kj) (2.28) 

 
The paper showed the fit of the model to two data sets, both of which visually looked very 
reasonable.  However, the first data set was derived from speed and headway data on individual 
vehicles, which "was then separated into speed classes and the average headway was calculated 
for each speed class" (p. 83).  In other words, the vehicles that appear in one data point (speed 
class) may not even have been travelling together!  While a density can always be calculated as 
the reciprocal of average headway, when that average is taken over vehicles that may well not 
have been travelling together, it is not clear what that density is meant to represent.  The second 
data set used by Greenberg was Huber's.  This is the same data that appears in Figure 2.12a; 
Greenberg's graph is shown in Figure 2.12b.  Visually, the fit is quite good, but Huber reported 
an R of 0.97, which does not leave much room for improvement. 
 
 A third model from the same period is that by Edie (1961).  His model was an attempt to 
deal with a discontinuity that had consistently been found in data near the critical density, which 
“suggested the existence of some kind of change of state” (p. 72).  He proposed two linear 
models for the two states of flow.  The first related density to the logarithm of velocity above the 
“optimum velocity”, i.e. “non-congested flow”.  The second related velocity to the logarithm of 
spacing (i.e. the inverse of density) for congested flow.  The model was fitted to the same 
Lincoln Tunnel data as used by Greenberg. 
 
 These three forms of the speed-density curve, plus four others, were investigated in an 
empirical test by Drake et al. in 1967.  The test used data from the middle lane of the Eisenhower 
Expressway in Chicago, one-half mile (800 m) upstream from a bottleneck whose capacity was 
only slightly less than the capacity of the study site.  This location was chosen specifically in 
order to obtain data over as much of the range of operations as possible.  A series of 1224 1-
minute observations were initially collected.  The measured data consisted of volume, time-mean 
speed, and occupancy.  Density was calculated from volume and time-mean speed.  A sample 
was then taken from among the 1224 data points in order to create a data set that was uniformly 
distributed along the density axis, as is assumed by regression analysis of speed on density.  
 
 The intention in conducting the study was to compare the seven speed-density hypotheses 
statistically, and thereby to select the best one.  In addition to Greenshields' linear form, 
Greenberg's exponential curve, and Edie’s two-part logarithmic model, the other four 
investigated were a two-part and three-part piecewise linear models, Underwood's (1961) 
transposed exponential curve, and a bell-shaped curve.  Despite the intention to use "a rigorous 
structure of falsifiable tests" (p. 75) in this comparison, and the careful way the work was done, 
the statistical analyses proved inconclusive:  "almost all conclusions were based on intuition 
alone since the statistical tests provided little decision power after all" (p. 76).  To assert that 
intuition alone was the basis is no doubt a bit of an exaggeration.  Twenty-one graphs help 
considerably in differentiating among the seven hypotheses and their consequences for both 
speed-volume and volume-density graphs. 
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 Figure 2.13 provides an example of the three types of graphs used, in this case the ones 
based on the Edie model.  Their comments about this model (p. 75) were: "The Edie formulation 
gave the best estimates of the fundamental parameters.  While its R2 was the second lowest, its 
standard error was the lowest of all hypotheses."  One interesting point with respect to Figure 
2.13 is that the Edie  model was the only one of the seven to replicate capacity operations closely 
on the volume-density and speed-volume plots.  The other models tended to underestimate the 
maximum flows, often by a considerable margin, as is illustrated in Figure 2.14, which shows the 
speed-volume curve resulting from Greenshields' hypothesis of a linear speed-density 
relationship.  (It is interesting to note that the data in these two figures are quite consistent with 
the currently accepted speed-flow shape identified earlier in Figures 2.5 and 2.6.)  The overall 
conclusion one might draw from the Drake et al. study is that none of the seven models they 
tested provide a particularly good fit to or explanation of the data, although it should be noted 
that they did not state their conclusion this way, but rather dealt with each model separately. 
 
 There are four additional issues that arise from the Drake et al. study that are worth 
noting here.  The first is the methodological one identified by Duncan (1976; 1979), and 
discussed earlier with regard to Greenshields' work. Duncan showed that calculating density 
from speed and flow data, fitting a speed-density function to that data, and then transforming the 
speed-density function into a speed-flow function results in a curve that does not fit the original 
speed-flow data particularly well.  This is the method used by Drake et al, and certainly most of 
their resulting speed-flow functions did not fit the original speed-flow data very well.  Duncan's 
1979 paper expanded on the difficulties to show that minor changes in the speed-density function 
led to major changes in the speed-flow function, suggesting the need for further caution in using 
this method of double transformations to get a speed-flow curve. 
 

The second is that of the data collection location, as discussed above.  The data were 
collected upstream of a bottleneck, which produced the kind of discontinuity that Edie had 
earlier identified.  The Drake et al. approach was to try to fit the data as they had been obtained, 
without considering whether there was a portion of the data that was missing.  They had 
intentionally tried to obtain data from as wide a range as possible, but as discussed above it may 
not be possible to get data from all three parts of the curve at one location. 

 
The third issue is that identified by Cassidy, relating to the time period for collection of 

the data.  The Drake et al. data came from standard loop detectors, working on fixed time 
intervals.  As a consequence, there will be some measurement error, which may well affect the 
estimation of the bivariate relationships. 
 
 The fourth issue is the relationship between car-following models (see Chapter 5) and the 
models tested by Drake et al.  They noted that four of the models they tested "have been shown 
to be directly related to specific car-following rules", and cited articles by Gazis and co-authors 
(1959; 1961).  The interesting question to raise in the context of the overall appraisal of the 
Drake et al. results is whether those results raise doubts about the validity of the car-following 
models for freeways.  The car-following models gave rise to four of the speed-density models 
tested by Drake et al.  The results of the testing suggest that the speed-density models are not 
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particularly good. Modus tollens in logic says that if the consequences of a set of premises are 
shown to be false, then one (at least) of the premises is not valid.  It is possible, then, that the 
car-following models are not valid for freeways.  (This is not surprising, as they were not 
developed for this context.  Nor, it seems, are they used as the basis for contemporary 
microscopic freeway simulation models.)  On the other hand, any of the three issues just 
identified may be the source of the failure of the models, rather than their development from car-
following models. 
 

2.3.3  Flow-concentration models 
 
 Although Gerlough and Huber did not give the topic of flow-concentration models such 
extensive treatment as they gave the speed-concentration models, they nonetheless thought this 
topic to be very important, as evidenced by their introductory paragraph for the section dealing 
with these models (p. 55): 
 
 Early studies of highway capacity followed two principal approaches.  Some 

investigators examined speed-flow relationships at low concentrations; others discussed 
headway phenomena at high concentrations. Lighthill and Whitham [1955] have 
proposed use of the flow-concentration curve as a means of unifying these two 
approaches.  Because of this unifying feature, and because of the great usefulness of the 
flow-concentration curve in traffic control situations (such as metering a freeway), 
Haight [1960; 1963] has termed the flow-concentration curve "the basic diagram of 
traffic". 

 
Nevertheless, most flow-concentration models have been derived from assumptions about the 
shape of the speed-concentration curve.  This section deals primarily with work that has focused 
on the flow-concentration relationship directly.  Under that heading is included work that uses 
either density or occupancy as the measure of concentration. 
 
 Edie was perhaps the first to point out that empirical flow-concentration data frequently 
have discontinuities in the vicinity of what would be maximum flow, and to suggest that 
therefore discontinuous curves might be needed for this relationship.  (An example of his type of 
curve appears in Figure 2.13 above.)  This suggestion led to a series of investigations by May 
and his students (Ceder 1975; 1976; Ceder and May 1976; Easa and May 1980) to specify more 
tightly the nature and parameters of these "two-regime" models (and to link those parameters to 
the parameters of car-following models).  The difficulty with their resulting models is that the 
models often do not fit the data well at capacity (with results similar to those shown in Figure 
2.14 for Greenshields' single-regime model).  In addition, there seems little consistency in 
parameters from one location to another.  Even more troubling, when multiple days from the 
same site were calibrated, the different days required quite different parameters. 
 
 Koshi, Iwasaki and Ohkura (1983) gave an empirically-based discussion of the flow-
density relationship, in which they suggested that a reverse lambda shape was the best 
description of the data (p. 406):  "the two regions of flow form not a single downward concave 
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curve... but a shape like a mirror image of the Greek letter lamda [sic] (�)".  These authors also 
investigated the implications of this phenomenon for car-following models, as well as for wave 
propagation.  Data with a similar shape to theirs appears in Figure 2.13; Edie’s equations fit 
those data with a shape similar to the lambda shape Koshi et al.  suggested. 
 
 Although most of the flow-concentration work that relies on occupancy rather than 
density dates from the past decade, Athol suggested its use nearly 30 years earlier (in 1965).  His 
work presages a number of the points that have come out subsequently and are discussed in more 
detail below:  the use of volume and occupancy together to identify the onset of congestion; the 
transitions between uncongested and congested operations at volumes lower than capacity; and 
the use of time-traced plots (i.e. those in which lines connected the data points that occurred 
consecutively over time) to better  understand the operations. 
 
 After Athol's early efforts, there seems to have been a dearth of efforts to utilize the 
occupancy data that was available, until the mid-1980s.  One paper from that time (Hall et al. 
1986) that utilized occupancy drew on the same approach Athol had used, namely the 
presentation of time-traced plots.  Figure 2.15 shows results for four different days from the 
same location, 4 km upstream of a primary bottleneck.  The data are for the left-most lane only 
(the high-speed, or passing lane), and are for 5-minute intervals.  The first point in the time-
connected traces is the one that occurred in the 5-minute period after the data-recording system 
was turned on in the morning.  In part D of the Figure, it is clear that operations had already 
broken down prior to data being recorded.  Part C is perhaps the most intriguing: operations 
move into higher occupancies (congestion) at flows clearly below maximum flows.  Although 
Parts A and B may be taken to confirm the implicit assumption many traffic engineers have that 
operations pass through capacity prior to breakdown, Part C gives a clear indication that this 
does not always happen.  Even more important, all four parts of Figure 2.15 show that operations 
do not go through capacity in returning from congested to uncongested conditions.  Operations 
can 'jump' from one branch of the curve to the other, without staying on the curve.  (This same 
result, not surprisingly, occurs for speed-flow data.) 
 
 Each of the four parts of Figure 2.15 show at least one data point between the two 
'branches' of the usual curve during the return to uncongested conditions.  Because these were 5-
minute data, the authors recognized that these points might be the result of averaging of data 
from the two separate branches.  Subsequently, however, additional work utilizing 30-second 
intervals confirmed the presence of these same types of data (Persaud and Hall 1989).  Hence 
there appears to be strong evidence that traffic operations on a freeway can move from one 
branch of the curve to the other without going all the way around the capacity point.  This is an 
aspect of traffic behaviour that none of the mathematical models discussed above either explain 
or lead one to expect.  Nonetheless, the phenomenon has been at least implicitly recognized 
since Lighthill and Whitham's (1955) discussion of shock waves in traffic, which assumes 
instantaneous jumps from one branch to the other on a speed-flow or flow-occupancy curve.  As 
well, queueing models (e.g. Newell 1982) imply that immediately upsteam from the back end of 
a queue there must be points where the speed is changing rapidly from the uncongested branch 
of the speed-flow curve to that of the congested branch.  It would be beneficial if flow-
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concentration (and speed-flow) models explicitly took this possibility into account. 
 
 One of the conclusions of the paper by Hall et al. (1986) from which Figure 2.15 is drawn 
is that an inverted 'V' shape is a plausible representation of the flow-occupancy relationship.  
Although that conclusion was based on limited data from near Toronto, Hall and Gunter (1986) 
supported it with data from a larger number of stations.  Banks (1989) tested their proposition 
using data from the San Diego area, and confirmed the suggestion of the inverted 'V'.  He also 
offered a mathematical statement of this proposition and a behavioural interpretation of it (p. 
58): 
 
 The inverted-V model implies that drivers maintain a roughly constant average 

time gap between their front bumper and the back bumper of the vehicle in front 
of them, provided their speed is less than some critical value.  Once their speed 
reaches this critical value (which is as fast as they want to go), they cease to be 
sensitive to vehicle spacing.... 

 
2.4  Three-dimensional models  
 
 There has not been a lot of work that attempts to treat all three traffic flow variables 
simultaneously.  Gerlough and Huber presented one figure (reproduced as Figure 2.16) that 
represented all three variables, but said little about this, other than (1) "The model must be on the 
three-dimensional surface u = q/k," and (2)  "It is usually more convenient to show the model of 
[Figure 2.16] as one or more of the three separate relationships in two dimensions..." (p. 49). As 
was noted earlier, however, empirical observations rarely accord exactly with the relationship 
q=u k, especially when the observations are taken during congested conditions.   Hence focusing 
on the two-dimensional relationships will not often provide even implicitly a valid three-
dimensional relationship.      
 
 In this context, a paper by Gilchrist and Hall (1989) is interesting because it 
presents three-dimensional representations of empirical observations, without attempting 
to fit them to a theoretical representations.  The study is limited, in that data from only 
one location, upstream of a bottleneck, was presented. To enable better visualization of 
the data, a time-connected trace was used.  The projections onto the standard two-
dimensional surfaces of the data look much as one might expect.  The surprises came in 
looking at oblique views of the three-dimensional representation, as in Figures 2.17 and 
2.18.  From one perspective (Figure 2.17), the traditional sideways U-shape that we have 
been led to expect is quite apparent, and projections of that are easily visualized onto, for 
example, the speed-flow surface (the face labeled with a 3, on the left side of the ‘box’).  
From a different perspective (Figure 2.18) that shape is hardly apparent at all, although 
indications of an inverted 'V' can be seen, which would project onto a flow-occupancy 
plot on face 1 of the box..  Black and white were alternated for five speed ranges. In both 
figures, the dark lines at the left represent the data with speeds above 80 km/hr.  The light 
lines closest to the left  cover the range 71 to 80 km/hr; the next, very small, area of dark 
lines contains the range 61 to 70 km/hr; the remaining light lines represent the range 51 
to 60 km/hr; and the dark lines to the right of the diagram represent speeds below 50 
km/hr. 
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 One recent approach to modelling the three traffic operations variables directly has been 
based on the mathematics of catastrophe theory.  (The name comes from the fact that while most 
of the variables being modelled change in a continuous fashion, at least one of the variables can 
make sudden discontinuous changes, referred to as catastrophes by Thom (1975), who originally 
developed the mathematics for seven such models, ranging from two dimensions to eight.)  The 
first effort to apply these models to traffic data was that by Dendrinos (1978), in which he 
suggested that the two-dimensional catastrophe model could represent the speed-flow curve.  A 
more fruitful model was proposed by Navin (1986), who suggested that the three-dimensional 
'cusp' catastrophe model was appropriate for the three traffic variables.  The feature of the cusp 
catastrophe surface that makes it of interest in the traffic flow context is that while two of the 
variables (the control variables) exhibit smooth continuous change, the third one (the state 
variable) can undergo a sudden 'catastrophic' jump in its value.  Navin suggested that speed was 
the variable that underwent this catastrophic change, while flow and occupancy were the control 
variables. 
 
 While Navin's presentation was primarily an intuitive one, without recourse to data, Hall 
and co-authors picked up on the idea and attempted to flesh it out both mathematically and 
empirically.  The initial effort appears in Hall (1987), in which the basic idea was presented, and 
some data applied.  Figure 2.19 is a representation, showing the partially-folded (and torn) 
surface that is the Maxwell version of the cusp catastrophe surface, approximately located traffic 
data on that surface, and axes external to the surface representing the general correspondence 
with traffic variables.  Further elaboration of this model is provided by Persaud and Hall (1989). 
 Acha-Daza and Hall (1993) compared the ability of this model with the ability of some of the 
earlier models discussed above, to estimate speeds from flows obtained using inductive loop 
detectors and 30-second data, and found the catastrophe theory model to be slightly better than 
they were.  Despite its empirical success, the problem with the model is that it appears to be 
inconsistent with the basic definitions and relationships with which this chapter opened. 
 
2.5  Summary and links to other chapters 
 
 The current status of mathematical models for speed-flow-concentration relationships is 
in a state of flux.  The models that dominated the discourse for nearly 30 years are incompatible 
with the data currently being obtained, and with currently accepted depictions of speed-flow 
curves, but no replacement models have yet been developed.  The analyses of Cassidy and 
Newell have shown that the data used to develop most of the earlier models were flawed, as has 
been described above.  An additional difficulty was noted by Duncan (1976; 1979):  
transforming variables, fitting equations, and then transforming the equations back to the original 
variables can lead to biased results, and is very sensitive to small changes in the initial curve-
fitting.  Progress has been made in understanding the relationships among the key traffic 
variables, but there is considerable scope for better models still. 
 It is important to note that the variables and analyses that have been discussed in this 
chapter are closely related to topics in several of the succeeding chapters.  The human factors 
discussed in Chapter 3, for example, help to explain some of the variability in the data that have 
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Figure 2.19 
Catastrophe Theory Surface Showing Sketch of a Possible Freeway Function, and 

Projections and Transformations from That (Hall 1987). 
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been discussed here.  As mentioned earlier, some of the bivariate models discussed above have 
been derived from car-following models, which are covered in Chapter 4.  In addition, brief 
mention was made here of Lighthill and Witham’s work, which has spawned a large literature 
related to the behavior of shocks and waves in traffic flow, covered in Chapter 5.  All of these 
topics are inter-related, but have been addressed separately for ease of understanding. 
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CHAPTER 3 -  Frequently used Symbols

� = parameter of log normal distribution ~ standard deviation
� = parameter of log normal distribution ~ median
� = standard deviation
� = value of standard normal variate
a = maximum acceleration on gradeGV

a = maximum acceleration on levelLV

A = movement amplitude
C = roadway curvaturer

C = vehicle heading(t)

CV = coefficient of variation
d = braking distance
D = distance from eye to target
E = symptom error function(t)

f = coefficient of friction
F = stability factors

g = acceleration of gravity
g = control displacement(s)

G = gradient
H = information (bits)
K = gain (dB)
l = wheel base
L = diameter of target (letter or symbol)
LN = natural log
M = mean
MT = movement time
N = equiprobable alternatives
PRT = perception-response time
R = desired input forcing function(t)

RT = reaction time (sec)
s = Laplace operator
SR = steering ratio (gain)
SSD = stopping sight distance 
t = time
T = lead term constantL

T = lag term constant
�

T = neuro-muscular time constantN

u = speed
V = initial speed
W = width of control device
Z = standard normal score
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3.
HUMAN FACTORS

3.1 Introduction 
In this chapter, salient performance aspects of the human in the
context of a person-machine control system, the motor vehicle,
will be summarized.  The driver-vehicle system configuration is
ubiquitous.  Practically all readers of this chapter are also
participants in such a system; yet many questions, as will be
seen, remain to be answered in modeling the behavior of the
human component alone.  Recent publications (IVHS 1992;
TRB 1993) in support of Intelligent Transportation Systems
(ITS) have identified study of "Plain Old Driving" (POD) as a
fundamental research topic in ITS.  For the purposes of a
transportation engineer interested in developing a molecular
model of traffic flow in which the human in the vehicle or an
individual human-vehicle comprises a unit of analysis, some
important performance characteristics can be identified to aid in
the formulation, even if a comprehensive transfer function for the
driver has not yet been formulated.

This chapter will proceed to describe first the discrete
components of performance, largely centered around
neuromuscular and cognitive time lags that are fundamental
parameters in human performance.  These topics include
perception-reaction time, control movement time, responses to
the presentation of traffic control devices, responses to the
movements of other vehicles, handling of hazards in the
roadway, and finally how different segments of the driving
population may differ in performance.

Next, the kind of control performance that underlies steering,
braking, and speed control (the primary control functions) will
be described.  Much research has focused on the development of
adequate models of the tracking behavior fundamental to
steering, much less so for braking or for speed control.

After fundamentals of open-loop and closed-loop vehicle control
are covered, applications of these principles to specific
maneuvers of interest to traffic flow modelers will be discussed.
Lane keeping, car following, overtaking, gap acceptance, lane
closures, stopping and intersection sight distances will also be
discussed.  To round out the chapter, a few other performance
aspects of the driver-vehicle system will be covered, such as
speed limit changes and distractions on the highway.  

3.1.1  The Driving Task

Lunenfeld and Alexander (1990) consider the driving task to be
a hierarchical process, with three levels: (1) Control,
(2) Guidance, and (3) Navigation.  The control level of
performance comprises all those activities that involve second-
to-second exchange of information and control inputs between
the driver and the vehicle.  This level of performance is at the
control interface.  Most control activities, it is pointed out, are
performed "automatically," with little conscious effort.  In short,
the control level of performance is skill based, in the approach
to human performance and errors set forth by Jens Rasmussen as
presented in Human Error (Reason 1990).

Once a person has learned the rudiments of control of the
vehicle, the next level of human performance in the driver-
vehicle control hierarchy is the rules-based (Reason 1990)
guidance level as Rasmussen would say.  The driver's main
activities "involve the maintenance of a safe speed and proper
path relative to roadway and traffic elements ." (Lunenfeld and
Alexander 1990) Guidance level inputs to the system are
dynamic speed and path responses to roadway geometrics,
hazards, traffic, and the physical environment.  Information
presented to the driver-vehicle system is from traffic control
devices, delineation, traffic and other features of the
environment, continually changing as the vehicle moves along
the highway.  

These two levels of vehicle control, control and guidance, are of
paramount concern to modeling a corridor or facility.  The third
(and highest) level in which the driver acts as a supervisor apart,
is navigation.  Route planning and guidance while enroute, for
example, correlating directions from a map with guide signage
in a corridor, characterize the navigation level of performance.
Rasmussen would call this level knowledge-based behavior.
Knowledge based behavior will become increasingly more
important to traffic flow theorists as Intelligent Transportation
Systems (ITS) mature.  Little is currently known about how
enroute diversion and route changes brought about by ITS
technology affect traffic flow, but much research is underway.
This chapter will discuss driver performance in the conventional
highway system context, recognizing that emerging ITS
technology in the next ten years may radically change many
driver's roles as players in advanced transportation systems.
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At the control and guidance levels of operation, the driver of a driver-vehicle system from other vehicles, the roadway, and the
motor vehicle has gradually moved from a significant prime
mover, a supplier of forces to change the path of the vehicle, to
an information processor in which strength is of little or no
consequence.  The advent of power assists and  automatic
transmissions in the 1940's, and cruise controls in the 1950's
moved the driver more to the status of a manager in the system.
There are commercially available adaptive controls for severely
disabled drivers (Koppa 1990) which reduce the actual
movements and strength required of drivers to nearly the
vanishing point.  The fundamental control tasks, however,
remain the same. 

These tasks are well captured in a block diagram first developed
many years ago by Weir (1976).  This diagram, reproduced in
Figure 3.1, forms the basis for the discussion of driver
performance, both discrete and continuous.   Inputs  enter  the

driver him/herself (acting at the navigation level of
performance).  

The fundamental display for the driver is the visual field as seen
through the windshield, and the dynamics of changes to that field
generated by the motion of the vehicle.  The driver attends to
selected parts of this input, as the field is interpreted as the visual
world.  The driver as system manager as well as active system
component "hovers" over the control level of performance.
Factors such as his or her experience, state of mind, and
stressors (e.g.,  being on  a  crowded  facility  when 
30 minutes late for a meeting) all impinge on the supervisory or
monitoring level of performance, and directly or indirectly affect
the control level of performance.  Rules and knowledge govern
driver decision making and the second by second psychomotor
activity  of   the  driver.     The  actual  control 

Figure 3.1
Generalized Block Diagram of the Car-Driver-Roadway System.
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movements made by the driver couple with the vehicle control As will be discussed, a considerable amount of information is
at the interface of throttle, brake, and steering.  The vehicle, in available for some of the lower blocks in this diagram, the ones
turn, as a dynamic physical process in its own right, is subject to associated with braking reactions, steering inputs, andvehic le
inputs from the road and the environment.  The resolution of control dynamics.  Far less is really known about the higher-
control dynamics and vehicle disturbance dynamics is the vehicle order functions that any driver knows are going on while he or
path. she drives. 

3.2  Discrete Driver Performance

3.2.1  Perception-Response Time

Nothing in the physical universe happens instantaneously. Underlying the Hick-Hyman Law is the two-component concept:
Compared to some physical or chemical processes, the simplest part of the total time depends upon choice variables, and part is
human reaction to incoming information is very slow indeed. common to all reactions (the intercept).  Other components can
Ever since the Dutch physiologist Donders started to speculate be postulated to intervene in the choice variable component,
in the mid 19th century about central processes involved in other than just the information content.  Most of these models
choice and recognition reaction times, there have been numerous
models of this process.  The early 1950's saw Information
Theory take a dominant role in experimental psychology.  The
linear equation

RT = a + bH (3.1)

Where: the 85th percentile estimate for that aspect of time lag.  Because

RT =  Reaction time, seconds
H =  Estimate of transmitted information
H = log N , if N equiprobable alternatives2

a =  Minimum reaction time for that modality
b =  Empirically derived slope, around 0.13       

     seconds (sec) for many performance situations 

that has come to be known as the Hick-Hyman "Law" expresses
a relationship between the number of alternatives that must be
sorted out to decide on a response and the total reaction time,
that is, that lag in time between detection of an input (stimulus)
and the start of initiation of a control or other response.  If the
time for the response itself is also included, then the total lag is
termed "response time."  Often, the terms "reaction time" and
"response time" are used interchangeably, but one (reaction) is
always a part of the other (response).

have then been chaining individual components that are
presumably orthogonal or uncorrelated with one another.
Hooper and McGee (1983) postulate a very typical and plausible
model with such components for braking response time,
illustrated in Table 3.1.

Each of these elements is derived from empirical data, and is in

it is doubtful that any driver would produce 85th percentile
values for each of the individual elements, 1.50 seconds
probably represents an extreme upper limit for a driver's
perception-reaction time.  This is an estimate for the simplest
kind of reaction time, with little or no decision making.  The
driver reacts to the input by lifting his or her foot from the
accelerator and placing it on the brake pedal.  But a number of
writers, for example Neuman (1989), have proposed perception-
reaction times (PRT) for different types of roadways, ranging
from 1.5 seconds for low-volume roadways to 3.0 seconds for
urban freeways.  There are more things happening, and more
decisions to be made per unit block of time on a busy urban
facility than on a rural county road.  Each of those added factors
increase the PRT.  McGee (1989) has similarly proposed
different values of PRT as a function of design speed.  These
estimates, like those in Table 3.1, typically include the time for
the driver to move his or her foot from the accelerator to the
brake pedal for brake application.
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Table 3.1
Hooper-McGee Chaining Model of Perception-Response Time  

Component (sec) (sec)
Time Cumulative Time

1)  Perception

Latency 0.31 0.31

Eye Movement 0.09 0.4

Fixation 0.2 1

Recognition 0.5 1.5

2)  Initiating Brake 1.24 2.74
      Application

Any statistical treatment of empirically obtained PRT's should skew, because there cannot be such a thing as a negative reaction
take into account a fundamental if not always vitally important time, if the time starts with onset of the signal with no
fact:  the times cannot be distributed according to the normal or anticipation by the driver.  Taoka (1989) has suggested an
gaussian probability course.  Figure 3.2 illustrates the actual adjustment to be applied to PRT data to correct for the non-
shape of the distribution.  The distribution has a marked positive normality, when sample sizes are "large" --50 or greater.

Figure 3.2
Lognormal Distribution of Perception-Reaction Time.
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(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

The log-normal probability density function is widely used in
quality control engineering and other applications in which
values of the observed variable, t, are constrained to values equal
to or greater than zero, but may take on extreme positive values,
exactly the situation that obtains in considering PRT.  In such
situations, the natural logarithm of such data may be assumed to
approach the normal or gaussian distribution.  Probabilities
associated with the log-normal distribution can thus be Therefore, the value of LN(t) for such percentile levels as 0.50
determined by the use of standard-score tables.  Ang and Tang (the median), the 85th, 95th, and 99th can be obtained by
(1975) express the log-normal probability density function f(t) substituting in Equation 3.6 the appropriate Z score of 0.00,
as follows:

where the two parameters that define the shape of the
distribution are � and �.  It can be shown that these two
parameters are related to the mean and the standard deviation of
a sample of data such as PRT as follows:

The parameter � is related to the median of the distribution being
described by the simple relationship of the natural logarithm of
the median.  It can also be shown that the value of the standard
normal variate (equal to probability) is related to these
parameters as shown in the following equation:

and the standard score associated with that value is given by:

1.04, 1.65, and 2.33 for Z and then solving for t.  Converting
data to log-normal approximations of percentile values should be
considered when the number of observations is reasonably large,
over 50 or more, to obtain a better fit.  Smaller data sets will
benefit more from a tolerance interval approach to approximate
percentiles (Odeh 1980).

A very recent literature review by Lerner and his associates
(1995) includes a summary of brake PRT (including brake
onset) from a wide variety of studies.  Two types of response
situation were summarized: (1) The driver does not know when
or even if the stimulus for braking will occur, i.e., he or she is
surprised, something like a real-world occurrence on the
highway; and (2) the driver is aware that the signal to brake will
occur, and the only question is when.  The Lerner et al. (1995)
composite data were converted by this writer to a log-normal
transformation to produce the accompanying Table 3.2.

Sixteen studies of braking PRT form the basis for Table 3.2.
Note that the 95th percentile value for a "surprise" PRT (2.45
seconds) is very close to the AASHTO estimate of 2.5 seconds
which is used for all highway situations in estimating both
stopping sight distance and other kinds of sight distance (Lerner
et al. 1995).

In a very widely quoted study by Johansson and Rumar (1971),
drivers were waylaid and asked to brake very briefly if they
heard a horn at the side of the highway in the next 10 kilometers.
Mean PRT for 322 drivers in this situation was 0.75 seconds
with an SD of 0.28 seconds.  Applying the Taoka conversion to
the log normal distribution yields:

50th percentile PRT = 0.84 sec
85th percentile PRT = 1.02 sec
95th percentile PRT = 1.27 sec
99th percentile PRT = 1.71 sec
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Table 3.2
Brake PRT - Log Normal Transformation

"Surprise" "Expected"

Mean 1.31 (sec) 0.54

Standard Dev 0.61 0.1

� 0.17 (no unit) -0.63 (no unit)

� 0.44 (no unit) 0.18 (no unit)

50th percentile 1.18 0.53

85th percentile 1.87 0.64

95th percentile 2.45 0.72

99th percentile 3.31 0.82

In very recent work by Fambro et al. (1994) volunteer drivers in Additional runs were made with other drivers in their own cars
two age groups (Older: 55 and up; and Young: 18 to 25) were equipped with the same instrumentation.  Nine of the 12 drivers
suddenly presented with a barrier that sprang up from a slot in made stopping maneuvers in response to the emergence of the
the pavement in their path, with no previous instruction.  They  barrier.  The results are given in Table 3.3 as Case 2.  In an
were driving a test vehicle on a closed course.  Not all 26 drivers attempt (Case 3) to approximate real-world driving conditions,
hit the brakes in response to this breakaway barrier.  The PRT's Fambro et al. (1994) equipped 12 driver's own vehicles with
of the 22 who did are summarized in Table 3.3  (Case 1).  None instrumentation.  They were asked to drive a two-lane undivided
of the age differences were statistically significant. secondary road ostensibly to evaluate the drivability of the road.

Table 3.3
Summary of PRT to Emergence of Barrier or Obstacle

Case 1.  Closed Course, Test Vehicle

12 Older: Mean = 0.82 sec; SD = 0.16 sec

10 Young: Mean = 0.82 sec; SD = 0.20 sec

Case 2.  Closed Course, Own Vehicle

7 Older: Mean = 1.14 sec; SD = 0.35 sec

3 Young: Mean = 0.93 sec; SD = 0.19 sec

Case 3.  Open Road, Own Vehicle

5 Older: Mean = 1.06 sec; SD = 0.22 sec
6 Young: Mean = 1.14 sec; SD = 0.20 sec
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 A braking incident was staged at some point during this test event to an expected event ranges from 1.35 to 1.80 sec,
drive.  A barrel suddenly rolled out of the back of a pickup consistent with Johansson and Rumar (1971).  Note, however,
parked at the side of the road as he or she drove by.  The barrel that one out of 12 of the drivers in the open road barrel study
was snubbed to prevent it from actually intersecting the driver's
path, but the driver did not know this. The PRT's obtained by
this ruse are summarized in Table 3.4.  One driver failed to
notice the barrel, or at least made no attempt to stop or avoid it.

Since the sample sizes in these last two studies were small, it
was considered prudent to apply statistical tolerance intervals to
these data in order to estimate proportions of the driving
population that might exhibit such performance, rather than
using the Taoka conversion.  One-sided tolerance tables
published by Odeh (1980) were used to estimate the percentage
of drivers who would respond in a given time or shorter, based
on these findings.  These estimates are given in Table 3.4 (95
percent confidence level), with PRT for older and younger
drivers combined.

The same researchers also conducted studies of driver response
to expected obstacles.  The ratio of PRT to a totally unexpected

(Case 3) did not appear to notice the hazard at all.  Thirty
percent of the drivers confronted by the artificial barrier under
closed-course conditions also did not respond appropriately.
How generalizable these percentages are to the driver population
remains an open question that requires more research.  For
analysis purposes, the values in Table 3.4 can be used to
approximate the driver PRT envelope for an unexpected event.
PRT's for expected events, e.g.,  braking in a queue in heavy
traffic, would range from 1.06 to 1.41 second, according to the
ratios given above (99th percentile).

These estimates may not adequately characterize PRT under
conditions of complete surprise, i.e., when expectancies are
greatly violated (Lunenfeld and Alexander 1990).  Detection
times may be greatly increased if, for example, an unlighted
vehicle is suddenly encountered in a traffic lane in the dark, to
say nothing of a cow or a refrigerator.

Table 3.4
Percentile Estimates of PRT to an Unexpected Object

 Percentile Closed Course Closed Course Open Road

Case 1 Case 2 Case 3
Test Vehicle Own Vehicle Own Vehicle

 50th 0.82 sec 1.09 sec 1.11 sec

 75th 1.02 sec 1.54 sec 1.40 sec

 90th 1.15 sec 1.81 sec 1.57 sec

 95th 1.23 sec 1.98 sec 1.68 sec

 99th 1.39 sec 2.31 sec 1.90 sec

Adapted from Fambro et al. (1994).
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(3.7)

(3.8)

(3.9)

3.3  Control Movement Time

Once the lag associated with perception and then reaction has is the "Index of Difficulty" of the movement, in binary units, thus
ensued and the driver just begins to move his or her foot (or linking this simple relationship with the Hick-Hyman equation
hand, depending upon the control input to be effected), the discussed previously in Section 3.3.1.  
amount of time required to make that movement may be of
interest.  Such control inputs are overt motions of an appendage Other researchers, as summarized by Berman (1994), soon
of the human body, with attendant inertia and muscle fiber found that certain control movements could not be easily
latencies that come into play once the efferent nervous impulses modeled by Fitts' Law.  Accurate tapping responses less than
arrives from the central nervous system.  180 msec were not included.  Movements which are short and

3.3.1  Braking Inputs

As discussed in Section 3.3.1 above, a driver's braking response
is composed of two parts, prior to the actual braking of the
vehicle: the perception-reaction time (PRT) and immediately
following, movement time (MT ).  

Movement time for any sort of response was first modeled by
Fitts in 1954.  The simple relationship among the range or
amplitude of movement, size of the control at which the control
movement terminates, and basic information about the minimum
"twitch" possible for a control movement has long been known
as "Fitts' Law."

where,
a = minimum response time lag, no movement
b = slope, empirically determined, different for

each limb
A = amplitude of movement, i.e.,  the distance

from starting point to end point
W = width of control device (in direction of

movement)

The term

quick also appear to be preplanned, or "programmed," and are
open-loop.  Such movements, usually not involving visual
feedback, came to be modeled by a variant of Fitts' Law:

in which the width of the target control (W ) plays no part.

Almost all such research was devoted to hand or arm responses.
In 1975, Drury  was one of the first researchers to test the
applicability of Fitts' Law and its variants to foot and leg
movements.  He found a remarkably high association for fitting
foot tapping performance to Fitts' Law.  Apparently, all
appendages of the human body can be modeled by Fitts' Law or
one of its variants, with an appropriate adjustment of a and b, the
empirically derived parameters.  Parameters a and b are
sensitive to age, condition of the driver, and circumstances such
as degree of workload, perceived hazard or time stress, and pre-
programming by the driver.

In a study of pedal separation and vertical spacing between the
planes of the accelerator and brake pedals, Brackett and Koppa
(1988) found separations of 10 to 15 centimeters (cm), with little
or no difference in vertical spacing, produced
control movement in the range of 0.15 to 0.17 sec.  Raising the
brake pedal more than 5 cm above the accelerator lengthened
this time significantly.  If pedal separation ( = A in Fitts' Law)
was varied, holding pedal size constant, the mean MT was 0.22
sec, with a standard deviation of 0.20 sec.

In 1991, Hoffman put together much of the extant literature and
conducted studies of his own.  He found that the Index of
Difficulty was sufficiently low (<1.5) for all pedal placements
found on passenger motor vehicles that visual control was
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unnecessary for accurate movement, i.e., movements were other relationship between these two times.  A recent analysis by
ballistic in nature.  MT was found to be greatly influenced by
vertical separation of the pedals, but comparatively little by
changes in A, presumably because the movements were ballistic
or open-loop and thus not correctable during the course of the
movement.  MT was lowest at 0.20 sec with no vertical
separation, and rose to 0.26 sec if the vertical separation (brake
pedal higher than accelerator) was as much as 7 cm.  A very
recent study by Berman (1994) tends to confirm these general
MT evaluations, but adds some additional support for a ballistic
model in which amplitude A does make a difference.

Her MT findings for a displacement of (original) 16.5 cm and
(extended) 24.0 cm, or change of 7.5 cm can be summarized as
follows:

Original pedal Extended pedal
Mean 0.20 sec 0.29 sec
Standard Deviation 0.05 sec 0.07 sec
95 percent 
    tolerance level 0.32 sec 0.45 sec
99 percent 
    tolerance level 0.36 sec 0.51 sec

The relationship between perception-reaction time and MT has
been shown to be very weak to nonexistent.  That is, a long
reaction time does not necessarily predict a long   MT,   or  any

the writer yielded a Pearson Product-Moment Correlation
Coefficient (r) value of 0.17 between these two quantities in a
braking maneuver to a completely unexpected object in the path
of the vehicle (based on 21 subjects).  Total PRT's as presented
in Section 3.3.1 should be used for discrete braking control
movement time estimates; for other situations, the modeler could
use the tolerance levels in Table 3.5 for MT, chaining them after
an estimate of perception (including decision) and reaction time
for the situation under study (95 percent confidence level).  See
Section 3.14 for a discussion on how to combine these estimates.

3.3.2  Steering Response Times

Summala (1981) covertly studied driver responses to the sudden
opening of a car door in their path of travel.  By "covert" is
meant the drivers had no idea they were being observed or were
participating in the study.  This researcher found that neither the
latency nor the amount of deviation from the pre-event pathway
was dependent upon the car's prior position with respect to the
opening car door.  Drivers responded with a ballistic "jerk" of
the steering wheel.  The mean response latency for these Finnish
drivers was 1.5 sec, and reached the half-way point of maximum
displacement from the original path in about 2.5 sec.  The

Table 3.5
Movement Time Estimates

 Source N Mean 75th 90th 95th 99th
(Std) Sec Sec Sec Sec

 Brackett (Brackett and Koppa 1988) 24 0.22 (0.20) 0.44 0.59 0.68 0.86

 Hoffman (1991) 18 0.26 (0.20) 0.50 0.66 0.84 1.06

 Berman (1994) 24 0.20 (0.05) 0.26 0.29 0.32 0.36
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3.4  Response Distances and Times to Traffic Control Devices
The driving task is overwhelmingly visual in nature; external very rich with data related to target detection in complex visual
information coming through the windshield constitutes nearly all environments, and a TCD's target value also depends upon the
the information processed.  A major input to the driver which driver's predilection to look for and use such devices.  
influences his or her path and thus is important to traffic flow
theorists is traffic information imparted by traffic control devices
(TCD).  The major issues concerned with TCD are all related to
distances at which they may be (1) detected as objects in the
visual field; (2) recognized as traffic control devices: signs,
signals, delineators, and barricades; (3) legible or identifiable so
that they may be comprehended and acted upon.  Figure 3.3
depicts a conceptual model for TCD information processing, and
the many variables which  affect  it.   The  research  literature  is

3.4.1  Traffic Signal Change

From the standpoint of traffic flow theory and modeling, a major
concern is at the stage of legibility or identification and a
combination of "read" and "understand" in the diagram in Figure
3.3.  One of the most basic concerns is driver response or lag to

Figure 3.3
A Model of Traffic Control Device Information Processing.
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changing traffic signals.  Chang et al. (1985) found through Mean PRT to signal change = 1.30 sec
covert observations at signalized intersections that drivers 85th percentile PRT = 1.50 sec
response lag to signal change (time of change to onset of brake 95th percentile PRT = 2.50 sec
lamps) averaged 1.3 sec, with the 85th percentile PRT estimated 99th percentile PRT = 2.80 sec
at 1.9 sec and the 95th percentile at 2.5 sec.  This PRT to signal
change is somewhat inelastic with respect to distance from the If the driver is stopped at a signal, and a straight-ahead maneuver
traffic signal at which the signal state changed.  The mean PRT is planned, PRT would be consistent with those values given in
(at 64 kilometers per hour (km/h)) varied by only 0.20 sec within Section 3.3.1.  If complex maneuvers occur after signal change
a distance of 15 meters (m) and by only 0.40 sec within 46 m. (e.g., left turn yield to oncoming traffic), the Hick-Hyman Law

Wortman and Matthias (1983) found similar results to Chang et
al. (1985) with a mean PRT of 1.30 sec, and a 85th percentile
PRT of  1.5 sec.  Using tolerance estimates based on their
sample size, (95 percent confidence level) the 95th percentile
PRT was 2.34 sec, and  the 99th percentile PRT was 2.77 sec.
They found very little relationship between the distance from the
intersection and either PRT or approach speed (r  = 0.08).  So2

the two study findings are in generally good agreement, and the
following estimates may be used for driver response to signal
change:

(Section 3.2.1) could be used with the y intercept being the basic
PRT to onset of the traffic signal change.  Considerations related
to intersection sight distances and gap acceptance make such
predictions rather difficult to make without empirical validation.
These considerations will be discussed in Section 3.15.

3.4.2  Sign Visibility and Legibility

The psychophysical limits to legibility (alpha-numeric) and
identification (symbolic) sign legends are the resolving power of

Table 3.6
Visual Acuity and Letter Sizes

Snellen Acuity Visual angle of letter or symbol Legibility Index

  SI (English) 'of arc radians m/cm

  6/3  (20/10) 2.5 0.00073 13.7

  6/6  (20/20) 5 0.00145 6.9

  6/9  (20/30) 7.5 0.00218 4.6

  6/12  (20/40) 10 0.00291 3.4

  6/15  (20/50) 12.5 0.00364 2.7

  6/18  (20/60) 15 0.00436 2.3
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the visual perception system, the effects of the optical train confirmed these earlier findings, and also notes that extreme
leading to presentation of an image on the retina of the eye,
neural processing of that image, and further processing by the
brain.  Table 3.6 summarizes visual acuity in terms of visual
angles and legibility indices.

The exact formula for calculating visual angle is 

where, L = diameter of the target (letter or symbol)
D = distance from eye to target in the same units

All things being equal, two objects that subtend the same visual
angle will elicit the same response from a human observer,
regardless of their actual sizes and distances.  In Table 3.6 the
Snellen eye chart visual acuity ratings are related to the size of
objects in terms of visual arc, radians (equivalent for small sizes
to the tangent of the visual arc) and legibility indices.  Standard
transportation engineering resources such as the Traffic Control depending upon sign complexity.  These differences consistent
Devices Handbook (FHWA 1983) are based upon these
fundamental facts about visual performance, but it should be
clearly recognized that it is very misleading to extrapolate
directly from letter or symbol legibility/recognition sizes to sign
perceptual distances, especially for word signs.  There are other
expectancy cues available to the driver, word length, layout, etc.
that can lead to performance better than straight visual angle
computations would suggest.  Jacobs, Johnston, and Cole (1975)
also point out an elementary fact that 27 to 30 percent of the
driving population cannot meet a 6/6 (20/20) criterion.  Most
states in the U.S. have a 6/12 (20/40) static acuity criterion for
unrestricted licensure, and accept 6/18 (20/60) for restricted
(daytime, usually) licensure.  Such tests in driver license offices
are subject to error, and examiners tend to be very lenient.
Night-time static visual acuity tends to be at least one Snellen
line worse than daytime, and much worse for older drivers (to be
discussed in Section 3.8).

Jacobs, et al. also point out that the sign size for 95th percentile
recognition or legibility is 1.7 times the size for 50th percentile
performance.  There is also a pervasive notion in the research
that letter sign legibility distances are half  symbol sign
recognition distances, when drivers are very familiar with the
symbol (Greene 1994).  Greene (1994), in a very recent study,

variability exists from trial to trial for the same observer on a 
given sign's recognition distance.  Presumably, word signs would
manifest as much or even more variability.  Complex, fine detail
signs such as Bicycle Crossing (MUTCD W11-1) were
observed to have coefficients of variation between subjects of 43
percent.  Coefficient of Variation (CV) is simply: 

CV = 100 � (Std Deviation/Mean) (3.11)

In contrast, very simple symbol signs such as T-Junction
(MUTCD W2-4) had a CV of 28 percent.  Within subject
variation (from trial to trial) on the same symbol sign is
summarized in Table 3.7.

Before any reliable predictions can be made about legibility or
recognition distances of a given sign, Greene (1994) found that
six or more trials under controlled conditions must be made,
either in the laboratory or under field conditions.  Greene (1994)
found percent differences between high-fidelity laboratory and
field recognition distances to range from 3 to 21 percent,

with most researchers, were all in the direction of laboratory
distances being greater than actual distances; the laboratory
tends to overestimate field legibility distances.  Variability in
legibility distances, however, is as great in the laboratory as it is
under field trials.

With respect to visual angle required for recognition, Greene
found, for example, that the Deer Crossing at the mean
recognition distance had a mean visual angle of 0.00193 radian,
or 6.6 minutes of arc.  A more complex, fine detail sign such as
Bicycle Crossing required a mean visual angle of 0.00345 radian
or 11.8 minutes of arc to become recognizable.

With these considerations in mind, here is the best
recommendation that this writer can make.  For the purposes of
predicting driver comprehension of signs and other devices that
require interpretation of words or symbols use the data in Table
3.6 as "best case," with actual performance expected to be
somewhat to much worse (i.e., requiring closer distances for a
given size of character or symbol).  The best visual acuity that
can be expected of drivers under optimum contrast conditions so
far as static acuity is concerned would be 6/15 (20/50) when the
sizable numbers of older drivers is considered [13 percent in
1990 were 65 or older (O'Leary and Atkins 1993)].  
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Table 3.7
Within Subject Variation for Sign Legibility

Young Drivers Older Drivers

Sign Min CV Max CV Min CV Max CV

WG-3  2 Way Traffic 3.9 21.9 8.9 26.7

W11-1  Bicycle Cross 6.7 37.0 5.5 39.4

W2-1  Crossroad 5.2 16.3 2.0 28.6

W11-3  Deer Cross 5.4 21.3 5.4 49.2

W8-5  Slippery 7.7 33.4 15.9 44.1

W2-5  T-Junction 5.6 24.6 4.9 28.7

3.4.3  Real-Time Displays and Signs

With the advent of Intelligent Transportation Systems (ITS),
traffic flow modelers must consider the effects of changeable
message signs on driver performance in traffic streams.
Depending on the design of such signs, visual performance to
them may not differ significantly from conventional signage.
Signs with active (lamp or fiber optic) elements may not yield
the legibility distances associated with static signage, because 
Federal Highway Administration, notably the definitive manual
by Dudek (1990).

3.4.4  Reading Time Allowance

For signs that cannot be comprehended in one glance, i.e., word
message signs, allowance must be made for reading the
information and then deciding what to do, before a driver in
traffic will begin to maneuver in response to the information.
Reading speed is affected by a host of factors (Boff and Lincoln
1988) such as the type of text, number of words, sentence
structure, information order, whatever else the driver is doing,
the purpose of reading, and the method of presentation.  The
USAF resource (Boff and Lincoln 1988) has a great deal of
general information on various aspects of reading sign material.
For purposes of traffic flow modeling, however, a general rule of
thumb may suffice.  This can be found in Dudek (1990):

"Research...has indicated that a minimum exposure time of one
second per short word (four to eight characters) (exclusive of
prepositions and other similar connectors) or two seconds per
unit of information, whichever is largest, should be used for
unfamiliar drivers.  On a sign having 12 to 16 characters per
line, this minimum exposure time will be two seconds per line."
"Exposure time" can also be interpreted as "reading time" and so
used in estimating how long drivers will take to read and
comprehend a sign with a given message. 

Suppose a sign reads:

Traffic Conditions
Next 2 Miles

Disabled Vehicle on I-77
Use I-77 Bypass Next Exit

Drivers not familiar with such a sign ("worst case," but able to
read the sign) could take at least 8 seconds and according to the
Dudek formula above up to 12 seconds to process this
information and begin to respond.  In Dudek's 1990  study, 85
percent of drivers familiar with similar signs read this 13-word
message (excluding prepositions) with 6 message units in 6.7
seconds. The formulas in the literature properly tend to be
conservative.
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3.5  Response to Other Vehicle Dynamics

Vehicles in a traffic stream are discrete elements with motion ahead) is the symmetrical magnification of a form or texture in
characteristics loosely coupled with each other via the driver's the field of view.  Visual angle transitions from a near-linear to
processing of information and making control inputs.  Effects of a geometric change in magnitude as an object approaches at
changes in speed or acceleration of other elements as perceived constant velocity, as Figure 3.4 depicts for a motor vehicle
and acted on by the driver of any given element are of interest. approaching at a delta speed of 88 km/h.  As the rate of change
Two situations appear relevant: (1) the vehicle ahead and (2) the of visual angle becomes geometric, the perceptual system
vehicle alongside (in the periphery).  triggers a warning that an object is going to collide with the

3.5.1  The Vehicle Ahead

Consideration of the vehicle ahead has its basis in thresholds for
detection of radial motion (Schiff 1980).  Radial motion is
change in the apparent size of a target.  The minimum condition
for  perceiving  radial  motion  of  an  object  (such as a vehicle

observer, or, conversely, that the object is pulling away from the
observer.  This phenomenon is called looming.  If the rate of
change of visual angle is irregular, that is information to the
perceptual system that the object in motion is moving at a
changing velocity (Schiff 1980).  Sekuler and Blake (1990)
report evidence that actual looming detectors exist in the human
visual system.  The relative change in visual angle is roughly
equal to the reciprocal of "time-to-go" (time to impact), a special

Figure 3.4
Looming as a Function of Distance from Object.
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case of the well-known Weber fraction,  S = �I/I, the magnitude
of a stimulus is directly related to a change in physical energy but
inversely related to the initial level of energy in the stimulus. 

Human visual perception of acceleration (as such) of an object
in motion is very gross and inaccurate; it is very difficult for a
driver to discriminate acceleration from constant velocity unless
the object is observed for a relatively long period of time - 10 or
15 sec (Boff and Lincoln 1988).  

The delta speed threshold for detection of oncoming collision or
pull-away has been studied in collision-avoidance research.
Mortimer (1988) estimates that drivers can detect a change in
distance between the vehicle they are driving and the one in front
when it has varied by approximately 12 percent.  If a driver were
following a car ahead at a distance of 30 m, at a change of 3.7 m
the driver would become aware that distance is decreasing or
increasing, i.e., a change in relative velocity.  Mortimer notes
that the major cue is rate of change in visual angle.  This
threshold was estimated in one study as 0.0035 radians/sec.

This would suggest that a change of distance of 12 percent in 5.6
seconds or less would trigger a perception of approach or pulling
away.  Mortimer concludes that "...unless the relative velocity
between  two  vehicles  becomes  quite  high,  the  drivers  will

respond to changes in their headway, or the change in angular
size of the vehicle ahead, and use that as a cue to determine the
speed that they should adopt when following another vehicle."

3.5.2  The Vehicle Alongside

Motion detection in peripheral vision is generally less acute than
in foveal (straight-ahead) vision (Boff and Lincoln 1988), in that
a greater relative velocity is necessary for a driver "looking out
of the corner of his eye" to detect that speed
change than if he or she is looking to the side at the subject
vehicle in the next lane.  On the other hand, peripheral vision is
very blurred and motion is a much more salient cue than a
stationary target is.  A stationary object in the periphery (such as
a neighboring vehicle exactly keeping pace with the driver's
vehicle) tends to disappear for all intents and purposes unless it
moves with respect to the viewer against a patterned background.
Then that movement will be detected.  Relative motion in the
periphery also tends to look slower than the same movement as
seen using fovea vision.  Radial motion (car alongside swerving
toward or away from the driver) detection presumably would
follow the same pattern as the vehicle ahead case, but no study
concerned with measuring this threshold directly was found.

3.6  Obstacle and Hazard Detection, Recognition, and Identification

Drivers on a highway can be confronted by a number of different roadway were unexpectedly encountered by drivers on a closed
situations which dictate either evasive maneuvers or stopping course.  Six objects, a 1 x 4 board, a black toy dog, a white toy
maneuvers.  Perception-response time (PRT) to such encounters dog, a tire tread, a tree limb with leaves, and a hay bale were
have already been discussed in Section 3.3.1.  But before a placed in the driver's way.  Both detection and recognition
maneuver can be initiated, the object or hazard must first be distances were recorded.  Average visual angles of detection for
detected and then recognized as a hazard.  The basic these various objects varied from the black dog at 1.8 minimum
considerations are not greatly different than those discussed under of arc to 4.9 min of arc for the tree limb.  Table 3.8 summarizes
driver responses to traffic control devices (Section 3.5), but some the detection findings of this study.
specific findings on roadway obstacles and hazards will also be
discussed. At the 95 percent level of confidence, it can be said from these

3.6.1  Obstacle and Hazard Detection

Picha (1992) conducted an object detection study in which
representative obstacles or objects that might be found on a

findings that an object subtending a little less than 5 minutes of
arc will be detected by all but 1 percent of drivers under daylight
conditions provided they are looking in the object's direction.
Since visual acuity declines by as much as two Snellen lines after
nightfall, to be dtected such targets with similar contrast would
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Table 3.8
Object Detection Visual Angles (Daytime)
(Minutes of Arc)

  Object Mean
Tolerance, 95th confidence

STD 95th 99th

  1" x 4" Board, 24" x 1"* 2.47 1.21 5.22 6.26

  Black toy dog, 6" x 6" 1.81 0.37 2.61 2.91

  White toy dog, 6" x 6" 2.13 0.87 4.10 4.84

  Tire tread, 8" x 18" 2.15 0.38 2.95 3.26

  Tree Branch, 18" x 12" 4.91 1.27 7.63 8.67

  Hay bale, 48" x 18" 4.50 1.28 7.22 8.26

  All Targets 3.10 0.57 4.30 4.76

  *frontal viewing plan dimensions

have to subtend  somewhere around 2.5 times the visual angle that 15 cm or less in height very seldom are causal factors in accidents
they would at detection under daylight conditions. (Kroemer et al. 1994).  

3.6.2 Obstacle and Hazard Recognition 
and Identification

Once the driver has detected an object in his or her path, the next
job is to: (1) decide if the object, whatever it is, is a potential
hazard, this is the recognition stage, followed by (2) the
identification stage, even closer, at which a driver actually can tell
what the object is.  If an object (assume it is stationary) is small
enough to pass under the vehicle and between the wheels, it
doesn't matter very much what it is.  So the first estimate is
primarily of size of the object.  If the decision is made that the
object is too large to pass under the vehicle, then  either evasive
action  or  a braking maneuver must be decided upon.  Objects

The majority of objects encountered on the highway that
constitute hazard and thus trigger avoidance maneuvers are larger
than 60 cm in height.  Where it may be of interest to establish a
visual angle for an object to be discriminated as a hazard or non-
hazard, such decisions require visual angles on the order of at
least the visual angles identified in Section 3.4.2 for letter or
symbol recognition, i.e., about 15 minutes of arc to take in 99
percent of the driver population.  It would be useful to reflect that
the full moon subtends 30 minutes of arc, to give the reader an
intuitive feel for what the minimum visual angle might be for
object recognition.  At a distance somewhat greater than this, the
driver decides if an object is sizable enough to constitute a hazard,
largely based upon roadway lane width size comparisons and the
size of the object with respect to other familiar roadside objects
(such as mailboxes, bridge rails).  Such judgements improve if
the object is identified. 
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3.7  Individual Differences in Driver Performance

In psychological circles, variability among people, especially that visual and cognitive changes affecting driver performance will
associated with variables such as gender, age, socio-economic be discussed in the following paragraphs.
levels, education, state of health, ethnicity, etc., goes by the name
"individual differences."  Only a few such variables are of interest
to traffic flow modeling.  These are the variables which directly
affect the path and velocity the driven vehicle follows in a given
time in the operational environment.  Other driver characteristics
which may be of interest to the reader may be found in the NHTSA than 20/50 corrected, owing to senile macular degeneration
Driver Performance Data book (1987, 1994). 

3.7.1  Gender

Kroemer, Kroemer, and Kroemer-Ebert (1994) summarize
relevant gender differences as minimal to none.  Fine finger
dexterity and color perception are areas in which women perform
better than men, but men have an advantage in speed.  Reaction
time tends to be slightly longer for women than for men the recent
popular book and PBS series, Brain Sex (Moir and Jessel 1991)
has some fascinating insights into why this might be so.  This
difference is statistically but not practically significant.  For the
purpose of traffic flow analysis, performance differences between
men and women may be ignored.

3.7.2  Age

Research on the older driver has been increasing at an exponential
rate, as was noted in the recent state-of-the-art summary by the
Transportation Research Board (TRB 1988).  Although a number
of aspects of human performance related to driving change with
the passage of years, such as response time, channel capacity and
processing time needed for decision making, movement ranges
and times, most of these are extremely variable, i.e., age is a poor
predictor of performance.  This was not so for visual perception.
Although there are exceptions, for the most part visual
performance becomes progressively poorer with age, a process
which accelerates somewhere in the fifth decade of life.  

Some of these changes are attributable to optical and
physiological conditions in the aging eye, while others relate to
changes in neural processing of the image formed on the retina.
There are other cognitive changes which are also central to
understanding performance differences as drivers age.  Both

CHANGES IN VISUAL PERCEPTION

Loss of Visual Acuity (static) - Fifteen to 25 percent of the
population 65 and older manifest visual acuities (Snellen) of less

(Marmor 1982).  Peripheral vision is relatively unaffected,
although a gradual narrowing of the visual field from 170 degrees
to 140 degrees or less is attributable to anatomical changes (eyes
become more sunk in the head).  Static visual acuity among
drivers is not highly associated with accident experience and is
probably not a very significant factor in discerning path guidance
devices and markings.

Light Losses and Scattering in Optic Train - There is some
evidence (Ordy et al. 1982) that the scotopic (night) vision system
ages faster than the photopic (daylight) system does.  In addition,
scatter and absorption by the stiff, yellowed, and possibly
cateracted crystalline lens of the eye accounts for much less light
hitting the degraded retina.  The pupil also becomes stiffer with
age, and dilates less for a given amount of light impingement
(which considering that the mechanism of pupillary size is in part
driven by the amount of light falling on the retina suggests actual
physical atrophy of the pupil--senile myosis).  There is also more
matter in suspension in the vitreous humor of the aged eye than
exists in the younger eye.  The upshot is that only 30 percent of
the light under daytime conditions that gets to the retina in a 20
year old gets to the retina of a 60 year old.  This becomes much
worse at night (as little as 1/16), and is exacerbated by the
scattering effect of the optic train.  Points of bright light are
surrounded by halos that effectively obscure less bright objects
in their near proximity.  Blackwell and Blackwell (1971)
estimated that, because of these changes, a given level of contrast
of an object has to be increased by a factor of anywhere from 1.17
to 2.51 for a 70 year old person to see it, as compared to a 30 year
old.

Glare Recovery - It is worth noting that a 55 year old person
requires more than 8 times the period of time to recover from
glare if dark adapted than a 16 year old does (Fox 1989).   An
older driver who does not use the strategy to look to the right and
shield his or her macular vision from oncoming headlamp glare
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is literally driving blind for many seconds after exposure.  As  lived in before becoming "older drivers," and they have driven
described above, scatter in the optic train makes discerning any
marking or traffic control device difficult to impossible.  The slow
re-adaptation to mesopic levels of lighting is well-documented.

Figure/Ground Discrimination - Perceptual style changes with
age, and many older drivers miss important cues, especially under
higher workloads (Fox 1989).  This means drivers may miss a
significant guideline or marker under unfamiliar driving
conditions, because they fail to discriminate the object from its
background, either during the day or at night.

CHANGES IN COGNITIVE PERFORMANCE

Information Filtering Mechanisms - Older drivers reportedly
experience problems in ignoring irrelevant information and
correctly identifying meaningful cues (McPherson et al. 1988).
Drivers may not be able to discriminate actual delineation or
signage from roadside advertising or faraway lights, for example.
Work zone traffic control devices and markings that are meant
to override the pre-work TCD's may be missed. 

Forced Pacing under Highway Conditions - In tasks that
require fine control, steadiness, and rapid decisions, forced paced
tasks under stressful conditions may disrupt the performance of
older drivers.  They attempt to compensate for this by slowing
down.  Older people drive better when they can control their own
pace (McPherson et al. 1988).  To the traffic flow theorist, a
sizable proportion of older drivers in a traffic stream may result
in vehicles that lag behind and obstruct the flow.

Central vs. Peripheral Processes - Older driver safety problems
relate to tasks that are heavily dependent on central processing.
These tasks involve responses to traffic or to roadway conditions
(emphasis added) (McPherson et al. 1988).

The Elderly Driver of the Past or Even of Today is Not the
Older Driver of the Future - The cohort of drivers who will be
65 in the year 2000, which is less than five years from now, were
born in the 1930's.  Unlike the subjects of gerontology studies
done just a few years ago featuring people who came of driving
age in the 1920's or even before, when far fewer people had cars
and traffic was sparse, the old of tomorrow started driving in the
1940's and after.  They are and will be more affluent, better
educated, in better health, resident in the same communities they

under modern conditions and the urban environment since their
teens.  Most of them have had classes in driver education and
defensive driving.  They will likely continue driving on a routine
basis until almost the end of their natural lives, which will be
happening at an ever advancing age.  The cognitive trends briefly
discussed above are very variable in incidence and in their actual
effect on driving performance.  The future older driver may well
exhibit much less decline in many of these performance areas in
which central processes are dominant.  

3.7.3  Driver Impairment

Drugs - Alcohol abuse in isolation and combination with other
drugs, legal or otherwise, has a generally deleterious effect on
performance (Hulbert 1988; Smiley 1974).  Performance
differences are in greater variability for any given driver, and in
generally lengthened reaction times and cognitive processing
times.  Paradoxically, some drug combinations can improve such
performance on certain individuals at certain times.  The only
drug incidence which is sufficiently large to merit consideration
in traffic flow theory is alcohol.  

Although incidence of alcohol involvement in accidents has been
researched for many years, and has been found to be substantial,
very little is known about incidence and levels of impairment in
the driving population, other than it must also be substantial.
Because these drivers are impaired, they are over-represented in
accidents.  Price (1988) cites estimates that 92 percent of the
adult population of the U.S. use alcohol, and perhaps 11 percent
of the total adult population (20-70 years of age) have alcohol
abuse problems.  Of the 11 percent who are problem drinkers,
seven percent are men, four percent women.  The incidence of
problem drinking drops with age, as might be expected.  Effects
on performance as a function of blood alcohol concentration
(BAC) are well-summarized in Price, but are too voluminous to
be reproduced here.  Price also summarizes effects of other drugs
such as cocaine, marijuana, etc.  Excellent sources for more
information on alcohol and driving can be found in a
Transportation Research Board Special Report (216).

Medical Conditions - Disabled people who drive represent a
small  but  growing portion  of  the  population  as  technology
advances in  the  field  of  adaptive  equipment.   Performance
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studies   and  insurance   claim   experience   over   the   years with illnesses or conditions for which driving is contraindicated,
(Koppa  et  al.  1980)  suggest  tha t such driver's  performance they are probably not enough of these to account for them in any
is indistinguishable   from   the   general   driving   population. traffic flow models.
Although there are doubtless a number of people on the highways

3.8  Continuous Driver Performance

The previous sections of this chapter have sketched the relevant nothing can be more commonplace than steering a motor vehicle.
discrete performance characteristics of the driver in a traffic Figure 3.5 illustrates the conceptual model first proposed by
stream.  Driving, however, is primarily a continuous dynamic
process of managing the present heading and thus the future path
of the vehicle through the steering function.  The first and second
derivatives of location on the roadway in time, velocity and
acceleration, are also continuous control processes through
modulated input using the accelerator (really the throttle) and the
brake controls.  

3.8.1  Steering Performance

The driver is tightly coupled into the steering subsystem of the
human-machine system we call the motor vehicle.  It was only
during the years of World War II that researchers and engineers
first began to model the human operator in a tracking situation
by means of differential equations, i.e., a transfer function.  The
first paper on record to explore the human transfer function was
by Tustin in 1944 (Garner 1967), and the subject was antiaircraft
gun control.  The human operator in such tracking situations can
be described in the same terms as if he or she is a linear feedback
control system, even though the human operator is noisy, non-
linear, and sometimes not even closed-loop.    

3.8.1.1  Human Transfer Function for Steering

Steering can be classified as a special case of the general pursuit
tracking model, in which the two inputs to the driver (which are
somehow combined to produce the correction signal) are (1) the
desired path as perceived by the driver from cues provided by the
roadway features, the streaming of the visual field, and higher
order information; and (2) the perceived present course of the
vehicle as inferred from relationship of the hood to roadway
features.  The exact form of either of these two inputs are still
subjects of investigation and some uncertainty, even though

Sheridan (1962).  The human operator looks at both inputs, R(t)
the desired input forcing function (the road and where it seems
to be taking the driver), and E(t) the system error function, the
difference between where the road is going and what C(t) the
vehicle seems to be doing.  The human operator can look ahead
(lead), the prediction function, and also can correct for perceived
errors in the path.  If the driver were trying to drive by viewing
the road through a hole in the floor of the car, then the prediction
function would be lost, which is usually the state of affairs for
servomechanisms.  The two human functions of prediction and
compensation are combined to make a control input to the vehicle
via the steering wheel which (for power steering) is also a servo
in its own right.  The control output from this human-steering
process combination is fed back (by the perception of the path
of the vehicle) to close the loop.  Mathematically, the setup in
Figure 3.5 is expressed as follows, if the operator is reasonably
linear:

Sheridan (1962) reported some parameters for this Laplace
transform transfer function of the first order.  K, the gain or
sensitivity term, varies (at least) between +35 db to -12 db.  Gain,
how much response the human will make to a given input, is the
parameter perhaps most easily varied, and tends to settle at some
point comfortably short of instability (a phase margin of 60
degrees or more).  The exponential term e  ranges from 0.12 to-ts

0.3 sec and is best interpreted as reaction time.  This delay is the
dominant limit to the human's ability to adapt to fast-changing
conditions.  The T factors are all time constants, which  however
may  not stay constant at all.  They must usually be empirically
derived for  a  given  control  situation.
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Figure 3.5
Pursuit Tracking Configuration (after Sheridan 1962).

Sheridan reported some experimental results which show TL

(lead) varying between 0 and 2, T  (lag) from 0.0005 to 25, andl

T (neuromuscular lag) from 0 to 0.67.  R, the remnant term, isN
usually introduced to make up for nonlinearities between input
and output.  Its value is whatever it takes to make output track
input in a predictable manner.  In various forms, and sometimes
with different and more parameters, Equation 3.10 expresses the Maneuver satory
basic approach to modeling the driver's steering behavior.
Novice drivers tend to behave primarily in the compensatory
tracking mode, in which they primarily attend to the difference,
say, between the center of the hood and the edge line of the
pavement, and attempt to keep that difference at some constant
visual angle.  As they become more expert, they move more to
pursuit tracking as described above.  There is also evidence that
there are "precognitive" open-loop steering commands to
particular situations such as swinging into an accustomed parking
place in a vehicle the driver is familiar with.  McRuer and Klein
(1975) classify maneuvers of interest to traffic flow modelers as
is shown in Table 3.9.

In Table 3.9, the entries under driver control mode denote the
order in which the three kinds of tracking transition from one to
the other as the maneuver transpires.  For example, for a turning
movement, the driver follows the dotted lines in an intersection
and aims for the appropriate lane in the crossroad in a pursuit
mode, but then makes adjustments for lane position during the
latter portion of the maneuver in a compensatory mode.  In an
emergency, the driver "jerks" the wheel in a precognitive (open-
loop) response, and then straightens out the vehicle in the new
lane using compensatory tracking.

Table 3.9
Maneuver Classification

Driver Control Mode

Compen- Pursuit Precognitive

Highway Lane
Regulation

1

Precision Course
Control

2 1

Turning; Ramp
Entry/Exit

2 1

Lane Change 2 1

Overtake/Pass 2 1

Evasive Lane
Change

2 1

3.8.1.2  Performance Characteristics Based on Models

The amplitude of the output from this transfer function has been
found to rapidly approach zero as the frequency of the forcing
function becomes greater than 0.5 Hz (Knight 1987).  The driver
makes smaller and smaller corrections as the highway or wind
gusts or other inputs start coming in more frequently than one
complete cycle every two seconds.   
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(3.14)

The time lag between input and output also increases with Then a stage of steady-state curve driving follows, with the driver
frequency.  Lags approach 100 msec at an input of 0.5 Hz and now making compensatory steering corrections.  The steering
increase almost twofold to 180 msec at frequencies of 2.4 Hz. wheel is then restored to straight-ahead in a period that covers the
The human tracking bandwidth is of the order of 1 to 2 Hz. endpoint of the curve.  Road curvature (perceived) and vehicle
Drivers can go to a precognitive rhythm for steering input to speed predetermines what the initial steering input will be, in the
better this performance, if the input is very predictable, e.g., a following relationship:
"slalom" course.  Basic lane maintenance under very restrictive
conditions (driver was instructed to keep the left wheels of a
vehicle on a painted line rather than just lane keep) was studied
very recently by Dulas (1994) as part of his investigation of
changes in driving performance associated with in-vehicle
displays and input tasks.  Speed was 57 km/h.  Dulas found
average deviations of 15 cm, with a standard deviation of 3.2 cm. where,
Using a tolerance estimation based on the nearly 1000
observations of deviation, the 95th percentile deviation would be
21 cm, the 99th would be 23 cm.  Thus drivers can be expected
to weave back and forth in a lane in straightaway driving in an
envelope of +/- 23 cm or 46 cm across.  Steering accuracy with
degrade and oscillation will be considerably more in curves. since
such driving is mixed mode, with rather large errors at the
beginning of the maneuver, with compensatory corrections toward
the end of the maneuver.  Godthelp (1986) described this process
as follows.  The driver starts the maneuver with a lead term before
the curve actually begins.  This precognitive control action
finishes shortly after the curve is entered.

C = roadway curvaturer

SR = steering ratio
F = stability factors

l = wheelbase
u = speed
g = steering wheel angle (radians)s

Godthelp found that the standard deviation of anticipatory steering
inputs is about 9 percent of steering wheel angle g .  Since sharpers
curves require more steering wheel input, inaccuracies will be
proportionately greater, and will also induce more oscillation from
side to side in the curve during the compensatory phase of the
maneuver. 

3.9  Braking Performance

The steering performance of the driver is integrated with either or more wheels locking and consequent loss of control at speeds
braking or accelerator positioning in primary control input. higher than 32 km/h, unless the vehicle is equipped with antiskid
Human performance aspects of braking as a continuous control brakes (ABS, or Antilock Brake System).  Such a model of
input will be discussed in this section.  After the perception- human braking performance is assumed in the time-hallowed
response time lag has elapsed, the actual process of applying the AASHTO braking distance formula (AASHTO 1990):
brakes to slow or stop the motor vehicle begins.

3.9.1  Open-Loop Braking Performance

The simplest type of braking performance is "jamming on the
brakes."  The driver exerts as much force as he or she can muster,
and thus approximates an instantaneous step input to the motor
vehicle.  Response of the vehicle to such an input is out of scope
for this chapter, but it can be remarked that it can result in one

where,
d = braking distance - meters
V = Initial speed - km/h
f = Coefficient of friction, tires to pavement

surface, approximately equal to deceleration
in g units
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Figure 3.6 shows what such a braking control input really looks Figure 3.7 shows a braking maneuver on a tangent with the same
like in terms of the deceleration profile.  This maneuver was on driver and vehicle, this time on a wet surface.  Note the
a dry tangent section at 64 km/h, under "unplanned" conditions characteristic "lockup" footprint, with a steady-state deceleration
(the driver does not know when or if the signal to brake will be after lockup of 0.4 g. 
given) with a full-size passenger  vehicle  not  equipped  with
ABS.  Note the typical steep rise in deceleration to a peak of over From the standpoint of modeling driver input to the vehicle, the
0.9 g, then steady state at approximately 0.7 g for a brakes locked open-loop approximation is a step input to maximum braking
stop.  The distance data is also on this plot: the braking distance effort, with the driver exhibiting a simple to complex PRT delay
on this run was 23 m feet.  Note also that the suspension bounce prior to the step.  A similar delay term would be introduced prior
produces a characteristic oscillation after the point at which the to release of the brake pedal, thus braking under stop-and-go
vehicle is completely stopped, just a little less than five seconds conditions would be a sawtooth. 
into the run.  

Figure 3.6
Typical Deceleration Profile for a Driver without 

Antiskid Braking System on a Dry Surface.
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Figure 3.7
Typical Deceleration Profile for a Driver without 

Antiskid Braking System on a Wet Surface. 

3.9.2  Closed-Loop Braking Performance

Recent research in which the writer has been involved provide
some controlled braking performance data of direct application
to performance modeling (Fambro et al. 1994).  "Steady state"
approximations or fits to these data show wide variations among
drivers, ranging from -0.46 g to -0.70 g.  

Table 3.10 provides some steady-state derivations from empirical
data collected by Fambro et al. (1994).  These were all responses
to an unexpected obstacle or object encountered on a closed
course, in the driver's own (but instrumented) car.

Table 3.11 provides the same derivations from data collected on
drivers in their own vehicle in which the braking maneuver was
anticipated; the driver knows that he or she would be braking, but
during the run were unsure when the signal (a red light inside the
car) would come.

The ratio of unexpected to expected closed-loop braking effort
was estimated by Fambro et al. to be about 1.22 under the same

Table 3.10
Percentile Estimates of Steady State Unexpected
Deceleration

Mean -0.55g

Standard Deviation 0.07

75th Percentile -0.43

90th -0.37

95th -0.32

99th -0.24

pavement conditions.  Pavement friction (short of ice) played
very little part in driver's setting of these effort levels. About
0.05 to 0.10 g difference between wet pavement and dry
pavement steady-state g was found. 
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Table 3.11 to come to rest.  Driver input to such a planned braking situation
Percentile Estimates of Steady-State Expected
Deceleration

Mean -0.45g

Standard Deviation 0.09 maximum "comfortable" braking deceleration is generally

75th Percentile -0.36

90th -0.31

95th -0.27

99th -0.21

3.9.3   Less-Than-Maximum
Braking Performance

The flow theorist may require an estimate of “comfortable”
braking performance, in which the driver makes a stop for
intersections or traffic control devices which are discerned
considerably in advance of the location at which the vehicle is

approximates a "ramp" (straight line increasing with time from
zero) function with the slope determined by the distance to the
desired stop location or steady-state speed in the case of a
platoon being overtaken.  The driver squeezes on pedal pressure
to the brakes until a desired deceleration is obtained.  The

accepted to be in the neighborhood of -0.30 g, or around 3
m/sec  (ITE 1992).  2

The AASHTO Green Book (AASHTO 1990) provides a graphic
for speed changes in vehicles, in response to approaching an
intersection.  When a linear computation of decelerations from
this graphic is made, these data suggest decelerations in the
neighborhood of -2 to -2.6 m/sec  or -0.20 to -0.27 g.  More2

recent research by Chang et al. (1985) found values in response
to traffic signals approaching -0.39 g, and Wortman and
Matthias (1983) observed a range of -0.22 to -0.43 g, with a
mean level of -0.36 g.  Hence controlled braking performance
that yields a g force of about -0.2 g would be a reasonable lower
level for a modeler, i.e., almost any driver could be expected to
change the velocity of a passenger car by at least that amount,
but a more average or "typical" level would be around -0.35 g.

3.10  Speed and Acceleration Performance

The third component to the primary control input of the driver at the moment, etc.  Drivers in heavy traffic use relative
to the vehicle is that of manual (as opposed to cruise control) perceived position with respect to other vehicles in the stream
control of vehicle velocity and changes in velocity by means of as a primary tracking cue (Triggs, 1988).  A recent study
the accelerator or other device to control engine RPM.  (Godthelp and Shumann 1994) found errors between speed

3.10.1  Steady-State Traffic Speed Control

The driver's primary task under steady-state traffic conditions
is to perform a tracking task with the speedometer as the display,
and the accelerator position as the control input.  Driver
response to the error between the present indicated speed and
the desired speed (the control signal) is to change the pedal
position in the direction opposite to the trend in the error
indication.  How much of such an error must be present depends
upon a host of factors: workload, relationship of desired speed
to posted speed, location and design of the speedometer, and The performance characteristics of the vehicle driver are the
personal considerations affecting the performance of the driver limiting constraints on how fast the driver can accelerate the

desired and maintained to vary from -0.3 to -0.8 m/sec in a lane
change maneuver; drivers tended to lose velocity when they
made such a maneuver. Under steady-stage conditions in a traffic
stream, the range of speed error might be estimated to be no
more than +/- 1.5 m/sec (Evans and Rothery 1973), basically
modeled by a sinusoid.  The growing prevalence of cruise
controls undoubtedly will reduce the amplitude of this speed
error pattern in a traffic stream by half or more. 

3.10.2  Acceleration Control
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(3.15)

vehicle.  The actual acceleration rates, particularly in a traffic 1992).  If the driver removes his or her foot from the accelerator
stream as opposed to a standing start, are typically much lower pedal (or equivalent control input) drag and rolling resistance
than the performance capabilities of the vehicle, particularly a produce deceleration at  about the same  level  as  "unhurried"
passenger car.  A nominal range for "comfortable" acceleration acceleration, approximately 1 m/sec  at speeds of 100 km/h or
at speeds of 48 km/h and above is 0.6 m/sec  to 0.7 m/sec higher.  In contrast to operation of a passenger car or light truck,2 2

(AASHTO 1990).  Another source places the nominal heavy truck driving is much more limited by the performance
acceleration rate drivers tend to use under "unhurried" capabilities of the vehicle.  The best source for such information
circumstances at approximately 65 percent of maximum
acceleration for the vehicle, somewhere around 1 m/sec  (ITE2

2

is the Traffic Engineering Handbook (ITE 1992).

3.11  Specific Maneuvers at the Guidance Level

The discussion above has briefly outlined most of the more
fundamental aspects of driver performance relevant to modeling
the individual driver-vehicle human-machine system in a traffic
stream.  A few additional topics will now be offered to further
refine this picture of the driver as an active controller at the
guidance level of operation in traffic.

3.11.1 Overtaking and Passing
in the Traffic Stream

3.11.1.1 Overtaking and Passing Vehicles
(4-Lane or 1-Way)

Drivers overtake and pass at accelerations in the sub-maximal
range in most situations.  Acceleration to pass another vehicle
(passenger cars) is about 1 m/sec  at highway speeds (ITE2

1992).  The same source provides an approximate equation for
acceleration on a grade:

where,
a = max acceleration rate on gradeGV

a = max acceleration rate on levelLV

G = gradient (5/8)
g = acceleration of gravity (9.8 m/sec )2

The maximum acceleration capabilities of passenger vehicles
range from almost 3 m/sec  from standing to less than 2 m/sec2 2

from 0 to highway speed.  

Acceleration is still less when the maneuver begins at higher
speeds, as low as 1 m/sec  on some small subcompacts.  In2

Equation 3.15, overtaking acceleration should be taken as 65
percent of maximum (ITE 1992).  Large trucks or tractor-trailer
combinations have maximum acceleration capabilities on a level
roadway of no more than 0.4 m/sec  at a standing start, and2

decrease to 0.1 m/sec  at speeds of 100 km/h.  Truck drivers2

"floorboard" in passing maneuvers under these circumstances,
and maximum vehicle performance is also typical driver input.

3.11.1.2  Overtaking and Passing Vehicles
   (Opposing Traffic)

The current AASHTO Policy on Geometric Design (AASHTO
1990) provides for an acceleration rate of 0.63 m/sec  for an2

initial 56 km/h, 0.64 m/sec  for 70 km/h, and 0.66 m/sec  for2 2

speeds of 100 km/h.  Based upon the above considerations, these
design guidelines appear very conservative, and the theorist may
wish to use the higher numbers in Section 3.11.1.1 in a
sensitivity analysis.     
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3.12  Gap Acceptance and Merging

3.12.1  Gap Acceptance

The driver entering or crossing a traffic stream must evaluate Table 3.12 provides very recent design data on these situations
the space between a potentially conflicting vehicle and himself from the Highway Capacity Manual (TRB 1985).  The range of
or herself and make a decision whether to cross or enter or not. gap times under the various scenarios presented in Table 3.12
The time between the arrival of successive vehicles at a point is from a minimum of 4 sec to 8.5 sec.  In a stream traveling at
is the time gap, and the critical time gap is the least amount of 50 km/h (14 m/sec) the gap distance thus ranges from 56 to 119
successive vehicle arrival time in which a driver will attempt a m; at 90 km/h (25 m/sec) the corresponding distances are 100
merging or crossing maneuver.  There are five different gap to 213 m.  
acceptance situations.  These are:

(1) Left turn across opposing traffic, no traffic control
(2) Left turn across opposing traffic, with traffic control

(permissive green)
(3) Left turn onto two-way facility from stop or yield

controlled intersection
(4) Crossing two-way facility from stop or yield controlled

intersection
(5) Turning right onto two-way facility from stop or yield

controlled intersection

3.12.2  Merging

In merging into traffic on an acceleration ramp on a freeway or
similar facility, the Situation (5) data for a four lane facility at
90 km/h with a one second allowance for the ramp provides a
baseline estimate of gap acceptance: 4.5 seconds.  Theoretically
as short a gap as three car lengths (14 meters) can be accepted
if vehicles are at or about the same speed, as they would be in
merging from one lane to another.  This is the minimum,
however, and at least twice that gap length should be used as a
nominal value for such lane merging maneuvers.

3.13  Stopping Sight Distance

The minimum sight distance on a roadway should be sufficient empirically derived estimates now available in Fambro et al.
to enable a vehicle traveling at or near the design speed to stop (1994) for both these parts of the SSD equation are expressed
before reaching a "stationary object" in its path, according to the in percentile levels of drivers who could be expected to (1)
AASHTO Policy on Geometric Design (AASHTO 1990).  It
goes on to say that sight distance should be at least that required
for a "below-average" driver or vehicle to stop in this distance.

Previous sections in this chapter on perception-response time
(Section 3.3.1) and braking performance (Section 3.2) provide
the raw materials for estimating stopping sight distance.  The
time-honored estimates used in the AASHTO Green Book
(AASHTO 1990) and therefore many other engineering
resources give a flat 2.5 sec for PRT, and then the linear
deceleration equation (Equation 3.13) as an additive model.
This approach generates standard tables that are used to estimate
stopping sight distance (SSD) as a function of coefficients of
friction and initial speed at inception of the maneuver.  The

respond and (2) brake in the respective distance or shorter.
Since PRT and braking distance that a driver may achieve in a
given vehicle are not highly correlated, i.e., drivers that may be
very fast to initiate braking may be very conservative in the
actual braking maneuver, or may be strong brakers.  PRT does
not predict braking performance, in other words.  

Very often, the engineer will use "worst case" considerations in
a design analysis situation.  What is the "reasonable" worst case
for achieving the AASHTO "below average" driver and vehicle?
Clearly, a 99th percentile PRT and a 99th percentile braking
distance gives an overly conservative 99.99 combined percentile
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Table 3.12
Critical Gap Values for Unsignalized Intersections

Maneuver Control

Average Speed of Traffic

50 km/h 90 km/h

Number of Traffic Lanes, Major Roadway

2 4 2 4

1 None 5.0 5.5 5.5 6.0

2 Permissive 5.0 5.5 5.5 6.0
Green1

3 Stop 6.5 7.0 8.0 8.5

3 Yield 6.0 6.5 7.0 7.5

4 Stop 6.0 6.5 7.5 8.0

4 Yield 5.5 6.0 6.5 7.0

5 Stop 5.5 5.5 6.5 6.52

5 Yield 5.0 5.0 5.5 5.52

During Green Interval1

 If curve radius >15 m or turn angle <60�� subtract 0.5 seconds.2

   If acceleration lane provided, subtract 1.0 seconds.

All times are given in seconds.

All Maneuvers: if population >250,000, subtract 0.5 seconds
if restricted sight distance, add 1.0 seconds
Maximum subtraction is 1.0 seconds
Maximum critical gap �� 8.5 seconds

level--everybody will have an SSD equal to or shorter than this
somewhat absurd combination.  The combination of 90th
percentile level of performance for each segment yields a
combined percentile estimate of 99 percent (i.e., 0.10 of each
distribution is outside the envelope, and their product is 0.01,
therefore  1.00 -  0.01 =  0.99).   A realistic worst case ( 99th
percentile) combination to give SSD would, from previous
sections of this chapter be:

PRT: 1.57 sec (Table 3.4)

Braking deceleration: -0.37 g (Section 3.10.2) would be:

For example, on a dry level roadway, using Equation 3.12, at a
velocity of 88 km/h, the SSD components would be:

PRT: 1.57 x 24.44 = 38.4 m

Braking Distance: 82.6 m

SSD: 38 + 83 = 121 m

For comparison, the standard AASHTO SSD for a dry level
roadway, using a nominal 0.65 for f, the coefficient of friction,
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PRT: 2.50 x 24.44 = 61.1 m These two estimates are comparable, but the first estimate has

Braking Distance: 47.3 m combinations of percentiles (for example, 75th percentile

SSD: 61 + 47 = 108 m percentile).  It is always possible, of course, to assume different

an empirical basis for it.  The analyst can assume other

performance  in  combination  yields  an  estimate  of  the  94th

levels of percentile representation for a hypothetical driver, e.g.,
50th percentile PRT with 95th percentile braking performance.

3.14  Intersection Sight Distance

The AASHTO Policy on Geometric Design (AASHTO 1990)
identifies four differences cases for intersection sight distance
considerations.  From the viewpoint of traffic flow theory, the
question may be posed, "How long is a driver going to linger at
an intersection before he or she begins to move?"  Only the first
three cases will be discussed here, since signalized intersections
(Case IV) have been discussed in Section 3.5.1.  

3.14.1  Case I: No Traffic Control 

The driver initiates either acceleration or deceleration based
upon his or her perceived gap in intersecting traffic flow.  The
principles given in Section 3.13 apply here.  PRT for this
situation should be the same as for conditions of no surprise
outlined in Section 3.3.1.  AASHTO (1990) gives an allowance
of three seconds for PRT, which appears to be very conservative
under these circumstances.

3.14.2 Case II: Yield Control for
Secondary Roadway

This is a complex situation.  McGee et al. (1983) could not find
reliable data to estimate the PRT.  A later, follow-up study by
Hostetter et al. (1986) considered the PRT to stretch from the
time that the YIELD sign first could be recognized as such to
the time that the driver either began a deceleration maneuver or
speeded up to clear the intersection in advance of cross traffic.
But decelerations often started 300 m or more from the
intersection, a clear response to the sign and not to the traffic
ahead.  PRTs were thus in the range of 20 to over 30 sec. with
much variability and reflect driving style rather than
psychophysical performance.

3.14.3 Case III: Stop Control on
Secondary Roadway

Hostetter et al. (1986) note that "for a large percentage of trials
at intersections with reasonable sign distance triangles, drivers
completed monitoring of the crossing roadway before coming
to a stop."  Their solution to this dilemma was to include three
measures of PRT.  They start at different points but terminate
with the initiation of an accelerator input.  One of the PRT's
starts with the vehicle at rest.  The second begins with the first
head movement at the stop.  The third begins with the last head
movement in the opposite direction of the intended turn or
toward the shorter sight distance leg (for a through maneuver).
None of the three takes into account any processing the driver
might be doing prior to the stop at the intersection.

Their findings were as follows (Table 3.13):

Table 3.13
PRTs at Intersections

4-way T-Intersection

Mean 85th Mean 85th

PRT 1 2.2 sec 2.7 2.8 3.1

PRT 2 1.8 2.6 1.9 2.8

PRT 3 1.6 2.5 1.8 2.5

Thus a conservative estimate of PRT, i.e., time lag at an
intersection before initiating a maneuver, would be somewhat
in excess of three seconds for most drivers.
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3.15  Other Driver Performance Characteristics

3.15.1  Speed Limit Changes 3.15.3  Real-Time Driver Information Input

Gstalter and Hoyos (1988) point out the well-known With the advent of Intelligent Transportation Systems (ITS),
phenomenon that drivers tend to adapt to sustained speed over driver performance changes associated with increased
a period of time, such that the perceived velocity (not looking information processing work load becomes a real possibility.
at the speedometer) lessens.  In one study cited by these authors, ITS may place message screens, collision avoidance displays
drivers drove 32 km at speeds of 112 km/h.  Subjects were then and much more  in  the vehicle of  the  future.    Preliminary
instructed to drop to 64 km/h.  The average speed error turned studies of the effects of using such technology in a traffic stream
out to be more than 20 percent higher than the requested speed.
A similar effect undoubtedly occurs when posted speed limits
change along a corridor.  In the studies cited, drivers were aware
of the "speed creep" and attempted (they said) to accommodate
for it.  When drivers go from a lower speed to a higher one, they
also adapt, such that the higher speed seems higher than in fact
it is, hence errors of 10 to 20 percent slower than commanded
speed occur.  It takes several minutes to re-adapt.  Hence speed
adjustments on a corridor should not be modeled by a simple
step function, but rather resemble an over damped first-order
response with a time constant of two minutes or more.

3.15.2  Distractors On/Near Roadway

One of the problems that militates against smooth traffic flow
on congested facilities is the "rubber neck" problem.  Drivers
passing by accident scenes, unusual businesses or activities on
the road side, construction or maintenance work, or other
occurrences irrelevant to the driving task tend to shift sufficient
attention to degrade their driving performance.  In Positive
Guidance terms (Lunenfeld and Alexander 1990) such a
situation on or near the roadway is a temporary violation of
expectancy.  How to model the driver response to such
distractions?  In the absence of specific driver performance data
on distractors, the individual driver response could be estimated
by injecting a sudden accelerator release with consequent
deceleration from speed discussed in Section 3.11.2.  This
response begins as the distraction comes within a cone of 30
degrees centered around the straight-ahead direction on a
tangent, and the outer delineation of the curve on a horizontal
curve.  A possible increase in the amplitude of lane excursions
could also occur, similar to the task-loaded condition in the
Dulas (1994) study discussed in Section 3.9.1.2.  

are just now appearing in the literature.  There is clearly much
more to come.  For a review of some of the human factors
implications of ITS, see Hancock and Pansuraman (1992) and
any recent publications by Peter Hancock of The University of
Minnesota.

Drivers as human beings have a very finite attentional resource
capacity, as summarized in Dulas (1994).  Resources can be
allocated to additional information processing tasks only at the
cost of decreasing the efficiency and accuracy of those tasks.
When the competing tasks use the same sensory  modality and
similar resources in the brain, increases in errors becomes
dramatic.  To the extent that driving is primarily a psychomotor
task at  the skill-based level of behavior, it is relatively immune
to higher-level information processing, if visual perception is
not a dominant factor.  

But as task complexity increases, say, under highly congested
urban freeway conditions, any additional task becomes very
disruptive of performance.  This is especially true of older
drivers.  Even the use of cellular telephones in traffic has been
found to be a potent disrupter of driving performance (McKnight
and McKnight 1993).  A study described by Dulas (1994) found
that drivers using a touch screen CRT at speeds of 64 km tended
to increase lane deviations such that the probability of lane
excursion was 0.15.  Early and very preliminary studies indicate
that close attention to established human engineering principles
for information display selection and design should result in real-
time information systems that do not adversely affect driver
performance.  
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CHAPTER 4 - Frequently used Symbols

� = Numerical coefficients
a    = Generalized sensitivity coefficient 

�,m
a (t) = Instantaneous acceleration of a followingf

vehicle at time t
a (t) = Instantaneous acceleration of a lead

�

vehicle at time t
� = Numerical coefficient 
C = Single lane capacity (vehicle/hour)
� = Rescaled time (in units of response time,

T) following vehicle
� = Short finite time period u (t) = Velocity profile of the lead vehicle of a
F = Amplitude factor
� = Numerical coefficient 
k = Traffic stream concentration in vehicles

per kilometer � = Frequency of a monochromatic speed
k = Jam concentrationj
k = Concentration at maximum flowm
k = Concentration where vehicle to vehiclef

interactions begin = Instantaneous speed of a lead vehicle at
k = Normalized concentration time tn
L = Effective vehicle length
L = Inverse Laplace transform-1

� = Proportionality factor
� = Sensitivity coefficient, i = 1,2,3,...i
ln(x) = Natural logarithm of x
q = Flow in vehicles per hour
q = Normalized flown
<S> = Average spacing rear bumper to rear

bumper = Instantaneous position of the following
S = Initial vehicle spacing vehicle at time ti
S = Final vehicle spacing = Instantaneous position of the ith vehicle atf
S = Vehicle spacing for stopped traffic time to
S(t) = Inter-vehicle spacing z(t) = Position in a moving coordinate system
�S = Inter-vehicle spacing change

= Average response time
T = Propagation time for a disturbanceo
t = Time

t = Collision timec
T = Reaction time
U = Speed of a lead vehicle 

�

U = Speed of a following vehiclef
U = Final vehicle speedf
U = Free mean speed, speed of traffic near zerof

concentration
U = Initial vehicle speedi
U = Relative speed between a lead andrel

�

platoon
V = Speed 
V = Final vehicle speedf

oscillation
= Instantaneous acceleration of a following

vehicle at time t

= Instantaneous speed of a following vehicle
at time t

= Instantaneous speed of a lead vehicle at
time t

= Instantaneous speed of a following vehicle
at time t

= Instantaneous position of a lead vehicle at
time t

< x > = Average of a variable x

� = Frequency factor   
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4.
CAR FOLLOWING MODELS

It has been estimated that mankind currently devotes over 10 roadways.  The speed-spacing relations that were obtained from
million man-years each year to driving the automobile, which on these studies can be represented by the following equation:
demand provides a mobility unequaled by any other mode of
transportation.  And yet, even with the increased interest in
traffic research, we understand relatively little of what is
involved in the "driving task".  Driving, apart from walking,
talking, and eating, is the most widely executed skill in the world
today and possibly the most challenging. where the numerical values for the coefficients, �, �, and � take

Cumming (1963) categorized the various subtasks that are are given below:
involved in the overall driving task and paralleled the driver's
role as an information processor  (see Chapter  3).  This chapter
focuses on one of these subtasks, the task of one vehicle
following another on a single lane of roadway (car following).
This particular driving subtask is of interest because it is
relatively simple compared to other driving tasks, has been
successfully described by mathematical models, and is an
important facet of driving.  Thus, understanding car following
contributes significantly to an understanding of traffic flow.  Car
following is a relatively simple task compared to the totality of
tasks required for vehicle control.  However, it is a task that is
commonly practiced on dual or multiple lane roadways when
passing becomes difficult or when traffic is restrained to a single
lane.  Car following is a task that has been of direct or indirect
interest since the early development of the automobile. 

One aspect of interest in car following is the average spacing, S,
that one vehicle would follow another at a given speed, V.  The
interest in such speed-spacing relations is related to the fact that
nearly all capacity estimates of a single lane of roadway were
based on the equation:

C = (1000) V/S (4.1) permeated safety organizations can be formed.  In general, the

where physical length of vehicles; the human-factor element of
C = Capacity of a single lane

(vehicles/hour)               
V = Speed (km/hour)
S = Average spacing rear bumper to rear

bumper in meters

The first Highway Capacity Manual (1950) lists 23
observational studies performed between 1924 and 1941 that
were directed at identifying an operative speed-spacing relation
so that capacity estimates could be established for single lanes of

on various values.  Physical interpretations of these coefficients

� = the effective vehicle length, L
� = the reaction time, T
� = the reciprocal of twice the maximum average

deceleration of a following vehicle

In this case, the additional term, � V , can provide sufficient2

spacing so that if a lead vehicle comes to a full stop
instantaneously, the following vehicle has sufficient spacing to
come to a complete stop without collision.  A typical value
empirically derived for � would be � 0.023 seconds /ft .  A less2

conservative interpretation for the non-linear term would be:

where a  and a   are the average maximum decelerations of theƒ �

following and lead vehicles, respectively.  These terms attempt
to allow for differences in braking performances between
vehicles whether real or perceived (Harris 1964).

For � = 0,  many of the so-called "good driving" rules that have

speed-spacing Equation 4.2 attempts to take into account the

perception, decision making, and execution times; and the net
physics of braking performances of the vehicles themselves.  It
has been shown that embedded in these models are theoretical
estimates of the speed at maximum flow, (�/�) ; maximum0.5

flow,  [� + 2(� �) ] ;  and the speed at which small changes in0.5 -1

traffic stream speed propagate back through a traffic stream,
(�/�)   (Rothery 1968). 0.5

The speed-spacing models noted above are applicable to cases
where each vehicle in  the traffic stream maintains the same or
nearly the same constant speed and each vehicle is attempting to
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maintain the same spacing (i.e., it describes a steady-state traffic 1958 by Herman and his associates at the General Motors
stream). Research Laboratories.  These research efforts were microscopic

Through the work of Reuschel (1950) and Pipes (1953), the which one vehicle followed another.  With such a description,
dynamical elements of a line of vehicles were introduced.  In the  macroscopic  behavior  of  single lane traffic flow can be
these works, the focus was on the dynamical behavior of a approximated.  Hence, car following models form a bridge
stream of vehicles as they accelerate or decelerate and each between individual "car following" behavior and the
driver-vehicle pair attempts to follow one another.  These efforts macroscopic world of a line of vehicles and their corresponding
were extended further through the efforts of Kometani and flow and stability properties.
Sasaki (1958) in Japan and in a series of publications starting in

approaches that focused on describing the detailed manner in

4.1  Model Development

Car following models of single lane traffic assume that there is vehicle characteristics or class of
a correlation between vehicles in a range of inter-vehicle characteristics and from the driver's  vast
spacing, from zero to about 100 to 125 meters and provides an repertoire of driving experience.  The
explicit form for this coupling.  The modeling assumes that each integration of current information and
driver in a following vehicle is an active and predictable control catalogued knowledge allows for the
element in the driver-vehicle-road system.  These tasks are development of driving strategies which
termed psychomotor skills or perceptual-motor skills because become "automatic" and from which evolve
they require a continued motor response to a  continuous series "driving skills".
of stimuli.

The relatively simple and common driving task of one vehicle commands with dexterity, smoothness, and
following another on a straight roadway where there is no coordination, constantly relying on feedback
passing (neglecting all other subsidiary tasks such as steering, from his own responses which are
routing, etc.) can be categorized in three specific subtasks: superimposed on the dynamics of the system's

� Perception: The driver collects relevant information
mainly through the visual channel.  This It is not clear how a driver carries out these functions in detail.
information arises primarily from the motion The millions of miles that are driven each year attest to the fact
of the lead vehicle and the driver's vehicle. that with little or no training, drivers successfully solve a
Some of the more obvious information multitude of complex driving tasks.  Many of the fundamental
elements, only part of which a driver is questions related to driving tasks lie in the area of 'human
sensitive to, are vehicle speeds, accelerations factors' and in the study of how human skill is related to
and higher derivatives (e.g., "jerk"), inter- information processes. 
vehicle spacing, relative speeds, rate of
closure, and functions of these variables (e.g., The process of comparing the inputs of a human operator to that
a "collision time"). operator's outputs using operational analysis was pioneered by

� Decision These attempts to determine mathematical expressions linking
Making: A driver interprets the information obtained by input and output have met with limited  success.  One of the

sampling and integrates it over time in order to primary difficulties is that the operator (in our case the driver)
provide adequate updating of  inputs. has no unique transfer function; the driver is a different
Interpreting the information is carried out 'mechanism' under different conditions.  While such an approach
within the framework of a knowledge of has met with limited success, through the course of studies like

� Control: The skilled driver can execute control

counterparts (lead vehicle and roadway).

the work of Tustin (1947), Ellson (1949), and Taylor (1949).
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these a number of useful concepts have been developed.  For where �  is a proportionality factor which equates the stimulus
example, reaction times were looked upon as characteristics of function to the response or control function.  The stimulus
individuals rather than functional characteristics of the task itself. function is composed of many factors:  speed, relative speed, 
In addition, by introducing the concept of "information", it has inter-vehicle spacing, accelerations, vehicle performance, driver
proved possible to parallel reaction time with the rate of coping thresholds, etc. 
with information.  

The early work by Tustin (1947) indicated maximum rates of the question is, which of these factors are the most significant from
order of 22-24 bits/second (sec).  Knowledge of human an explanatory viewpoint.  Can any of them be neglected and still
performance and the rates of handling information made it retain an approximate description of the situation being
possible to design the response characteristics of the machine for modeled? 
maximum compatibility of what really is an operator-machine
system.  What is generally assumed in car following modeling is that a

The very concept of treating an operator as a transfer function avoid collisions.
implies, partly, that the operator acts in some continuous
manner.  There is some evidence that this is not completely These two elements can be accomplished if the driver maintains
correct and that an operator acts in a discontinuous way.  There
is a period of time during which the operator having made a
"decision" to react is in an irreversible state and that the response
must follow at an appropriate time, which later is consistent with
the task. 

The concept of a human behavior being discontinuous in
carrying out tasks was first put forward by Uttley (1944)  and
has been strengthened by such studies as Telfor's (1931), who
demonstrated that sequential responses are correlated in such a
way that the response-time to a second stimulus is affected
significantly by the separation of the two stimuli.  Inertia, on the
other hand, both in the operator and the machine, creates an
appearance of smoothness and continuity to the control element.

In car following, inertia also provides direct feedback data to the
operator which is proportional to the acceleration of the vehicle.
Inertia also has a smoothing effect on the performance
requirements of the operator since the large masses and limited
output of drive-trains eliminate high frequency components of
the task.

Car following models have not explicitly attempted to take all of
these factors into account.  The approach that is used assumes
that a stimulus-response relationship exists that describes, at
least phenomenologically, the control process of a driver-vehicle
unit.  The stimulus-response equation expresses the concept that
a driver of a vehicle responds to a given stimulus according to a
relation:

 Response = � Stimulus (4.4)

Do all of these factors come into play part of the time?  The

driver attempts to:  (a) keep up with the vehicle ahead and (b)

a small average relative speed, U  over short time periods, sayrel

�t,  i.e.,

is kept small.  This ensures that ‘collision’ times:

are kept large, and inter-vehicle spacings would not appreciably
increase during the time period, �t.  The duration of the �t will
depend in part on alertness, ability to estimate quantities such as:
spacing, relative speed, and the level of information required for
the driver to assess the situation to a tolerable probability level
(e.g., the probability of detecting the relative movement of an
object, in this case a lead vehicle) and can be expressed as a
function of the perception time. 

Because of the role relative-speed plays in maintaining relatively
large collision times and in preventing a lead vehicle from
'drifting' away, it is assumed as a first approximation that the
argument of the stimulus function is the relative speed.

From the discussion above of driver characteristics, relative
speed should be integrated over time to reflect the recent time
history of events, i.e., the stimulus function should have the form
like that of Equation 4.5 and be generalized so that the stimulus
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(4.9)

(4.10)

(4.12)

at a given time, t, depends on the weighted sum of all earlier
values of the relative speed, i.e.,

where � (t)  is a weighing function which reflects a driver's
estimation, evaluation, and processing of earlier information
(Chandler et al. 1958).  The driver weighs past and present
information and responds at some future time.  The consequence
of using a number of specific weighing functions has been
examined (Lee 1966), and a spectral analysis approach has been
used to derive a weighing function directly from car following
data (Darroch and Rothery 1969). 

The general features of a weighting function are depicted  in
Figure 4.1.  What has happened a number of seconds (� 5 sec)
in the past is not highly relevant to a driver now, and for a short
time (� 0.5 sec) a driver cannot readily evaluate the information which corresponds to a simple constant response time, T, for a
available to him.  One approach is to assume that

 where

and

For this case, our stimulus function becomes

Stimulus(t) = U  (t - T) - U  (t - T) (4.11)
�     f

driver-vehicle unit.  In the general case of � (t), there is an
average response time, ,  given by

Figure 4.1
Schematic Diagram of Relative Speed Stimulus 

and a Weighting Function Versus Time (Darroch and Rothery 1972).
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ẍf(t�T) � �[x.
�
(t)�x. f(t)]

ẍ
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(4.15)

The main effect of such a response time or delay is that the driver
is responding at all times to a stimulus.   The driver is observing
the stimulus and determining a response that will be made some
time in the future.  By delaying the response, the driver obtains
"advanced" information.

For redundant stimuli there is little need to delay response, apart equation of car-following, and as such it is a grossly simplified
from the physical execution of the response.  Redundancy alone description of a complex phenomenon.  A generalization of car
can provide advance information and for such cases,  response following in a conventional control theory block diagram is
times are shorter. shown in Figure 4.1a.  In this same format the linear car-

The response function is taken as the acceleration of the 4.1b.  In this figure the driver is represented by a time delay and
following vehicle, because the driver has direct control of this a gain factor.  Undoubtedly, a more complete representation of
quantity through the 'accelerator' and brake pedals and also car following includes a set of equations that would model the
because a driver obtains direct feedback of this variable through dynamical properties of the vehicle and the roadway
inertial forces, i.e., characteristics.  It would also include the psychological and

Response  (t) = a (t) =  (t) (4.13)  f f

where x (t) denotes the longitudinal position along the roadwayi

of the ith vehicle at time t.  Combining Equations4.11 and 4.13
into Equation 4.4 the stimulus-response equation becomes
(Chandler et al. 1958):

or equivalently

Equation 4.15 is a first approximation to the stimulus-response

following model presented in Equation 4.15 is shown in Figure

physiological properties of drivers, as well as couplings between
vehicles, other than the forward nearest neighbors and other
driving tasks such as lateral control, the state of traffic, and
emergency conditions.  

For example, vehicle performance undoubtedly alters driver
behavior and plays an important role in real traffic where mixed
traffic represents a wide performance distribution, and where
appropriate responses cannot always be physically achieved by
a subset of vehicles comprising the traffic stream.  This is one
area where research would contribute substantially to a better
understanding of the growth, decay, and frequency of
disturbances in traffic streams (see, e.g., Harris 1964; Herman
and Rothery 1967; Lam and Rothery 1970).

Figure 4.1a
Block Diagram of Car-Following.
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Figure 4.1b
Block Diagram of the Linear Car-Following Model. 

4.2  Stability Analysis

In this section we address the stability of the linear car following
equation, Equation 4.15, with respect to disturbances.  Two
particular types of stabilities are examined: local stability and
asymptotic stability.

Local Stability is concerned with the response of a following
vehicle to a fluctuation in the motion of the vehicle directly in
front of it; i.e., it is concerned with the localized behavior
between pairs of vehicles.

Asymptotic Stability is concerned with the manner in which a
fluctuation in the motion of any vehicle, say the lead vehicle of
a platoon, is propagated through a line of vehicles. 

The analysis develops criteria which characterize the types of
possible motion allowed by the model.  For a given range of
model parameters, the analysis determines if the traffic stream
(as described by the model) is stable or not, (i.e., whether
disturbances are damped, bounded, or unbounded).  This is an
important determination with respect to understanding the
applicability of the modeling.  It identifies several characteristics
with respect to single lane traffic flow, safety, and model validity.
If the model is realistic, this range should be consistent with
measured values of these parameters in any applicable situation
where disturbances are known to be stable.  It should also be
consistent with the fact that following a vehicle is an extremely
common experience, and is generally stable.

4.2.1  Local Stability

In this analysis, the linear car following equation, (Equation
4.15) is assumed.  As before, the position of the lead vehicle and
the following vehicle at a time, t, are denoted by x  (t) and x  (t),

� f

respectively.  Rescaling time in units of the response time, T,
using the transformation, t = �T, Equation 4.15 simplifies to

where C = �T.  The conditions for the local behavior of the
following vehicle can be derived by solving Equation 4.16 by the
method of Laplace transforms (Herman et al. 1959).

The evaluation of the inverse Laplace transform for Equation
4.16 has been performed (Chow 1958; Kometani and Sasaki
1958).  For example, for the case where the lead and following
vehicles are initially moving with a constant speed, u, the
solution for the speed of the following vehicle was given by
Chow where � denotes the integral part of t/T.  The complex
form of Chow's solution makes it difficult to describe various
physical properties (Chow 1958).
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However, the general behavior of the following vehicle's motion particular, it demonstrates that in order for the following vehicle
can be characterized by considering a specific set of initial
conditions.  Without any loss in generality, initial conditions are
assumed so that both vehicles are moving with a constant speed,
u.  Then using a moving coordinate system z(t) for both the lead
and following vehicles the formal solution for the  acceleration
of the following vehicle is given more simply by:

(4.16a)

where L   denotes the inverse Laplace transform.  The character-1

of the above inverse Laplace transform is determined by the
singularities of the factor (C + se )   since Cs Z (s) is a regulars -1   2

�

function.  These singularities in the finite plane are the simple
poles of the roots of the equation

Similarly, solutions for vehicle speed and inter-vehicle spacings
can be obtained.  Again, the behavior of the inter-vehicle spacing
is dictated by the roots of Equation 4.17.  Even for small t, the
character of the solution depends on the pole with the largest real
part, say , s  = a  + ib , since all other poles have considerably0  0  0
larger negative real parts so that their contributions are heavily
damped.

Hence, the character of the inverse Laplace transform has the
form .  For different values of C, the pole with the
largest real part generates four  distinct cases:

a) if , and the
motion is non-oscillatory and exponentially
damped.

b) if e  < C < � / 2, then  a < 0, b   > 0 and the- 1
0    0

motion is oscillatory with exponential damping.

c) if C = � / 2 , then  a  = 0, b ,  > 0 and the motion is0   0
oscillatory with constant amplitude.

d) if C > � / 2  then  a  > 0, b   > 0 and the motion is0   0
oscillatory with increasing amplitude.

The above establishes criteria for the numerical values of C
which characterize the motion of the following vehicle.  In

not to over-compensate to a fluctuation, it is necessary that C
�1/e.  For values of C that are somewhat greater, oscillations
occur but are heavily damped and thus insignificant.    Damping
occurs  to  some  extent  as  long  as 
C < �/2.

These results concerning the oscillatory and non-oscillatory
behavior apply to the speed and acceleration of the following 
vehicle as well as to the inter-vehicle spacing.  Thus, e.g., if C �

e , the inter-vehicle spacing changes in a non-oscillatory manner-1

by the amount  �S , where

when the speeds of the vehicle pair changes from U to V.  An
important case is when the lead vehicle stops.  Then, the final
speed, V, is zero, and the total change in inter-vehicle spacing is
- U/ �.

In order for a following vehicle to avoid a 'collision' from
initiation of a fluctuation in a lead vehicle's speed the inter-
vehicle spacing should be at least as large as U/�.  On the other
hand, in the interests of traffic flow the inter-vehicle spacing
should be small by having � as large as possible and yet within
the stable limit.  Ideally, the best choice of  �  is (eT) .-1

The result expressed in Equation 4.18 follows directly from
Chow's solution (or more simply by elementary considerations).
Because the initial and final speeds for both vehicles are U and
V, respectively, we have

and from Equation 4.15 we have

or
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as given earlier in Equation 4.18. 

In order to illustrate the general theory of local stability, the
results of several calculations using a Berkeley Ease analog
computer and an IBM digital computer are described.  It is
interesting to note that in solving the linear car following
equation for two vehicles, estimates for the local stability
condition were first obtained using an analog computer for
different values of C which differentiate the various type of
motion. 

Figure 4.2 illustrates the solutions for C= e , where the lead-1

vehicle reduces its speed and then accelerates back to its original
speed.    Since  C  has  a  value  for  the  locally stable limit, the
acceleration and speed of the following vehicle, as well as the
inter-vehicle spacing between the two vehicles are non-
oscillatory. 

In Figure 4.3, the inter-vehicle spacing is shown for four other
values of C for the same fluctuation of the lead vehicle as shown
in Figure 4.2.  The values of C range over the cases of oscillatory

Note: Vehicle 2 follows Vehicle 1 (lead car) with a time lag T=1.5 sec and a value of C=e (�0.368), the limiting value for local-1

stability.  The initial velocity of each vehicle is u

Figure 4.2
Detailed Motion of Two Cars Showing the 

Effect of a Fluctuation in the Acceleration of the Lead Car (Herman et al. 1958).
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(4.21)

(4.22)

Note: Changes in car spacings from an original constant spacing between two cars for the noted values of C.  The a cceleration
profile of the lead car is the same as that shown in Figure 4.2.

Figure 4.3
Changes in Car Spacings from an 

Original Constant Spacing Between Two Cars (Herman et al. 1958).  

motion where the amplitude is damped, undamped, and of
increasing amplitude.

For the values of C = 0.5 and 0.80, the spacing is oscillatory and
heavily damped.  

For C = 1.57 ( ), Equation 4.21 is 

the spacing oscillates with constant amplitude.  For C = 1.60, the
motion is oscillatory with increasing amplitude.

Local Stability with Other Controls.  Qualitative arguments can
be given of a driver's lack of sensitivity to variation in relative
acceleration or higher derivatives of inter-vehicle spacings
because of the inability to make estimates of such quantities.  It
is of interest to determine whether a control centered around
such derivatives would be locally stable.   Consider the car
following equation of the form

for m= 0,1,2,3..., i.e., a control where the acceleration of the
following vehicle is proportional to the mth derivative of the

inter-vehicle spacing.  For m = 1, we obtain the linear car
following equation.

Using the identical analysis for any  m,  the equation whose roots
determine the character of the motion which results from

None of these roots lie on the negative real axis when m is even,
therefore, local stability is possible only for odd values of the
mth derivative of spacing: relative speed, the first derivative of
relative acceleration (m = 3), etc.  Note that this result indicates
that an acceleration response directly proportional to inter-
vehicle spacing stimulus is unstable.

4.2.2  Asymptotic Stability

In the previous analysis, the behavior of one vehicle following
another was considered.  Here a platoon of vehicles (except for
the platoon leader) follows the vehicle ahead according to the
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(4.25)

(4.26)

(4.27)

(4.28)

linear car following equation, Equation 4.15.  The criteria
necessary for asymptotic stability or instability were first
investigated by considering the Fourier components of the speed
fluctuation of a platoon leader (Chandler et al. 1958). 

The set of equations which attempts to describe a line of N i.e. if
identical car-driver units is:

where n =0,1,2,3,...N.

Any specific solution to these equations depends on the velocity
profile of the lead vehicle of the platoon, u (t), and the two0

parameters � and T.  For any inter-vehicle spacing, if a
disturbance grows in amplitude then a 'collision' would
eventually occur somewhere back in the line of vehicles.

While numerical solutions to Equation 4.23 can determine at
what point such an event would occur, the interest is to
determine criteria for the growth or decay of such a disturbance.
Since an arbitrary speed pattern can be expressed as a linear
combination of monochromatic components by Fourier analysis,
the specific profile of a platoon leader can be simply represented
by one component, i.e., by a constant together with a
monochromatic oscillation with frequency, �  and amplitude, fo
, i.e.,

and the speed profile of the nth vehicle by

Substitution of Equations 4.24 and 4.25 into Equation 4.23
yields:

where the amplitude factor F (�, �, �, n) is given by

which decreases with increasing n if 

The severest restriction on the parameter � arises from the low
frequency range, since in the limit as � � 0, �  must satisfy the
inequality

Accordingly, asymptotic stability is insured for all frequencies
where this inequality is satisfied.  

For those values of � within the physically realizable frequency
range of vehicular speed oscillations, the right hand side of the
inequality of 4.27 has a short range of values of 0.50 to about
0.52.  The asymptotic stability criteria divides the two parameter
domain into stable and unstable regions, as graphically
illustrated in Figure 4.4.

The criteria for local stability (namely that no local oscillations
occur when ��� e ) also insures asymptoticstability.  It has also-1

been shown (Chandler et al. 1958) that a speed fluctuation can
be approximated by:

Hence, the speed of propagation of the disturbance with respect
to the moving traffic stream in number of inter-vehicle
separations per second, n/t, is �.

That is, the time required for the disturbance to propagate
between pairs of vehicles is � , a constant, which is independent-1

of the response time T.  It is noted from the above equation that
in the propagation of a speed fluctuation the amplitude of the 
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Figure 4.4
Regions of Asymptotic Stability (Rothery 1968).

disturbance grows as the response time, T, approaches   1/(2�)
 until  instability is reached.   Thus, while
�T < 0.5 ensures stability, short reaction times increase the range
of the sensitivity coefficient, �, that  ensures stability.  From a
practical viewpoint, small reaction times also reduce relatively
large responses to a given stimulus, or in contrast, larger
response times require relatively large responses to a given
stimulus.  Acceleration fluctuations can be correspondingly
analyzed (Chandler et al. 1958).

4.2.1.1 Numerical Examples

In order to illustrate the general theory of asymptotic stability as
outlined above,  the results of a number of numerical calculations
are given.  Figure 4.5 graphically exhibits the inter-vehicle
spacings of successive pairs of vehicles versus time for a platoon
of vehicles.  Here, three values of C were used:  C = 0.368, 0.5,
and 0.75.  The initial fluctuation of the lead vehicle, n = 1, was
the same as that of the lead vehicle illustrated in Figure 4.2.  This
disturbance consists of a slowing down and then a speeding up
to the original speed so that the integral of acceleration over time
is zero.  The particularly stable, non-oscillatory response is
evident in the first case where C = 0.368 (�1/e), the local
stability limit.  As analyzed, a heavily damped oscillation occurs
in the second case where C = 0.5, the asymptotic limit.  Note that
the amplitude of the disturbance is damped as it propagates

through the line of vehicles even though this case is at the
asymptotic limit.  

This results from the fact that the disturbance is not a single
Fourier component with near zero frequency.  However,
instability is clearly exhibited in the third case of Figure 4.5
where C = 0.75 and in Figure 4.6 where C = 0.8.  In the case
shown in Figure 4.6, the trajectories of each vehicle in a platoon
of nine are graphed with respect to a coordinate system moving
with the initial platoon speed u.  Asymptotic instability of a
platoon of nine cars is illustrated for the linear car following
equation, Equation 4.23, where C = 0.80.  For t = 0, the vehicles
are all moving with a velocity u and are separated by a distance
of 12 meters.  The propagation of the disturbance, which can be
readily discerned, leads to "collision" between the 7th and 8th
cars at about t = 24 sec.    The lead vehicle at t = 0 decelerates
for 2 seconds at 4 km/h/sec, so that its speed changes from u to
u -8 km/h and then accelerates back to u.  This fluctuation in the
speed of the lead vehicle propagates through the platoon in an
unstable manner  with  the  inter-vehicle  spacing  between the
seventh and eighth vehicles being reduced to zero at about 24.0
sec after the initial phase of the disturbance is generated by the
lead vehicle of the platoon.

In Figure 4.7 the envelope of the minimum spacing that occurs
between successive pairs of vehicles is graphed versus time
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Note: Diagram uses Equation 4.23 for three values of C.  The fluctuation in acceleration of the lead car, car number 1, is the
same as that shown in Fig. 4.2  At t=0 the cars are separated by a spacing of 21 meters.

Figure 4.5
Inter-Vehicle Spacings of a Platoon of Vehicles 

Versus Time for the Linear Car Following Model (Herman et al. 1958).

 where the lead vehicle's speed varies sinusoidally with a point.  Here, the numerical solution yields a maximum and
frequency � =2�/10 radian/sec.  The envelope of minimum minimum amplitude that is constant to seven significant places.
inter-vehicle spacing versus vehicle position is shown for three
values of �.  The response time, T, equals 1 second.  It has been
shown that the frequency spectrum of relative speed and
acceleration in car following experiments have essentially all
their content below this frequency (Darroch and Rothery 1973).

The values for the parameter � were 0.530, 0.5345, and
0.550/sec.  The value for the time lag, T, was 1 sec in each case.
The frequency  used  is  that  value  of   �   which  just  satisfies
the  stability   equation,  Equation 4.27,   for  the  case  where
�= 0.5345/sec.  This latter figure serves to demonstrate not only
the stability criteria as a function of frequency but the accuracy
of the numerical results.  A comparison between that which is
predicted from the stability analysis and the numerical solution
for the constant amplitude case (�=0.5345/sec) serves as a check

4.2.1.2  Next-Nearest Vehicle Coupling

In the nearest neighbor vehicle following model, the motion of
each vehicle in a platoon is determined solely by the motion of
the vehicle directly in front.  The effect of including the motion
of the "next nearest neighbor" vehicle (i.e., the car which is two
vehicles ahead in addition to the vehicle directly in front) can be
ascertained.  An approximation to this type of control, is the
model
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Note:  Diagram illustrates the linear car following equation, eq. 4.23, where C=080.  

Figure 4.6
Asymptotic Instability of a Platoon of Nine Cars (Herman et al. 1958).

Figure 4.7
Envelope of Minimum Inter-Vehicle Spacing Versus Vehicle Position (Rothery 1968).
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which in the limit �� 0 is This equation states that the effect of adding next nearest
neighbor coupling to the control element is, to the first order, to
increase �  to (�  + � ).  This reduces the value that �  can have1 1 2        1
and still maintain asymptotic stability.

4.3  Steady-State Flow

This section discusses the properties of steady-state traffic flow also follows from elementary considerations by integration of
based on car following models of single-lane traffic flow.  In Equation 4.32 as shown in the previous section (Gazis et al.
particular, the associated speed-spacing or equivalent speed-
concentration relationships, as well as the flow-concentration
relationships for single lane traffic flow are developed. 

The Linear Case.  The equations of motion for a single lane of
traffic described by the linear car following model are given by:

where n = 1, 2, 3, ....

In order to interrelate one steady-state to another under this
control, assume (up to a time t=0) each vehicle is traveling at a 1) They link an initial steady-state to a second arbitrary
speed U  and that the inter-vehicle spacing is S .  Suppose thati        i

at t=0, the lead vehicle undergoes a speed change and increases
or decreases its speed so that its final speed after some time, t, is
U .  A specific numerical solution of this type of transition isf
exhibited in Figure 4.8.

In this example C = �T=0.47 so that the stream of traffic is
stable, and speed fluctuations are damped.  Any case where the
asymptotic stability criteria is satisfied assures that each
following vehicle comprising the traffic stream eventually
reaches a state traveling at the speed U  .  In the transition fromf

a speed U to a speed U  , the inter-vehicle spacing S changesi     f

from S to S  , wherei f

This result follows directly from the solution to the car following
equation, Equation 4.16a or from Chow (1958).   Equation 4.33

1959).  This result is not directly dependent on the time lag, T,
except that for this result to be valid the time lag, T, must allow
the equation of motion to form a stable stream of traffic.  Since
vehicle spacing is the inverse of traffic stream concentration, k,
the speed-concentration relation corresponding to Equation 4.33
is:

The significance of Equations 4.33 and 4.34 is that:

steady-state, and

2) They establish relationships between macroscopic traffic
stream variables involving a microscopic car following
parameter, � .

In this respect they can be used to test the applicability of the car
following model in describing the overall properties of single
lane traffic flow. For stopped traffic, U  = 0, and thei

corresponding spacing, S , is composed of vehicle length ando
"bumper-to-bumper" inter-vehicle spacing. The concentration
corresponding to a spacing, S , is denoted by k and is frequentlyo       j
referred to as the 'jam concentration'. 

Given k, then Equation 4.34 for an arbitrary traffic state definedj

by a speed, U, and a concentration, k, becomes
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(4.36)

Note:  A numerical solution to Equation 4.32 for the inter-vehicle spacings of an 11- vehicle platoon going from one steady-sta te to
another (�T = 0.47).  The lead vehicle's speed decreases by 7.5 meters per second.  

Figure 4.8
Inter-Vehicle Spacings of an Eleven Vehicle Platoon (Rothery 1968).

A comparison of this relationship was made (Gazis et al. 1959)
with a specific set of reported observations (Greenberg 1959) for
a case of single lane traffic flow (i.e., for the northbound traffic
flowing through the Lincoln Tunnel which passes under the The inability of Equation 4.36 to exhibit the required qualitative
Hudson River between the States of New York and New Jersey). relationship between flow and concentration (see Chapter 2) led
This comparison is reproduced in Figure 4.9 and leads to an to the modification of the linear car following equation (Gazis et
estimate of 0.60 sec  for �.  This estimate of � implies an upper al. 1959).-1

bound for T � 0.83 sec for an asymptotic stable traffic stream
using this facility.

While this fit and these values are not unreasonable, a
fundamental problem is identified with this form of an equation
for a speed-spacing relationship (Gazis et al. 1959).  Because it
is linear, this relationship does not lead to a reasonable
description of traffic flow.  This is illustrated in Figure 4.10
where the same data from the Lincoln Tunnel (in Figure 4.9) is
regraphed.  Here the graph is in the form of a normalized flow,

versus a normalized concentration together with the
corresponding theoretical steady-state result derived from
Equation 4.35, i.e.,

Non-Linear Models.  The linear car following model specifies
an acceleration response which is completely independent of
vehicle spacing (i.e., for a given relative velocity, response is the
same whether the vehicle following distance is small [e.g., of the
order of 5 or 10 meters] or if the spacing is relatively  large [i.e.,
of the order of hundreds of meters]).  Qualitatively, we would
expect that response to a given relative speed to increase with
smaller spacings.
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Note: The data are those of (Greenberg 1959) for the Lincoln Tunnel.  The curve represents a "least squares fit" of Equation 4.35
to the data.

Figure 4.9
Speed (miles/hour) Versus Vehicle Concentration (vehicles/mile).(Gazis et al. 1959).

Note: The curve corresponds to Equation 4.36 where the parameters are those from the "fit" shown in Figure 4.9.

 Figure 4.10
Normalized Flow Versus Normalized Concentration (Gazis et al. 1959).
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In order to attempt to take this effect into account, the linear therefore the flow-concentration relationship, does not describe
model is modified by supposing that the gain factor, �, is not a the state of the traffic stream. 
constant but is inversely proportional to vehicle spacing, i.e., 

where �  is a new parameter - assumed to be a constant and approaches to single-lane traffic flow because in these cases any1
which shall be referred to as the sensitivity coefficient.  Using small speed change, once the disturbance arrives, each vehicle
Equation 4.37 in Equation 4.32, our car following equation is: instantaneously relaxes to the new speed, at the 'proper' spacing.

for n = 1,2,3,... downstream from the vehicle initiating the speed change at a

As before, by assuming the parameters are such that the traffic
stream is stable, this equation can be integrated yielding the
steady-state relation for speed and concentration:

 and for steady-state flow and concentration:

 where again it is assumed that for u=0, the spacing is equal to
an effective vehicle length, L = k .  These relations for steady--1

state flow are identical to those obtained from considering the
traffic stream to be approximated by a continuous compressible
fluid (see Chapter 5) with the property that disturbances are
propagated with a constant speed with respect to the moving
medium (Greenberg 1959).   For our non-linear car following
equation, infinitesimal disturbances are propagated with speed
�  .  This is consistent with the earlier discussion regarding the1
speed of propagation of a disturbance per vehicle pair.

It can be shown that if the propagation time, � , is directly0

proportional to spacing (i.e.,  � � S), Equations 4.39 and 4.400

are obtained where the constant ratio S /�  is identified as the Assuming that this data is a representative sample of thiso
constant � . facility's traffic, the value of 27.7 km/h is an estimate not only ofl

These two approaches are not analogous.  In the fluid analogy but it is the 'characteristic speed' for the roadway under
case, the speed-spacing relationship is 'followed' at every instant consideration (i.e., the speed of the traffic stream which
before, during, and after a disturbance.  In the case of car maximizes the flow).  
following during the transition phase, the speed-spacing, and

A solution to any particular set of equations for the motion of a
traffic stream specifies departures from the steady-state.  This is
not the case for simple headway models or hydro-dynamical

This emphasizes the shortcoming of these alternate approaches.
They cannot take into account the behavioral and physical
aspects of disturbances.  In the case of car following models, the
initial phase of a disturbance arrives at the nth vehicle

time (n-1)T seconds after the onset of the fluctuation.  The time
it takes vehicles to reach the changed speed depends on the
parameter  �,  for the linear model, and � ,  for  the  non-linear1

model,  subject  to  the restriction  that �  > T or �  < S/T,-1
1

respectively.  

These restrictions assure that the signal speed can never precede
the initial phase speed of a disturbance.  For the linear case, the
restriction is more than satisfied for an asymptotic stable   traffic
 stream.  For small speed changes, it is also satisfied for the  non-
linear model  by assuming that the stability criteria results for the
linear case yields a bound for the stability in the non-linear case.
 Hence, the inequality  �� /S*<0.5   provides a sufficient stability
condition for the non-linear case, where S* is the minimum
spacing occurring during a transition from one steady-state to
another. 

Before discussing a more general form for the sensitivity
coefficient (i.e., Equation 4.37), the same reported data
(Greenberg 1959) plotted in Figures 4.9 and 4.10 are graphed in
Figures 4.11 and 4.12 together with the steady-state relations
(Equations 4.39 and 4.40 obtained from the non-linear model,
Equation 4.38).  The fit of the data to the steady-state relation via
the method of "least squares" is good and the resulting values for
�  and k  are 27.7 km/h and 142 veh/km, respectively.1  j

the sensitivity coefficient for the non-linear car following model
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Note:  The curve corresponds to a "least squares" fit of Equation 4.39 to the data (Greenberg 1959).

Figure 4.11
Speed Versus Vehicle Concentration (Gazis et al. 1959).  

Note: The curve corresponds to Equation 4.40 where parameters are those from the "fit" obtained in Figure 4.11.

Figure 4.12
Normalized Flow Versus Normalized Vehicle Concentration (Edie et al. 1963).  
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The corresponding vehicle concentration at maximum flow, i.e.,
when  u = �  , is  e  k .   This  predicts  a  roadway  capacity  of1    j

-l

� e k  of about �1400 veh/h for the Lincoln Tunnel.  A noted1  j
-l 

undesirable property of Equation 4.40 is that the tangent dq/dt
is infinite at k = 0, whereas a linear relation between flow and
concentration would more accurately describe traffic near zero
concentration.  This is not a serious defect in the model since car
following models are not applicable for low concentrations
where spacings are large and the coupling between vehicles are
weak.  However, this property of the model did suggest the
following alternative form (Edie 1961) for the gain factor,

This leads to the following expression for a car following model:

As before, this can be integrated giving the following steady-
state equations:

and

where U  is the "free mean speed", i.e., the speed of the trafficf

stream near zero concentration and k   is the concentration whenm
the flow is a maximum.  In this case the sensitivity coefficient, �2

can be identified as k .  The speed at optimal flow is e Um        f
-1        -1

which, as before, corresponds to the speed of propagation of a
disturbance with respect to the moving traffic stream.  This
model predicts a finite speed, U  , near zero concentration.  f

Ideally, this speed concentration relation should be translated to
the right in order to more completely take into account
observations that the speed of the traffic stream is independent
of vehicle concentration for low concentrations, .i.e.

and

where  k corresponds to a concentration where vehicle tof
vehicle interactions begin to take place so that the stream speed
begins to decrease with increasing concentration.  Assuming that
interactions take place at a spacing of about 120 m, k  wouldf
have a value of about 8 veh/km.  A "kink" of this kind was
introduced into a linear model for the speed concentration
relationship (Greenshields 1935). 

Greenshields' empirical model for a speed-concentration relation
is given by

where U    is a “free mean speed” and k  is the jam concentration.f         j

It is of interest to question what car following model would
correspond to the above steady-state equations as expressed by
Equation 4.46.  The particular model can be derived in the
following elementary way (Gazis et al. 1961).  Equation 4.46 is
rewritten as

Differentiating both sides with respect to time obtains

which after introduction of a time lag is for the (n+1) vehicle:
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The gain factor is:

The above procedure demonstrates an alternate technique at
arriving at stimulus response equations from relatively
elementary considerations.  This method was used to develop
early car following models (Reuschel 1950; Pipes 1951).  The
technique does pre-suppose that a speed-spacing relation reflects
detailed psycho-physical aspects of how one vehicle follows
another.  To summarize the car-following equation considered,
we have:

where the factor, �, is assumed to be given by the following:

� A constant, � = � ;0

� A term inversely proportional to the spacing, � = � /S;1
� A term proportional to the speed and inversely

proportional to the spacing squared, � = � U/S ; and2
2

� A term inversely proportional to the spacing squared, 
� = �  / S .3

 2

These models can be considered to be special cases of a more
general expression for the gain factor, namely:

where a  is a constant to be determined experimentally.  Model
�,m

specification is to be determined on the basis of the degree to
which it presents a consistent description of actual traffic
phenomena.  Equations 4.51 and 4.52 provide a relatively broad
framework in so far as steady-state phenomena is concerned
(Gazis et al. 1961). 

Using these equations and integrating over time we have

where, as before, U is the steady-state speed of the traffic stream,
S is the steady-state spacing, and a and b are appropriate

constants consistent with the physical restrictions and where
f (x), (p = m  or �), is given by p

for p � 1 and

for p = 1.  The integration constant b is related to the "free mean
speed" or the "jam concentration" depending on the specific
values of m and �.  For m > 1, �� 1, or m =1, � >1 

and

for  all  other  combinations of  m  and   �,  except  �  <  1  and 
m = 1.

For those cases where � < 1 and m = 1 it is not possible to satisfy
either the boundary condition at k = 0 or k and the integrationj

constant can be assigned arbitrarily, e.g., at k , the concentrationm
at maximum flow or more appropriately at some 'critical'
concentration near the boundary condition of a "free speed"
determined by the "kink" in speed-concentration data for the
particular facility being modeled.  The relationship between km

and k  is a characteristic of the particular functional or modelj
being used to describe traffic flow of the facility being studied
and not the physical phenomenon involved.  For example, for the
two models given by  � = 1, m = 0, and  � = 2, m = 0, maximum
flow occurs at a concentration of e  k  and  k  / 2 , respectively.-l

j   j
Such a result is not physically unrealistic.  Physically the
question is whether or not the measured value of  q  occurs atmax 

or near the numerical value of these terms, i.e., k  = e k  or k /2m j j
-1

for the two examples cited.  

Using Equations 4.53, 4.54, 4.55, 4.56, 4.57, and the definition
of steady-state flow, we can obtain the relationships between
speed, concentration, and flow.  Several examples have been
given above.   Figures 4.13 and 4.14 contain these and additional
examples of flow versus concentration relations for various
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Note: Normalized flow versus normalized concentration corresponding to the steady-state solution of Equations 4.51 and 4.52
for m=1 and various values of  �.

Figure 4.13
Normalized Flow Versus Normalized Concentration (Gazis et al. 1963). 

Figure 4.14
Normalized Flow versus Normalized Concentration Corresponding to the Steady-State 

Solution of Equations 4.51 and 4.52 for m=1 and Various Values of �� (Gazis 1963).
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values of � and m.  These flow curves are normalized by letting
q  = q/q , and k  = k/k .n max n j

It can be seen from these figures that most of the models shown
here reflect the general type of flow diagram required to agree
with the qualitative descriptions of steady-state flow.  The
spectrum of models provided are capable of fitting data like that
shown in Figure 4.9 so long as a suitable choice of the
parameters is made. spacing, i.e., m= 0,  � =1 (Herman et al. 1959).  A generalized

equation for steady-state flow (Drew 1965) and subsequently
The generalized expression for car following models, Equations tested on the Gulf Freeway in Houston, Texas led to a model
4.51 and 4.52, has also been examined for non-integral values
for m and � (May and Keller 1967).  Fittingdata obtained on the
Eisenhower Expressway in Chicago they proposed a model with As noted earlier, consideration of a "free-speed" near low
m = 0.8 and � = 2.8.  Various values for m and � can be identified
in the early work on steady-state flow and car following . model   m = 1,  � = 2   (Edie 1961).    Yet another model, m = 1,

The case m = 0, � = 0 equates to the "simple" linear car following
model.  The case m = 0, � = 2 can be identified with a model
developed from photographic observations of traffic flow made
in 1934 (Greenshields 1935). This model can also be developed

considering the perceptual factors that are related to the car
following task (Pipes and Wojcik 1968; Fox and Lehman 1967;
Michaels 1963).  As was discussed earlier, the case for m = 0,
� = 1  generates a steady-state relation that can be developed bya
fluid flow analogy  to  traffic  (Greenberg  1959)  and  led  to the
reexamination of car following experiments and the hypothesis
that drivers do not have a constant gain factor to a given relative-
speed stimulus but  rather that it varies inversely with the vehicle

where m = 0 and � = 3/2. 

concentrations led to the proposal and subsequent testing of the

� = 3 resulted from analysis of data obtained on the Eisenhower
Expressway in Chicago (Drake et al. 1967).  Further analysis of
this model together with observations suggest that the sensitivity
coefficient may take on different values above a lane flow of
about 1,800 vehicles/hr (May and Keller 1967).

4.4  Experiments And Observations

This section is devoted to the presentation and discussion of derived from car following models for steady-state flow are
experiments that have been carried out in an effort to ascertain examined. 
whether car following models approximate single lane traffic
characteristics.  These experiments are organized into two Finally, the degree to which any specific model of the type
distinct categories.  examined in the previous section is capable of representing a

The first of these is concerned with comparisons between car macroscopic viewpoints is examined. 
following models and detailed measurements of the variables
involved in the driving situation where one vehicle follows
another on an empty roadway.  These comparisons lead to a
quantitative measure of car following model estimates for the
specific parameters involved for the traffic facility and vehicle
type used.

The second category of experiments are those concerned with
the measurement of macroscopic flow characteristics: the study
of speed, concentration, flow and their inter-relationships for
vehicle platoons and traffic environments where traffic is
channeled in a single lane.  In particular, the degree to which this
type of data fits the analytical relationships that have been

consistent framework from both the microscopic and

4.4.1  Car Following Experiments

The first experiments which attempted to make a preliminary
evaluation of  the linear car following model were performed a
number of decades ago (Chandler et al. 1958; Kometani and
Sasaki 1958).  In subsequent years a number of different tests
with varying objectives were performed using two vehicles,
three vehicles, and buses.  Most of these tests were conducted on
test track facilities and in vehicular tunnels. 
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(4.58)

In these experiments, inter-vehicle spacing, relative speed, speed
of the following vehicle, and acceleration of the following
vehicles were recorded simultaneously together with a clock
signal to assure synchronization of each variable with every
other.

These car following experiments are divided into six specific
categories as follows:

1) Preliminary Test Track Experiments.  The first
experiments in car following were performed by (Chandler
et al. 1958) and were carried out in order to obtain
estimates of the parameters in the linear car following
model and to obtain a preliminary evaluation of this model.
Eight male drivers participated in the study which was
conducted on a one-mile test track facility.    

2) Vehicular Tunnel Experiments.  To further establish the even though the relative speed has been reduced to zero or
validity of car following models and to establish estimates, near zero.  This situation was observed in several cases in
the parameters involved in real operating environments tests carried out in the vehicular tunnels - particularly
where the traffic flow characteristics were well known, a when vehicles were coming to a stop.  Equation 4.58
series of experiments were carried out in the Lincoln, above allows for a non-zero acceleration when the relative
Holland, and Queens Mid-Town Tunnels of New York speed is zero.  A value of � near one would indicate an
City.  Ten different drivers were used in collecting 30 test attempt to nearly match the acceleration of the lead driver
runs. for such cases.  This does not imply that drivers are good

3) Bus Following Experiments.  A series of experiments
were performed to determine whether the dynamical
characteristics of a traffic stream changes when it is
composed of vehicles whose performance measures are
significantly different than those of an automobile.  They
were also performed to determine the validity and measure
parameters of car following models when applied to heavy
vehicles.  Using a 4 kilometer test track facility and 53-
passenger city buses, 22 drivers were studied. b)  Experiments of Forbes et al.  Several experiments

4) Three Car Experiments.  A series of experiments were
performed to determine the effect on driver behavior when
there is an opportunity for next-nearest following and of
following the vehicle directly ahead.  The degree to which
a driver uses the information that might be obtained from
a vehicle two ahead was also examined.  The relative
spacings and the relative speeds between the first and third
vehicles and the second and third vehicles together with
the speed and acceleration of the third vehicle were
recorded.

5) Miscellaneous Experiments.  Several additional car
following experiments have been performed and reported
on as follows:

a)  Kometani and Sasaki Experiments.  Kometani and
Sasaki conducted and reported on a series of experiments
that were performed to evaluate the effect of an additional
term in the linear car following equation.  This term is
related to the acceleration of the lead vehicle.  In
particular, they investigated a model rewritten here in the
following form:

This equation attempts to take into account a particular
driving phenomenon,  where the driver in a particular state
realizes that he should maintain a non-zero acceleration

estimators of relative acceleration.  The conjecture here is
that by pursuing the task where the lead driver is
undergoing a constant or near constant acceleration
maneuver, the driver becomes aware of this qualitatively
after nullifying out relative speed - and thereby shifts the
frame of reference.  Such cases have been incorporated
into models simulating the behavior of bottlenecks in
tunnel traffic (Helly 1959).

using  three  vehicle  platoons  were reported by Forbes 
et al. (1957).  Here a lead vehicle was driven by one of the
experimenters while the second and third vehicles were
driven by subjects.   At predetermined locations along the
roadway relatively severe acceleration maneuvers were
executed by the lead vehicle.  Photographic equipment
recorded these events with respect to this moving
reference together with speed and time.  From these
recordings speeds and spacings were calculated as a
function of time.  These investigators did not fit this data
to car following models.  However, a partial set of this data
was fitted to vehicle following models by another
investigator (Helly 1959).  This latter set consisted of six
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tests in all, four in the Lincoln Tunnel and two on an for which the correlation coefficient is a maximum and typically
open roadway. falls in the range of 0.85 to 0.95.

c)  Ohio State Experiments.  Two different sets of
experiments have been conducted at Ohio State
University.  In the first set a series of subjects have been given for �, their product; C = �T, the boundary value for
studied using a car following simulator (Todosiev 1963).
An integral part of the simulator is an analog computer
which could program the lead vehicle for many different
driving tasks.  The computer could also simulate the
performance characteristics of different following vehicles.
These experiments were directed toward understanding the
manner in which the following vehicle behaves when the
lead vehicle moves with constant speed and the
measurement of driver thresholds for changes in spacing,
relative speed, and acceleration.  The second set of
experiments were conducted on a level two-lane state
highway operating at low traffic concentrations (Hankin
and Rockwell 1967).  In these experiments the purpose
was "to develop an empirically based model of car
following which would predict a following car's
acceleration and change in acceleration as a function of
observed dynamic relationships with the lead car."  As in
the earlier car following experiments, spacing and relative
speed were recorded as well as speed and acceleration of
the following vehicle.

d)  Studies by Constantine and Young.  These studies
were carried out using motorists in England and a
photographic system to record the data (Constantine and
Young 1967).  The experiments are interesting from the
vantage point that they also incorporated a second
photographic system mounted in the following vehicle and
directed to the rear so that two sets of car following data
could be obtained simultaneously.  The latter set collected
information on an unsuspecting motorist.  Although
accuracy is not sufficient, such a system holds promise.

4.4.1.1  Analysis of Car Following Experiments

The analysis of recorded information from a car following
experiment is generally made by reducing the data to numerical
values at equal time intervals.  Then, a correlation analysis is
carried out using the linear car following model to obtain
estimates of the two parameters, � and T.  With the data in
discrete form, the time lag ,T, also takes on discrete values.  The
time lag or response time associated with a given driver is one

The results from the preliminary experiments (Chandler et al.
1958) are summarized in Table 4.1 where the estimates are

asymptotic stability; average spacing, < S >; and average speed,
< U >.  The average value of the gain factor is 0.368 sec .  The-1

average value of �T is close to 0.5, the asymptotic stability
boundary limit. 

Table 4.1 Results from Car-Following Experiment  

Driver �� <U> <S> ��T

1 0.74 sec 19.8 36 1.04-1

m/sec m

2 0.44 16 36.7 0.44

3 0.34 20.5 38.1 1.52

4 0.32 22.2 34.8 0.48

5 0.38 16.8 26.7 0.65

6 0.17 18.1 61.1 0.19

7 0.32 18.1 55.7 0.72

8 0.23 18.7 43.1 0.47

Using the values for � and the average spacing <S > obtained for
each subject a value of 12.1 m/sec (44.1 km/h) is obtained for an
estimate of the constant a  (Herman and Potts 1959).  This1, 0
latter estimate compares the value � for each driver with that
driver's average spacing, <S > , since each driver is in somewhat
different driving state.  This is illustrated in Figure 4.15.  This
approach attempts to take into account the  differences in the
estimates for the gain factor � or a , obtained for different0,0
drivers by attributing these differences to the differences in their
respective average spacing.  An alternate and more direct
approach carries out the correlation analysis for this model using
an equation which is the discrete form of Equation 4.38 to obtain
a direct estimate of the dependence of the gain factor on spacing,
S(t).
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Figure 4.15
Sensitivity Coefficient Versus the Reciprocal of the Average Vehicle Spacing (Gazis et al. 1959).

Vehicular Tunnel Experiments.  Vehicular tunnels usually have
roadbeds that are limited to two lanes, one per direction.
Accordingly, they consist of single-lane traffic where passing is
prohibited.  In order to investigate the reasonableness of the non-
linear model a series of tunnel experiments were conducted.
Thirty test runs in all were conducted: sixteen in the Lincoln estimate of a ,  and equals 29.21 km/h.  Figure 4.18 graphs the
Tunnel, ten in the Holland Tunnel and four in the Queens Mid- gain factor, �, versus the reciprocal of the average spacing for
Town Tunnel.  Initially, values of the parameters for the linear the Lincoln Tunnel tests.  The straight line is a "least-squares" fit
model were obtained, i.e., � = a and T.  These results are0,0

shown in Figure 4.16 where the gain factor, �= a  versus the0,0

time lag, T, for all of the test runs carried out in the vehicular
tunnels.  The solid curve divides the domain of this two
parameter field into asymptotically stable and unstable regions.

It is of interest to note that in Figure 4.16 that many of the drivers
fall into the unstable region and that there are drivers who have
relatively large gain factors and time lags.  Drivers with
relatively slow responses tend to compensatingly have fast
movement times and tend to apply larger brake pedal forces
resulting in larger decelerations.  

Such drivers have been identified, statistically, as being involved and 14) the results tend to support the spacing dependent model.
more frequently in "struck-from-behind accidents" (Babarik This time-dependent analysis has also been performed for seven
1968; Brill 1972).  Figures 4.17 and 4.18 graph the gain factor additional  functions  for  the  gain  factor  for the same fourteen

versus the reciprocal of the average vehicle spacing for the tests
conducted in the Lincoln and Holland tunnels, respectively. 
Figure 4.17, the gain factor, �, versus the reciprocal of the
average spacing for the Holland Tunnel tests.  The straight line
is a "least-squares" fit through the origin.  The slope, which is an

1 0

through  the  origin.  These results yield characteristic speeds,
a  , which are within ± 3km/h for these two similar facilities.1,0

Yet these small numeric differences for the parameter al,0
properly reflect known differences in the macroscopic traffic
flow characteristics of these facilities. 

The analysis was also performed using these test data and the
non-linear reciprocal spacing model.  The results are not
strikingly different (Rothery 1968).  Spacing does not change
significantly within any one test run to provide a sensitive
measure of the dependency of the gain factor on inter-vehicular
spacing for any given driver (See Table 4.2).  Where the
variation in spacings were relatively large (e.g., runs 3, 11, 13,
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Table 4.2
Comparison of the Maximum Correlations obtained for the Linear and Reciprocal Spacing Models for the Fourteen
Lincoln Tunnel Test Runs

Number r r <S> (m) ��S (m) Number r r <S> (m) ��S (m)0,0 l,0

1 0.686 0.459 13.4 4.2 8 0.865 0.881 19.9 3.4

2 0.878 0.843 15.5 3.9 9 0.728 0.734 7.6 1.8

3 0.77 0.778 20.6 5.9 10 0.898 0.898 10.7 2.3

4 0.793 0.748 10.6 2.9 11 0.89 0.966 26.2 6.2

5 0.831 0.862 12.3 3.9 12 0.846 0.835 18.5 1.3

6 0.72 0.709 13.5 2.1 13 0.909 0.928 18.7 8.8

7 0.64 0.678 5.5 3.2 14 0.761 0.79 46.1 17.6

0,0 l,0

Figure 4.16
Gain Factor, ��, Versus the Time Lag, T, for All of the Test Runs (Rothery 1968).
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Note:  The straight line is a "least-squares" fit through the origin.  The slope, which is an estimate of a , equals 29.21 km/h.1,0

Figure 4.17
Gain Factor, ��, Versus the Reciprocal of the 

Average Spacing for Holland Tunnel Tests (Herman and Potts 1959).

Note:  The straight line is a "least-squares" fit through the origin.  The slope, is an estimate of a , equals 32.68 km/h.1,0

Figure 4.18
Gain Factor, �� ,Versus the Reciprocal of the 

Average Spacing for Lincoln Tunnel Tests (Herman and Potts 1959).
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little difference from one model to the other.  There are definite of the cases when that factor is introduced and this model (�=1;
trends however.  If one graphs the correlation coefficient for a
given �, say �=1 versus m; 13 of the cases indicate the best fits the analysis are summarized in Figure 4.19 where the sensitivity
are with m = 0 or 1.  Three models tend to indicate marginal coefficient a versus the time lag, T, for the bus following
superiority; they are those given by (�=2; m=1), (�=1; m=0) and
(�=2; m=0).

Bus Following Experiments.  For each of the 22 drivers tested,
the time dependent correlation analysis was carried out for the
linear model (�=0; m=0), the reciprocal spacing model (�=1;
m=0), and the speed, reciprocal-spacing-squared model (�=2;
m=1).  Results similar to the Tunnel analysis were obtained: high
correlations for almost all drivers and for each of the three
models examined (Rothery et al. 1964).

The correlation analysis provided evidence for the reciprocal
spacing effect with the correlation improved in about 75 percent

m=0) provided the best fit to the data.  The principle results of

0,0
experiments are shown.  All of the data points obtained in these
results fall in the asymptotically stable 

region, whereas in the previous automobile experiments
approximately half of the points fell into this region.  In Figure
4.19, the sensitivity coefficient, a , versus the time lag, T, for0,0
the bus following experiments are shown.  Some drivers are
represented by more than one test.  The circles are test runs by
drivers who also participated in the ten bus platoon experiments.
The solid curve divides the graph into regions of asymptotic
stability and instability.  The dashed lines are boundaries for the
regions of local stability and instability.

Table 4.3
Maximum Correlation Comparison for Nine Models, a , for Fourteen Lincoln Tunnel Test Runs.

��,m

Driver r(0,0) r(1,-1) r(1,0) r(1,1) r(1,2) r(2,-1) r(2,0) r(2,1) r(2,2)

1 0.686 0.408 0.459 0.693 0.721 0.310 0.693 0.584 0.690

2 0.878 0.770 0.843 0.847 0.746 0.719 0.847 0.827 0.766

3 0.770 0.757 0.778 0.786 0.784 0.726 0.786 0.784 0.797

4 0.793 0.730 0.748 0.803 0.801 0.685 0.801 0.786 0.808

5 0.831 0.826 0.862 0.727 0.577 0.805 0.728 0.784 0.624

6 0.720 0.665 0.709 0.721 0.709 0.660 0.720 0.713 0.712

7 0.640 0.470 0.678 0.742 0.691 0.455 0.745 0.774 0.718

8 0.865 0.845 0.881 0.899 0.862 0.818 0.890 0.903 0.907

9 0.728 0.642 0.734 0.773 0.752 0.641 0.773 0.769 0.759

10 0.898 0.890 0.898 0.893 0.866 0.881 0.892 0.778 0.865

11 0.890 0.952 0.966 0.921 0.854 0.883 0.921 0.971 0.940

12 0.846 0.823 0.835 0.835 0.823 0.793 0.835 0.821 0.821

13 0.909 0.906 0.923 0.935 0.927 0.860 0.935 0.928 0.936

14 0.761 0.790 0.790 0.771 0.731 0.737 0.772 0.783 0.775
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Note: For bus following experiments - Some drivers are represented by more than one test.  The circles are test runs by drivers
who also participated in the ten bus platoons experiments.  The solid curve divides the graph into regions of asymptotic stability
and instability.  The dashed lines are boundaries for the regions of local stability and instability.

Figure 4.19
Sensitivity Coefficient, a ,Versus the Time Lag, T (Rothery et al. 1964).0,0 

The results of a limited amount of data taken in the rain suggest
that drivers operate even more stably when confronted with wet
road conditions.  These results suggest that buses form a highly
stable stream of traffic. 

The time-independent analysis for the reciprocal-spacing model
and the speed-reciprocal-spacing-squared model uses the time
dependent sensitivity coefficient result, a  , the average speed,0,0
<U>, and the average spacing, <S>, for eachof the car In Figure 4.21, the sensitivity coefficient versus the ratio of the
following test cases in order to form estimates of  a and  a ,1,0 2,1
i.e. by fitting

and

respectively (Rothery et al. 1964).

Figures 4.20 and 4.21 graph the values of a  for all test runs0,0

versus <S>  and <U> <S> , respectively.  In Figure 4.20, the-1 -2

sensitivity coefficient versus the reciprocal of the average
spacing for each bus following experiment, and the "least-
squares" straight line are shown.  The slope of this regression is
an estimate of the reciprocal spacing sensitivity coefficient.  The
solid dots and circles are points for two different test runs.

average speed to the square of the average spacing for each bus
following experiment and the "least-square" straight line are
shown.  The slope of this regression is an estimate of the speed-
reciprocal spacing squared sensitivity coefficient.  The solid dots
and circles are data points for two different test runs.  The slope
of the straight line in each of these figures give an estimate of
their  respective sensitivity coefficient for the sample population.
For the reciprocal spacing model the results indicate an estimate
for a  = 52.8 ± .05 m/sec.  (58 ± 1.61 km/h) and for the speed-1,0

reciprocal spacing squared model a  = 54.3 ± 1.86 m.  The2,1
errors are one standard deviation.
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Note: The sensitivity coefficient versus the reciprocal of the average spacing for each bus following experiment.  The least squares
straight line is shown.  The slope of this regression is an estimate of the reciprocal spacing sensitivity coefficient.  The solid dots and
circles are data points for two different test runs.

Figure 4.20
Sensitivity Coefficient Versus the Reciprocal of the Average Spacing (Rothery et al. 1964).

Note: The sensitivity coefficient versus the ratio of the average speed to the square of the average spacing for each bus following
experiment.  The least squares straight line is shown.  The slope of this regression is an estimate of the speed-reciprocal spacing
squared sensitivity coefficient.  The solid dots and circles are data points for two different test runs.

Figure 4.21
Sensitivity Coefficient Versus the Ratio of the Average Speed (Rothery et al. 1964).
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(4.62)

(4.63)

Three Car Experiments.  These experiments were carried out in
an effort to determine, if possible, the degree to which a driver
is influenced by the vehicle two ahead, i.e., next nearest
interactions (Herman and Rothery 1965).  The data collected in
these experiments are fitted to the car following model:

This equation is rewritten in the following form:

where obtained for each of the drivers for �T, exceeded the asymptotic

A linear regression analysis is then conducted for specific values contain such a term.  This is not surprising, given the task of
of the parameter �.  For the case � = 0 there is nearest neighbor
coupling only and for � >> 1 there is next nearest 

neighbor coupling only.  Using eight specific values of � (0,
0.25, 0.50, 1, 5, 10, 100, and �) and a  mean response time of
1.6 sec, a maximum correlation was obtained when � = 0.
However, if response times are allowed to vary, modest
improvements can be achieved in the correlations. 

While next nearest neighbor couplings cannot be ruled out
entirely from this study, the results indicate that there are no
significant changes in the parameters or the correlations when where the data has been quantitized at fixed increments of �t,
following two vehicles and that the stimulus provided by the
nearest neighbor vehicle, i.e., the 'lead' vehicle, is the most
significant.  Models incorporating next nearest neighbor
interactions have also been used in simulation models (Fox and
Lehman 1967).  The influence of including such interactions in
simulations are discussed in detail by those authors.

Miscellaneous Car Following Experiments. A brief discussion
of the results of three additional vehicle following experiments
are included here for completeness.

The experiments of Kometani and Sasaki (1958) were car
following experiments where the lead vehicle's task was closely
approximated by: "accelerate at a constant rate from a speed u to
a speed u' and then decelerate at a constant rate from the speed
u' to a speed u."  This type of task is essentially 'closed' since the

external situation remains constant.  The task does not change
appreciably from cycle to cycle.  Accordingly, response times
can be reduced and even canceled because of the cyclic nature
of the task.  

By the driver recognizing the periodic nature of the task or that
the motion is sustained over a period of time (� 13 sec for the
acceleration phase and � 3 sec for the deceleration phase) the
driver obtains what is to him/her advanced information.  
Accordingly, the analysis of these experiments resulted in short
response times � 0.73 sec for low speed (20-40 km/h.) tests and
� 0.54 sec for high speed (40-80 km/h.) tests.  The results also
produced significantly large gain factors.  All of the values

stability limit.  Significantly better fits of the data can be made
using a model which includes the acceleration of the lead vehicle
(See Equation 4.58) relative to the linear model which does not

following the lead vehicle's motion as described above.

A partial set of the experiments conducted by Forbes et al.
(1958) were examined by Helly (1959), who fitted test runs to
the linear vehicle model, Equation 4.41, by varying � and T to
minimize the quantity:

N�t is the test run duration,  (j.�t) is the experimentallyExp.

measured values for the speed of the following vehicle at time
j�t, and (j.�t)  is the theoretical estimate for the speed ofTheor..

the following vehicle as determined from the experimentally
measured values of the acceleration of the following vehicle and
the speed of the lead vehicle using the linear model.  These
results are summarized in Table 4.4.

Ohio State Simulation Studies.  From a series of experiments
conducted on the Ohio State simulator, a relatively simple car
following model has been proposed for steady-state car
following (Barbosa 1961).  The model is based on the concept
of driver thresholds and can be most easily described by means
of a 'typical' recording of relative speed versus spacing as
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Table 4.4 Results from Car Following Experiments  large or the spacing becoming too small.  At point "A," after a

 Driver # T a r00 max

  1 1.0 0.7 0.86

  2 0.5 1.3 0.96

  3 0.6 0.8 0.91

  4 0.5 1.0 0.87

  5 0.7 1.1 0.96

  6 0.5 1.0 0.86

shown in Figure 4.22.  At point "1," it is postulated that the
driver becomes aware that he is moving at a higher speed than
the lead vehicle and makes the decision to decelerate in order to
avoid having either the negative relative speed becoming too

time lag, the driver initiates this deceleration and reduces the
relative speed to zero.  Since drivers have a threshold level
below which relative speed cannot be estimated with accuracy,
the driver continues to decelerate until he becomes aware of a
positive relative speed because it either exceeds the threshold at
this spacing or because the change in spacing has exceeded its
threshold level.  At point "2," the driver makes the decision to
accelerate in order not to drift away from the lead vehicle.  This
decision is executed at point "B" until point "3" is reach and the
cycle is more or less repeated.  It was found that the arcs,  e.g.,
AB, BC, etc. are "approximately parabolic" implying that
accelerations can be considered roughly to be constant.  These
accelerations have been studied in detail in order to obtain
estimates of relative speed thresholds and how they vary with
respect to inter-vehicle spacing and observation times (Todosiev
1963).  The results are summarized in Figure 4.23.  This driving
task, following a lead vehicle traveling at constant speed, was
also studied using automobiles in a driving situation so that the
pertinent data could be collected in a closer-to-reality situation
and then analyzed (Rothery 1968).  

Figure 4.22
Relative Speed Versus Spacing (Rothery 1968).
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(4.64)

Figure 4.23
Relative Speed Thresholds Versus Inter-Vehicle Spacing for

Various Values of the Observation Time. (Rothery 1968).

The interesting element in these latter results is that the character speed stimulus is positive or negative.  This effect can be taken
of the motion as exhibited in Figure 4.22 is much the same. into account by rewriting our basic model as:
However, the range of relative speeds at a given spacing that
were recorded are much lower than those measured on the
simulator.  Of course the perceptual worlds in these two tests are
considerably different. The three dimensional aspects of the test
track experiment alone might provide sufficient additional cues where �  = �  or �  depending on whether the  relative speed is
to limit the subject variables in contrast to the two dimensional greater or less than zero.
CRT screen presented to the 'driver' in the simulator.  In any
case, thresholds estimated in driving appear to be less than those A reexamination of about forty vehicle following tests that were
measured via simulation. carried out on test tracks and in vehicular tunnels indicates,

Asymmetry Car Following Studies.  One car following
experiment was studied segment by segment using a model
where the stimulus included terms proportional to deviations
from the mean inter-vehicle spacing, deviations from the mean
speed of the lead vehicle and deviations from the mean speed of
the following car (Hankin and Rockwell 1967).  An interesting
result of the analysis of this model is that it implied an
asymmetry in the response depending on whether the relative

i + -

without exception, that such an asymmetry exists (Herman and
Rothery 1965).  The average value of �  is �10 percent greater-
than � .  The reason for this can partly be attributed to the fact+
that vehicles have considerably different capacities to accelerate
and decelerate.  Further, the degree of response is likely to be
different for the situations where vehicles are separating
compared to those where the spacing is decreasing.  This effect
creates a special difficulty with car following models as is
discussed in the literature (Newell 1962; Newell 1965).  One of
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the principal difficulties is that in a cyclic change in the lead The associated units for these estimates are ft/sec, ft /sec, and
vehicle's speed - accelerating up to a higher speed and then miles/car, respectively.  As illustrated in this table, excellent
returning to the initial speed, the asymmetry in acceleration and agreement is obtained with the reciprocal spacing model.  How
deceleration of the following car prevents return to the original well these models fit the macroscopic data is shown in Figure
spacing.  With n such cycles, the spacing continues to increase
thereby creating a drifting apart of the vehicles.  A relaxation
process needs to be added to the models that allows for this
asymmetry and also allows for the return to the correct spacing.

4.4.2  Macroscopic Observations:
  Single Lane Traffic

Several data collections on single lane traffic have been carried
out with the specific purpose of generating a large sample from
which accurate estimates of the macroscopic flow characteristics
could be obtained.  With such a data base, direct comparisons
can be made with microscopic, car following estimates -
particularly when the car following results are obtained on the
same facility as the macroscopic data is collected.  One of these
data collections was carried out in the Holland Tunnel (Edie et
al. 1963).  The resulting macroscopic flow data for this 24,000
vehicle sample is shown in Table 4.5.

The data of Table 4.5 is also shown in graphical form, Figures
4.24 and 4.25 where speed versus concentration and flow versus
concentration are shown, respectively.  In Figure 4.24, speed
versus vehicle concentration for data collected in the Holland
Tunnel is shown where each data point represents a speed class
of vehicles moving with the plotted speed ± 1.61 m/sec.  In
Figure 4.25, flow versus vehicle concentration is shown; the
solid points are the flow values derived from the speed classes
assuming steady-state conditions.  (See Table 4.5 and Figure
4.24.)  Also included in Figure 4.25 are one-minute average flow
values shown as encircled points.  (See Edie et al. 1963).  Using
this macroscopic data set, estimates for three sensitivity
coefficients are estimated for the particular car following models
that appear to be of significance.  These are: a , a , and a .1,0  2,1   2,0
These are sometimes referred to as the Reciprocal Spacing
Model, Edie's Model, and Greenshields' Model, respectively.
The numerical values obtained are shown and compared with the
microscopic estimates from car following experiments for these
same parameters.  

2

4.26, where the speed versus vehicle concentration data is
graphed together with the curves corresponding to the steady-
state speed-concentration relations for the various indicated
models.  The data appears in Figure 4.24 and 4.25. 

The curves are least square estimates.  All three models provide
a good estimate of the characteristic speed (i.e., the speed at
optimum flow, namely 19, 24, and 23 mi/h for the reciprocal
spacing,  reciprocal spacing squared, and speed reciprocal
spacing squared models, respectively).

Edie's original motivation for suggesting the reciprocal spacing
speed model was to attempt to describe low concentration, non-
congested traffic.   The key parameter in this model is the "mean
free speed", i.e., the vehicular stream speed as the concentration
goes to zero.  The least squares estimate from the macroscopic
data is 26.85 meters/second.

Edie also compared this model with the macroscopic data in the
concentration range from zero to 56 vehicles/kilometer; the
reciprocal spacing model was used for higher concentrations
(Edie 1961).  Of course, the two model fit is better than any one
model fitted over the entire range, but marginally (Rothery
1968).  Even though the improvement is marginal there is an
apparent discontinuity in the derivative of the speed-
concentration curve.  This discontinuity is different than that
which had previously been discussed in the literature.  It had
been suggested that there was an apparent break in the flow
concentration curve near maximum flow where the flow drops
suddenly (Edie and Foote 1958; 1960; 1961).  That type of
discontinuity suggests that the u-k curve is discontinuous.

However, the data shown in the above figures suggest that the
curve is continuous and its derivative is not.  If there is a
discontinuity in the flow concentration relation near optimum
flow it is considerably smaller for the Holland Tunnel than has
been suggested for the Lincoln Tunnel.  Nonetheless, the
apparent discontinuity suggests that car following may be
bimodal in character.
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Table 4.5 Macroscopic Flow Data

Speed Average Spacing Concentration Number of
(m/sec) (m) (veh/km) Vehicles

2.1 12.3 80.1 22

2.7 12.9 76.5 58

3.3 14.6 67.6 98

3.9 15.3 64.3 125

4.5 17.1 57.6 196

5.1 17.8 55.2 293

5.7 18.8 52.6 436

6.3 19.7 50 656

6.9 20.5 48 865

7.5 22.5 43.8 1062

8.1 23.4 42 1267

8.7 25.4 38.8 1328

9.3 26.6 37 1273

9.9 27.7 35.5 1169

10.5 30 32.8 1096

11.1 32.2 30.6 1248

11.7 33.7 29.3 1280

12.3 33.8 26.8 1162

12.9` 43.2 22.8 1087

13.5 43 22.9 1252

14.1 47.4 20.8 1178

14.7 54.5 18.1 1218

15.3 56.2 17.5 1187

15.9 60.5 16.3 1135

16.5 71.5 13.8 837

17.1 75.1 13.1 569

17.7 84.7 11.6 478

18.3 77.3 12.7 291

18.9 88.4 11.1 231

19.5 100.4 9.8 169

20.1 102.7 9.6 55

20.7 120.5 8.1 56
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Note: Each data point represents a speed class of vehicles moving with the plotted speed ± 1 ft/sec (See Table 4.4).

Figure 4.24
Speed Versus Vehicle Concentration (Edie et al. 1963). 

Note: The solid points are the flow values derived from the speed classes assuming steady-state condition.  Also included in
Figure 4.25 are one minute average flow values shown as encircled points.

Figure 4.25
Flow Versus Vehicle Concentration (Edie et al. 1963). 
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Figure 4.26
Speed Versus Vehicle Concentration (Rothery 1968).

Table 4.6 flow variables without resorting to using two different
Parameter Comparison
(Holland Tunnel Data)

Parameters Estimates Estimates
Microscopic Macroscopic

a 26.8 27.81,0

a 0.57 0.122, 0

a (123) (54)2,1
-1 -1

A totally different approach to modeling traffic flow variables
which incorporates such discontinuities can be found in the
literature.  Navin (1986) and Hall (1987) have suggested that
catastrophe theory (Thom 1975; Zeeman 1977) can be used as
a vehicle for representing traffic relationships.  Specifically,
Navin followed the two regime approach proposed by Edie and
cited above and first suggested that traffic relations can be
represented using the cusp catastrophe.  A serious attempt to
apply such an approach to actual traffic data in order to represent

expressions or two different sets of parameters to one expression
has been made by Hall (1987).  More recently, Acha-Daza and
Hall (1994) have reported an analysis of freeway data using
catastrophe theory which indicates that such an approach can
effectively be applied to traffic flow.  Macroscopic data has also
been reported on single lane bus flow.  Here platoons of ten
buses were studied (Rothery et al. 1964).

Platoons of buses were used to quantify the steady-state stream
properties and stability characteristics of single lane bus flow. 
Ideally, long chains of buses should be used in order to obtain
the bulk properties of the traffic stream and minimize the end
effects or eliminate this boundary effect by having the lead
vehicle follow the last positioned vehicle in the platoon using a
circular roadway.  These latter type of experiments have been
carried out at the Road Research Laboratory in England
(Wardrop 1965; Franklin 1967).

In the platoon experiments, flow rates, vehicle concentration,
and speed data were obtained.  The average values for the speed
and concentration data for the ten bus platoon are shown in
Figure 4.28 together with the numerical value for the parameter
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Figure 4.27
Flow Versus Concentration for the Lincoln and Holland Tunnels.

Figure 4.28
Average Speed Versus Concentration 

for the Ten-Bus Platoon Steady-State Test Runs (Rothery 1968).
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a  = 53 km/h which is to be compared to that obtained from the1,0
two bus following experiments discussed earlier namely, 58
km/h.  Given these results, it is estimated that a single lane of
standard size city buses is stable and has the capacity of over
65,000 seated passengers/hour.  An independent check of this
result has been reported (Hodgkins 1963).  Headway times and

speed of clusters of three or more buses on seven different
highways distributed across the United States were measured
and concluded that a maximum flow for buses would be
approximately 1300 buses/hour and that this would occur at
about 56 km/h.

4.5  Automated Car Following

All of the discussion in this chapter has been focused on manual Mechanical Laboratory (Oshima et al. 1965), the Transportation
car following, on what drivers do in following one or more other Road Research Laboratory (Giles and Martin 1961; Cardew
vehicles on a single lane of roadway.  Paralleling these studies, 1970), Ford Motor Corporation (Cro and Parker 1970) and the
research has also focused on developing controllers that would Japanese Automobile Research Institute (Ito 1973).  During the
automatically mimic this task with specific target objectives in past several decades three principal research studies in this arena
mind. stand out: a systems study of automated highway systems

At the 1939 World's Fair, General Motors presented program on numerous aspects of automated highways conducted
conceptually such a vision of automated highways where at The Ohio State University from 1964-1980, and the Program
vehicles were controlled both longitudinally (car following) and on Advanced Technology for the Highway (PATH) at the
laterally thereby freeing drivers to take on more leisurely University of California, Berkeley from about 1976 to the
activities as they moved at freeway speeds to their destinations. present.  Three overviews and detailed references to milestones
In the intervening years considerable effort has been extended of these programs can be found in the literature: Bender (1990),
towards the realization of this transportation concept.  One prime Fenton and Mayhan (1990), and Shladover et al. (1990),
motivation for such systems is that they are envisioned to provide respectively.
more efficient utilization of facilities by increasing roadway
capacity particularly in areas where constructing additional The car following elements in these studies are focused on
roadway lanes is undesirable and or impractical, and in addition, developing controllers that would replace driver behavior, carry
might improve safety levels.  The concept of automated out the car following task and would satisfy one or more
highways is one where vehicles would operate on both performance and/or safety criteria.  Since these studies have
conventional roads under manual control and on specially essentially been theoretical, they have by necessity required the
instrumented guideways under automatic control.  Here we are difficult task of modeling vehicle dynamics.  Given a controller
interested in automatic control of the car following task.  Early for the driver element and a realistic model representation of
research in this arena was conducted on both a theoretical and vehicle dynamics a host of design strategies and issues have been
experimental basis and evaluated at General Motors Corporation addressed regarding inter-vehicular spacing control, platoon
(Gardels 1960; Morrison 1961; Flory et al. 1962), Ohio State configurations, communication schemes, measurement and
University   (Fenton  1968;  Bender  and  Fenton  1969;  Benton timing requirements, protocols, etc.  Experimental verifications
et  al.  1971;  Bender  and  Fenton  1970),  Japan Governmental of these elements are underway at the present time by PATH.

conducted at General Motors from 1971-1981, a long-range
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4.6  Summary and Conclusions

Historically, the subject of car following has evolved over the this chapter has addressed in order.  First, it provides a
past forty years from conceptual ideas to mathematical model mathematical model of a relative common driving task and
descriptions, analysis, model refinements resulting from provides a scientific foundation for understanding this aspect of
empirical testing and evaluation and finally extensions into the driving task; it provides a means for analysis of local and
advanced automatic vehicular control systems.  These asymptotic stability in a line of vehicles which carry implications
developments have been overlapping and interactive.  There with regard to safety and traffic disruptions and other dynamical
have been ebbs and flows in both the degree of activity and characteristics of vehicular traffic flow; it provides a steady state
progress made by numerous researchers that have been involved description of single lane traffic flow with associated road
in the contributions made to date. capacity estimates; it provides a stepping stone for extension into

The overall importance of the development of the subject of car will undoubtedly continue to provide stimulus and
following can be viewed from five vantage points, four of which encouragement to scientists working in related areas of traffic

advance automatic vehicle control systems; and finally, it has and

theory. 
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CHAPTER 5 - Frequently used Symbols

a = dimensionless traffic parameter L = distance
A = stop-start wave amplitude L = length of periodic interval
� = sensitivity coefficient
b = net queue length at traffic signal
c = g + r = cycle length � = wave length of stop-start waves
c = coefficient0

= constant, independent of density k
ds = infinitesimal time
�t, �x = the time and space increments respectively

such that �x/�t > free flow speed 
�� , �� = deviationsi i+1
� = state vector
� , �  = state vector at position i, i+1i i+1

f(x, v, t ) = vehicular speed distribution function
f = relative truck portion, k  = kpass
f = equilibrium speed distribution0
� = fluctuating force as a stochastic quantity q k = arrival flow and density conditions
g = effective green interval q = capacity flow

= is the generation (dissipation) rate at node j at r = effective red interval
t = t  + n�t; if no sinks or sources exist  =0
0 and the last term of Equation 5.28 vanishes T = oscillation time

g = minimum green time required for t = timemin
undersaturation 

h = average space headway � = relaxation time as interaction time lag
i = station u = speed
j = node U (k) = equilibrium speed-density relation
k = density
k , k = density downstream, upstream shock- +
k = operating point0

k = equilibrium density10

K = constant valueA

k = density within La 2

k = density "bumper to bumper"bumper
k , q = density, flow downstreamd d
k , q = density, flow upstreamu u
k = vehicle density in homogeneous flowhom
k = jam density of the approach underj

consideration 
= density and flow rate on node j at

t = t  + n�t0

k = density conditions m
k = density "bumper to bumper" for 100%pass

passenger cars y(t) = queue length at any time point t
k = reference state y = queue length from i to j assuming a positiveref
k = density "bumper to bumper" for 100% trucks direction opposite to x, i.e. from B to Atruck

ld = logarithmus dualis
l = characteristic lengtho

μ = dynamic viscosity0
μ = viscosity term
n = current time step
N = normalization constant
n , n = exponentsi 2

N = number of cars (volume)i
� = eigenvalue
p = probability
q = actual traffic volume, flow
Q = net flow rate0
q = average flow ratea

a a

ni

	 = quantity0

t = the initial time0

e
= equilibrium speed

u = free-flow speed of the approach underf
consideration

u = group velocityg
u  - u = speed rangemax min
u = shock wave speedw
u = spatial derivative of profile speedz
v(k) = viscosity
v = values of the group velocityg
W(q) = distribution of the actual traffic volume

values q
x = space
xh = estimated queue length
x , t , y = coordinates at point ii i i
X = length of any line ijij
y = street width

ij

z = x - U, t, collective coordinate
= shockspeed



Revised Chapter 5 of Traffic Flow Theory Monograph

Original text by Reinhart Kühne and Panos Michalopoulos
Revised by H. M. Zhang

1 Conservation and traffic waves

There have been two kinds of traffic flow theories presented thus far in this monograph. Chapter
2 discussed the relations among aggregated quantities of flow rate, concentration and mean speeds
for stationary vehicular traffic (these relations are also referred to as the equations of state in
traffic flow), and Chapter 3 described the dynamic evolution of microscopic quantities of vehicle
spacing, headway and speeds in single-lane traffic through the follow-the-leader type of models.
In this Chapter we study another kind of traffic flow theory—continuum traffic flow theory—
that describes the temporal-spatial evolution of macroscopic flow quantities as mentioned earlier.
Continuum theories are natural extensions to the first two kinds of theories because, one one
hand, they are closely related to the equations of state and car-following theories, and on the
other hand, they overcome some of the drawbacks of the first (stationarity) and second (too much
detail and limited observability) kinds of theories. The quantities and features that continuum
theories describe, such as traffic concentration and shock waves, are mostly observable with current
surveillance technology, which makes it easier to validate and calibrate these models.

Many theories exist in the continuum description of traffic flow. All of them share two funda-
mental relations: one is the conservation of vehicles and the other is the flow-concentration-speed
relation

q = ku. (1)

The q − k − u relation is true by choice, i.e., one defines flow rate (q), concentration (k) and mean
speed (u) in such a way that (1) always holds (see Chapter 2 for definitions). Conservation of
vehicles, on the other hand, is true regardless of how q, k, u are defined, and can be expressed in
different forms. Here we present three forms of the conservation law using variables in (1).

The first integral form of the conservation law. Consider a stretch of highway between x1 and
x2 (x1 < x2). At time t the traffic concentration on this section is k(x, t), and traffic flows into
the section at a rate of q(x1, t), and out of the section at a rate of q(x2, t). The total number of
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vehicles in this section at time t is then ∫ x2

x1

k(x, t)dx.

Suppose no entries and exits exist between x1 and x2, then by conservation the rate of change in
the number of vehicles

∂

∂t

∫ x2

x1

k(x, t)dx.

should equal to the net flow into this section

q(x1, t) − q(x2, t),

that is,
∂

∂t

∫ x2

x1

k(x, t)dx = q(x1, t)− q(x2, t), (2)

This is the first integral form of the conservation law.
The second integral form of the conservation law. The conservation of vehicles also means that,

in the x−t plane, the net number of vehicles passing through any closed curve is zero provided that
no sources and sinks are there in the enclosed region (Fig. 2). Note that the number of vehicles
across any segment dl of curve C is −kdx + qdt, the total number of vehicles across the enclosed
region is therefore the line integral of the vector field (−k, q), and we have the second integral form
of the conservation law: ∫

C
−kdx + qdt = 0. (3)

(3) implies that we can construct a scalar function N(x, t) with the properties

q =
∂N

∂t
, k = −∂N

∂x
.

This function is the cumulative count of vehicles passing location x at time t, provided that N(x, t =
0) = 0. The fact that such a function exists is another consequence of the conservation law.

The differential form of the conservation law. By applying the divergence theorem to the second
integral form we obtain ∫

C
−kdx + qdt =

∫ ∫
D

(
∂k

∂t
+

∂q

∂x

)
dxdt = 0,

which leads to the differential form of the conservation law:

∂k

∂t
+

∂q

∂x
= 0. (4)

The three different forms of the conservation law are not completely equivalent. Note that in
the differential form, both k and q are required to be differentiable with respect to time t and space
x. In contrast, it is perfectly fine in the integral forms that these variables are discontinuous in
space and/or time. This is an important distinction because a special kind of traffic waves, called
shock waves, are prevalent in vehicular traffic flow and play an essential role in the continuum
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description of traffic flow. A shock wave is a drastic change in traffic concentration (and/or speed,
flow rate) that propagates through a traffic stream. Examples of shock waves include the stoppage
of traffic in front of a red light, and traffic slow-downs caused by an accident. In reality a shock
always has a profile (that is, a transition region of non-zero width) that usually spans a few vehicle
lengths, but this can be practically treated as a discontinuity when compared with the length of
roads in consideration.

Because of the existence of shocks, it is necessary to expand the solution space of (4) to include
the so-called weak solutions. In mathematical sense a weak solution is a function (k, q)(x, t) that
satisfies (4) everywhere except along a certain path x(t). On x(t) (k, q)(x, t) are discontinuous but
obey the integral forms of the conservation law. A shock wave solution to (4) is a weak solution.
Moreover, its path x(t) is governed by the following equation:

ẋ(t) = [q]/[k]. (5)

where [k] = kr − kl, [q] = qr − ql, ẋ(t) is the speed of the shock, also denoted as s, and (kl,r, ql,r) are
the traffic states immediately to the right and left of the shock path x(t), respectively. Expression
(5) is also known as the Rankine-Hugoniot (R-H) condition (LeVeque 1992) , which is a consequence
of the conservation law.

Expression (5) has a simple geometric interpretation in the (k, q) plane, also known as the k− q

phase plane. It is simply the slope of the segment that connects the two phase points (kl, ql) and
(kr, qr) (Fig. 1(a)). Suppose that a unique curve connects (kl,r, ql,r), and kr → kl (i.e., the shock
is weak), then s approaches the slope of the tangent of the connecting curve at (kl, ql) (Fig. 1(b)).
We call this speed the speed of traffic sound waves, and give it a special notation c(k). This is the
speed that information is propagated in homogeneous traffic. It plays a central role in the basic
kinematic wave model of traffic flow. It must be pointed out that a unique q − k curve is not
necessary to compute the shock speed. This can be done as long as both the densities and flow
rates on both sides of the shock are known.

Next we provide two derivations of (5) from the conservation law. The first derivation is based
on the first integral form of the conservation law. Suppose that traffic states on both sides of the
shock are constant states (k1,2, q1,2), and suppose that two observers located at x1(t) and x2(t) on
the two sides of the shock (i.e., x1 < x(t) < x2) travel at precisely the speed of the shock, s. We
apply the conservation law (2) to the region between the two observers after doing a coordinate
transformation x

′
= x − st to obtain:

∂

∂t

∫ x
′
2

x
′
1

k(x, t)dx = [q1 − k1s]− [q2 − k2s].

The integral, however, can be evaluated independently in [x
′
1, x

′
l) and (x

′
r , x

′
2], where x

′
l,r are points

immediate to the right/left of shock path x
′
(t). This integral turns out to be

k1(x
′
l − x

′
1) + k2(x

′
2 − x

′
r),
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Figure 1: Geometric representation of shocks, sound waves, and traffic speeds in the k − q phase
plane

a constant, whose derivative is zero. Therefore we have

[q1 − k1s] − [q2 − k2s] = 0,

which leads to (5) after rearranging terms.
The second derivation of the Rankine-Hugoniot condition comes from the second integral form.

As shown in Fig.2, a shock path x(t) breaks the closed curve C into two parts Cl and Cr. Let Γl,r

be the right/left edges of x(t), respectively, then the conservation law applies to each of the three
enclosures C, Cl ∪ Γl, and Cr ∪ Γr: ∫

C
−kdx + qdt = 0. (6)∫

Cl∪Γl

−kdx + qdt = 0. (7)
∫
Cr∪Γr

−kdx + qdt = 0. (8)

Adding (7) and (8) together and rearranging terms we obtain∫
C
−kdx + qdt +

∫
Γl

−kdx + qdt +
∫
Γr

−kdx + qdt = 0.

The first integral is zero, and the second and third integrand become

(−kl,rs + ql,r)dt

on Γl,r. Taking account the direction of integration we obtain the following integral equation:∫ t2

t1
{(−kls + ql)− (−krs + qr)}dt = 0.
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This implies that
(−kls + ql)− (−krs + qr) = 0,

which also leads to the Rankine-Hugoniot shock condition.

Figure 2: Field representation of shocks and conservation of flow

The differential conservation law (4), supplemented by the Rankine-Hugoniot condition (5), is
the corner stone of all continuum vehicular traffic theories. Yet it is not a complete theory, nor is it
unique to traffic flow. In fact, the differential conservation law is obeyed by many kinds of material
fluids, such as gas flow in a pipe or water flow in a channel. As such, it does not capture the unique
characters of vehicular traffic flow, a special kind of “fluid”. It must be supplemented by additional
relations to form a complete and useful traffic flow theory. Some of the relations between macro-
scopic traffic variables are already available and have been discussed in Chapter 2. These are the
binary relations between flow rate, traffic concentration and mean travel speed. Although these re-
lations are found among stationary traffic, they can also be used as a first approximation of dynamic
flow-concentration-speed relations. This leads to the first, and the simplest continuum theory of
traffic flow—the kinematic wave theory developed independently by Lighthill and Whitham (1955),
and Richards (1956) (The LWR model). A more accurate relation between flow-concentration or
speed-concentration is one that accounts for the dynamic behavior of drivers—anticipation and
inertia. The usage of such a relation leads to the so-called higher-order models. We will study in
this chapter these two kinds of continuum theories in great deal. In the sections to follow, we’ll
first study the properties of the LWR model and its Riemann problem, then study the properties
of a special class of higher-order models and their respective Riemann problems. Next we develop
numerical approximations of both types of models, and finally we provide some examples of the
use of the numerical approximations.
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2 The kinematic wave model of LWR

2.1 The LWR model and characteristics

The LWR model assumes that the relation observed in stationary flow, q = f∗(k), also applies to
dynamic traffic. With such a relation, the conservation law becomes:

kt + f∗(k)x = 0. (9)

and the Rankine-Hugoniot condition becomes

s = [f∗]/[k].

This is the celebrated kinematic wave model of LWR. It is one of the simplest nonlinear scalar
conservation laws in physics and engineering.

Experimental evidence indicates that f∗(k) is usually smooth and concave (refer to Chapter 2),
and satisfies the following boundary conditions:

f∗(0) = f∗(kj) = 0,

f
′
∗(0) = vf > 0, f∗′(kj) = cj < 0.

where kj is the jam concentration at which vehicles grind to a halt, usually ranging from 260 vpm
to 330 vpm (in passenger car units), cj is the speed of traffic sound waves at jam condition, taking
values in the range of [-10 mph, -20 mph], and vf is free-flow travel speed, ranging from 55mph

to 75mph on freeways. All these parameter values are readily computable from conventional field
measurements.

With the introduction of traffic wave speed ( when no confusion arises we use traffic wave and
traffic sound waves interchangably) c(k) = f∗′(k), the LWR model also reads

kt + c(k)kx = 0. (10)

Now let us look at what changes in concentration an observer sees when he travels at the speed of
c(k), that of traffic waves.

dk

dt
= kt + kx

dx

dt
= kt + c(k)kx = 0.

That is to say, he sees no changes in density at all if he travels at the wave speed. As a result, if he
knows the initial concentration at a point ξ, he’ll know the concentration at any point on the path

ẋ(t) = c(k), x(0) = ξ. (11)

This path is called the characteristic curve of the LWR model, and the wave speed c(k) is also
known as the characteristic speed of the LWR model. Because k is constant along the characteristic
curve, the characteristic of (9) is therefore a straight line.

One must not confuse over traffic sound wave speeds, shock wave speeds, characteristic speeds,
and vehicle speeds. Traffic sound wave speeds and characteristic speeds in the LWR model are
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identical, which are the slopes of the tangential lines on the flow-concentration curve (also known
as the fundamental diagram of traffic flow). Shock wave speeds are the slopes of the secant that
connecting any two traffic states on f∗(k) , and vehicular speeds are the slopes of the rays from the
origin to points on f∗(k) (Fig. 1). Because of the concave shape of f∗(k), we have the following
relations among the various speeds:

v = f∗/k ≡ v∗(k) ≥ c(k), s < v∗(kl,r),

that is to say, all waves, including sound and shock waves, travel no faster than traffic. In other
words, information in LWR traffic is propagated against the traffic stream. This property of
information propagation in the LWR model is known as the anisotropic property of traffic flow.
The anisotropic property may not hold if the fundamental diagram is not concave (Zhang 2000c).

2.2 The Riemann problem and entropy solutions

The LWR model is a well-posed hyperbolic partial differential equation (pde) 1 and can be solved
with proper initial/boundary data. In fact, analytical solutions can be obtained for a special kind
of problem called Riemann problem, whose initial data—the so-called Reimann data—are two
constant states kl,r ≥ 0 separated by a single jump:

k(x, t = 0) =

{
kl, x < 0,

kr, x > 0

The analytical solution to the Riemann problem can either be a shock:

k(x, t) =

{
kl, x < st,

kr , x > st.
(12)

or a smooth expansion wave (also known as a rarefaction wave):

k(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

kl, x < clt,

(f
′
∗)−1

(x
t

)
, clt ≤ x ≤ crt,

kr, x > crt

(13)

The condition for it to be a shock is governed by the so-called entropy condition, which states that

cl > cr. (14)

Otherwise the solution will be an expansion wave. Because of the concavity condition f
′′
∗ (k) < 0,

(14) implies that kl < kr , that is, shocks arising from the LWR theory are compressive. Moreover,
they reach vehicles from upstream because s < vl,r. Examples of the two kinds of solutions to a
Riemann problem are shown in Figs. 3& 4.

For general initial conditions, it is usually tedious, if not difficult, to obtain analytical solutions
of the LWR equation, and numerical approximations are often sought, where the Riemann problem

1A pde is hyperbolic if its characteristic speeds are real (as compared to imaginary).
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Figure 3: A shock solution

Figure 4: A rarefaction solution

plays a key role in developing some of the most efficient and accurate numerical schemes. This will
be discussed in Section 4 together with the treatment of boundary conditions. There are special
cases where an analytical solution is still straightforward to obtain. One case involves a special kind
of initial condition—k(x, 0) is piece-wise constant and and increasing, and another case involves a
special kind of fundamental diagram—the triangular shaped fundamental diagram that has only
two wave speeds (Koshi et al 1983, Newell 1993). In the former case, a series of Riemann problems
can be solved with consideration of wave interactions, and in the latter case, expansion waves are
replaced by acceleration shocks, and it is much simpler to construct the solutions with shocks than
expansion waves (see Newell 1993).

2.3 Applications

Same as Sections 5.1.3 & 5.1.4 in the original text.
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2.4 Extensions to the LWR model

The LWR model we presented applies to traffic on a homogeneous highway with no entering and
exiting traffic. In reality all highways have entries and exits and variable geometric features.
Fortunately the LWR equation can be easily extended to model such inhomogeneities.

Suppose the net inflow to a road section is s(x, t)dxdt from sources such as freeway ramps, then
from conservation we have

kt + f∗(k)x = r(x, t), (15)

This is the LWR model with sources. These source flows can be entering or exiting flows from
ramps, or both.

When road geometries change, such as the drop of a lane at some locations, they often generate
disturbances that cause traffic breakdowns. The effect of such inhomogeneities on traffic flow can be
captured to some degree with a location-dependent fundamental diagram, f∗(k, x). Because vehicle
conservation still holds, applying the conservation principle to an inhomogeneous road leads to the
following extended LWR model:

kt + f∗(k, x)x = 0. (16)

If a road segment has both sources and geometric inhomogeneities, the following model applies:

kt + f∗(k, x)x = r(x, t). (17)

Like the homogeneous LWR model, these extensions are also non-linear hyperbolic pdes, whose
characteristics are

ẋ = f∗k(k, x). (18)

These characteristics, however, are no longer straight lines as in the homogeneous model. This is
because along the characteristics, we have

k̇ = kt + kxẋ = kt + f∗kkx =

⎧⎪⎪⎨
⎪⎪⎩

r, for (15)
−f∗x, for (16)

r − f∗x, for (17)
(19)

(18) and (19) form a system of ordinary differential equations (ode), and can be solved iteratively
using any ode solver such as the Runge-Kutta method. This way of solving the inhomogeneous
LWR models is known as the method of characteristics (Courant and Hilbert 1962).

The basic LWR model and its various extensions we have covered treat traffic across lanes as
homogeneous, which is somewhat restrictive because alternate motion of traffic in different lanes is
often observed in heavily congested traffic. This limitation is easily overcome by modeling traffic
evolution in each lane. Here the conservation principle still applies, but a continuum of sources
exist for each lane. These sources are the exchange of flow between adjacent lanes. Without loss
of generality, assume a two-lane highway with traffic (k1(x, t), q1(x, t)) and (k2(x, t), q2(x, t)). Let
Q1 be the net amount of traffic entering lane 1 from lane 2 in unit time and distance, and Q1 be
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the net amount of traffic entering lane 2 from lane 1 in unit time and distance, then the extended
LWR model for a two-lane highway is (Dressler 1949)

k1t + q1x = Q1, (20)

k2t + q2x = Q2. (21)

where q1 = f1∗(k1) and q2 = f2∗(k2).
From conservation we know the source flows Q1, Q2 observe

Q1 + Q2 = 0

and experiences tell us that the change of flow between lanes is related to the differential of lane
speeds/densities, for drivers always like to move into the faster lane in congested traffic. An example
of Q1, Q2 was proposed by Gazis et al. (1962):

Q1,2 = α[(k2,1 − k1,2) − (k0
2,1 − k0

1,2)] (22)

where k0
1,2 are equilibrium densities of lanes 1 & 2, respectively (Gazis et al. 1962). These can be

observed experimentally.
The above lane-specific LWR model is a system of quasi-linear PDEs and can be expressed in

vector forms (
k1

k2

)
t

+

(
f1∗(k1)
f2∗(k2)

)
x

=

(
Q1(k1, k2)
Q2(k1, k2)

)
, (23)

or (
k1

k2

)
t

+

(
f1∗,k1 0

0 f2∗,k2

)(
k1

k2

)
x

=

(
Q1(k1, k2)
Q2(k1, k2)

)
. (24)

For a system of quasi-linear PDEs, the characteristics are the eigenvalues of the Jacobian ma-

trix DF ≡
(

f1∗,k1 0
0 f2∗,k2

)
, which contains the partial derivatives of the flow vector F (U) ≡

(
f1∗(k1)
f2∗(k2)

)
with respect to the state vector U ≡

(
k1

k2

)
.

This system is said to be strictly hyperbolic if all its characteristics are real and distinct. It
is easy to see that the characteristics of (23) are f

′
1∗(k1) and f

′
2∗(k2) because the dynamics of the

two lanes are nearly decoupled (the only coupling comes from the source term). The system is
strictly hyperbolic under the condition that f1∗(k1) �= f2∗(k2) and f

′′
1,2∗ < 0. Thus this system can

be solved in the same way as other inhomogeneous models through the method of characteristics.
Only this time one solves a system of four odes instead of two:

ẋ1 = f
′
1∗(k1),

ẋ2 = f
′
2∗(k2),

k̇1 = Q1(k1, k2),

k̇2 = Q2(k1, k2).

It should be noted that both the inhomogeneous models and the multiple-lane models can be
solved numerically using the finite difference procedures developed in Section 5.
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2.5 Limitations of the LWR model

The kinematic wave model of LWR is only a first approximation of the real traffic flow process and
is deficient in describing a number of traffic features of potential importance. The include (i) driver
differences, (ii) shock structure, (iii) forward moving waves in queued up traffic and (iv) traffic
instability (Daganzo 1997).

The LWR model is inadequate for modeling light traffic because it does not recognize the
segregation of fast and slow drivers in the traffic stream owing to passing. An adequate model for
traffic where significant amount of passing takes place should track both fast and slow drivers and
their interactions, not by lumping both types of drivers together through a single descriptor such as
density k(x, t). When drivers travel at roughly the same speed, however, the LWR model can still
be used for light traffic, where density is independent of concentration and flow increases linearly
with density.

The second deficiency of the LWR model lies in its treatment of shock waves. The shocks in
the LWR model has no width, i.e., no transition region. A vehicle enters a shock thus dropping its
speed in no time, implying an infinite deceleration. In reality, shocks always have a structure, i.e., a
transition region of a few vehicles’ length in which vehicles decelerate at finite rates. This deficiency
can be addressed through introducing higher-order approximations of traffic dynamics (Kühne
1984,1989) or using a microscopic description (Newell 1961). It is one of the author’s (Zhang)
opinion that as long as the accurate knowledge of vehicle acceleration is not of main interest, the
lack of a shock structure is not a major failing of the LWR theory, because in comparison with
the space scale one is modeling, a few vehicle lengths of shock width can be practically considered
as nil. To most applications, the important matter is whether the LWR theory gives a reasonable
estimate of shock speeds. Empirical evidence indicates that it does (Chapter 4 in Daganzo 1997).

The LWR theory has only one family of waves which travels at a speed of f
′
∗(k). These waves

always travel against the traffic stream because f
′
∗(k) < v∗(k). In particular, f

′
∗(k) < 0 when

concentration k exceeds a critical value k∗ at which flow rate is maximal. An early study of tunnel
traffic, however, revealed that a different type of waves exists in real traffic (Edie and Baverez
1967). In analyzing the tunnel traffic data, Edie and Baverez (1967) noted that “ small changes
in flow may not propagate at a speed equal to the slope of the tangent to a steady-state q-k curve
as suggested by the hydrodynamic wave theories of traffic flow. Instead, they are carried along at
about stream speed or only slightly less than stream speed right up to saturation flows, at which
level they suddenly reverse directions.” This observation indicates that apart from the family of
waves that travels against the traffic stream, there’s at least another family of traffic waves that
travels with the traffic stream, even in congested traffic. The findings of Edie and Baverez (1967)
prompted Newell (1965) to suggest a fundamental diagram with multiple branches—one branch for
free flow, one for acceleration flow and another for deceleration flow. The extended LWR theory
with this fundamental diagram was able to explain not only the forward wave motion in queued-up
traffic, but also the instability found in tunnel traffic.

In comparison with other deficiencies of the LWR theory, the fourth deficiency, namely its
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inability to model traffic instability, has more serious consequences, for traffic instability is at the
very heart of the traffic congestion phenomenon. The LWR model is always stable in the sense
that traffic disturbances, small or large, are always dampened. In other words, a driver who obeys
the LWR driving law always responds to stimulus properly, i.e., he always manages to change
his speed in the right amount of time and with the right magnitude that he simply absorbs the
disturbance. In fact the reaction time of a LWR driver is zero and the rate of adjustment he makes
is infinite. In reality, a driver responds to traffic events with a time delay, and not always precisely.
As a result, some disturbances in real traffic may get magnified as they propagate through the
traffic stream, causing traffic break-downs (stop-and-go) that could last for several hours. Such
stop-and-go traffic patterns exhibit, in physical space (i.e., x− t domain), periodic oscillations with
amplitude-dependent oscillation time, and in phase space (i.e., q − k or k − u domain), hysteresis
loops and wide scatter of data points.

Evidences of traffic instability and the resulting stop-and-go flow pattern are found on highways
around the globe. Perhaps the most impressive measurements of transients and stop-start wave
formation are gained from European freeways. Due to space restrictions, there are numerous
freeways with two lanes per highway in Europe. These freeways, often equipped with a dense
measurement grid not only for volume and occupancy but also for speed detection, show stable stop-
start waves lasting in some cases for more than three hours. Measurement data exists for Germany
(Leutzbach 1991), the Netherlands (Verweij 1985), and Italy (Ferrari 1989). First we examine the
measurements from German highways. The German data were collected from the Autobahn A5
Karlsruhe-Basel at 617 km by the Institute of Transport Studies at Karlsruhe University (Kühne
1987). Each measurement point is a mean value of a two-minute ensemble actuated every 30 sec.
These data were collected during a holiday when no trucks used that stretch of road.

All the data sets have traffic densities over the critical density and show signs of instability (i.e.,
stop-start waves with more or less regular shape and of long duration - in some series up to 12
traffic breakdowns). These data can characterized in the time domain by their oscillation times T

and magnitudes A. These characteristic features derived from the data shown in Figures 5.9a,b
and 5.9c,d (in the original text) (Kühne 1987,Michalopoulos and Pisharody 1980) are listed in
the following table:

Table 1: Oscillation time and magnitudes of stop-and-go traffic from German measurement

oscillation time T 16 min 15 min 7.5 min 5 min
amplitude A 70km/h 70 km/h 40 km/h 25 km/h
measurement figure 2a 2b 3a 3b

These characteristic values show a proportionally between amplitude and oscillation time. This
strong dependence is a sign for the non-linear and anharmonic character of stop-start waves. In
the case of harmonic oscillations, the amplitude is independent of the oscillation time as the linear
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pendulum shows. Obviously, the proportionally holds only for the range between traffic flow at a
critical lane speed of about 80 km/h (= speed corresponding to the critical density kc . 25 veh/km)
and creeping with jam speed of about 10 km/h. For oscillations covering the whole range between
free-flow speed and complete gridlock, saturation effects will reduce the proportionally.

Examples of stop-start waves from other locations, such as the Netherlands (Verweij 1985),
Japan (Koshi et al. 1983), Italy (Ferrari 1989) and the U.S.A. also show similar characters as
those observed on German highways. Such oscillations, when viewed from the q − k phase plane,
show wider scatter of data points in the congested regime. Embedded in the scatter are sharp
drops (often referred to as the capacity drop) and hysteresis loops (e.g., Treiterer and Myers 1974)
of irregular shapes that differ from the equilibrium phase curve q = f∗(k) and cannot be simply
explained away by stochastic arguments. All but the first deficiencies of the LWR model can be
addressed, to various degrees of success, through the introduction of higher-order approximations
or “dynamic” fundamental diagrams. This leads to two classes of traffic flow models—higher-order
and lower-order continuum models. Higher-order models introduce a dynamic speed-concentration
or flow concentration relation that accounts for driver reaction time and anticipation of traffic
conditions ahead, i.e.,

v(x, t + τ) = V∗(k(x + Δx, t)),

q(x, t + τ ) = kV∗(k(x + Δx, t)).

The approximations of these dynamic relations lead to evolution equations for travel speed or flow
rate (Payne 1971, Whitham 1974, Zhang 1998). Consequently the traffic model becomes a system
of partial differential equations and its solutions, when shown in the phase plane, deviate from
the equilibrium fundamental diagram, producing the scatter and forward waves in the congested
region. Lower-order models, on the other hand, models different traffic motions—acceleration,
deceleration and coasting—explicitly on the fundamental diagram. Their fundamental diagrams
f∗(k) has multiple branches and connecting curves, each describes a particular kind of motion
(Newell 1965, Zhang 2001). For one reason or another, higher-order models are more widely studied
and used than lower-order models. Therefore we will focus our presentation on higher-order models
in the remaining text. Readers who are interested in lower-order traffic flow models can refer to
Newell (1965), Daganzo (1999a,b) and Zhang (2001).

3 Higher-order continuum models

The development of higher-order traffic flow models again originated from the seminal work of
Lighthill and Whitham (1955), in which they suggested the following higher-order extension of
their first-order model:

The LW model: qt + Cqx + Tqtt −Dqxx = 0, (25)

where C is convection speed, T is a reaction time constant and D is the diffusion coefficient.
Because of a lack of strong experimental evidence in support of such an extension, higher-order
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approximations of traffic flow were not pursued further till 1971, when Payne (1971) and later
Whitham (1974) derived a so-called ‘momentum equation’ from a car-following argument:

kvt + vvx +
c2
0

k
kx =

v∗(k) − v

τ
, (26)

where v∗(k) is the equilibrium speed-concentration relation, c0 < 0 is the ‘sound’ speed, and is
given by c2

0 = μ
τ , where μ is often referred to as the anticipation coefficient and τ relaxation time

2. Recently, Zhang (1998) proposed a new addition to the existing momentum equations:

vt + vvx + kv
′
∗(k)2kx =

v∗(k) − v

τ
, (27)

which is structurally similar to the momentum equation of Payne (1971) and Whitham (1974).
On the left hand side of the momentum equations, the second term is the change of speed

due to convection, and the third term captures drivers’ adjustment to travel speeds owing to
anticipation. The term on the right hand side captures drivers’ affinity to equilibrium travel speeds.
In the momentum equations, the acceleration of a vehicle, expressed by the material derivative vt +
vvx, responds negatively to the increase of concentration downstream, and positively (negatively)
to travel speeds that are lower (higher) than the corresponding equilibrium speeds for the same
concentration. As a result, travel speed v in both momentum equations usually differs from the
equilibrium speed v∗(k) under the same traffic condition, but this difference is reduced over time
because of relaxation effects. The parameter τ decides the strength of relaxation. In literature τ is
often interpreted as driver reaction time, whose value ranges from 1 sec to 1.8 sec.

Through the definition of a concentration dependent sound speed c(k) (= kv
′
∗(k), or c0, or

−
√

μ
τ ), both momentum equations can be expressed in a general form:

vt + vvx +
c2(k)

k
kx =

v∗(k) − v

τ
. (28)

This evolution equation of travel speed, coupled with the continuity equation

kt + (kv)x = 0, (29)

forms what we call a generalized PW higher-order model. The general PW model comprises a
system of partial differential equations that can be compactly expressed using vector notation

(
k

v

)
t

+

(
v k

c2(k)
k v

)(
k

v

)
x

=

(
0

v∗−v
τ

)
. (30)

or

Ut + A(U)Ux = R(U), (31)

where U =

(
k

v

)
, A(U) =

(
v k

c2(k)
k v

)
and R(U) =

(
0

v∗−v
τ

)
.

2There are other versions of (26)that differ in values taken by μ. Payne (1971), for example, gives μ = − v
′
∗
2
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This system is strictly hyperbolic because its characteristics, the eigenvalues of the Jacobian
matrix A(U), are real and distinctive

λ1,2 = v ± c(k), λ1 < λ2. (32)

The same is true for the LW model, because, through introduction of two auxiliary variables w = qt

and z = qx the LW model can be transformed into a system of PDEs
(

w

z

)
t

+

(
0 1

−D
T 0

)(
w

z

)
x

= −
(

0
w + Cz

)
, (33)

whose characteristics are

λ1,2 = ∓
√

D

T
, λ1 < λ2.

The two higher-order models differ, however, in that the general PW model is genuinely nonlinear
while the LW model is linearly degenerate.

Although both the LWR model and the general PW model are hyperbolic, the latter has two
characteristics, one is always slower than traffic and the other always faster than traffic, owing to
c(k) < 0. This is constrasted to the single characteristic of the LWR model, λ∗ = v∗(k) + kv

′
∗(k)

that is always slower than traffic. These differences have profound consequences on the behavior
of these models, which we shall discuss in the context of various kinds traffic waves.

3.1 Propagation of traffic sound waves in higher-order models

We first note that traffic sound waves—the propagation of small disturbances in homogeneous
traffic—travel at characteristic speeds in the LWR model. In higher-order models, there are two
families of characteristics, thus two characteristic speeds. If a disturbance is still propagated at
characteristic speeds, then it travels in both directions of traffic with different speeds, reaching
drivers from front and behind. This can be checked through writing the higher-order model in
question, here the LW model, in a special form⎧⎨

⎩(∂t + C∂x) +

⎛
⎝∂t +

√
D

T
∂x

⎞
⎠
⎛
⎝∂t −

√
D

T
∂x

⎞
⎠
⎫⎬
⎭ q = 0.

where ∂t + () ∗ ∂x is called a wave operator.
From this special form, one can clearly see that the LW model possesses three families of waves:

the first order wave traveling at the convection speed c∗ = C (which is also the characteristic speed
of the corresponding first-order model qt + Cqx = 0), the slower second order wave traveling at the
first characteristic speed c1 = −

√
D
T and the faster second order wave traveling at the speed of the

second characteristic c2 =
√

D
T . For certain parameter values of D and T , the second characteristic

speed can be greater than the convection speed, indicating that fast waves reach traffic from behind
(the rear view mirror effect). In fact, this is also required for LW traffic to be stable. Otherwise
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the first-order signals would violate the second-order signals, which leads to traffic instability. The
general stability condition for the above higher-order model is

c1 ≤ c∗ ≤ c2, (34)

that is, the first order waves are sandwiched between the two second order waves. This stability
condition can be derived from Fourier stability analysis (e.g., Whitham 1974, Kühne 1984, Zhang
1999).

For the general PW model, small perturbations around equilibrium points (k0, v0) would prop-
agate in the same way as the waves in the LW model, only with different wave speeds. Instead of
c∗ = C, c1 = −

√
D
T , c2 =

√
D
T , here we have c∗ = λ∗(k0), c1 = v0 + c(k0), and c2 = v0 − c(k0).

Because of c(k) < 0, fast waves in the general PW model also reaches vehicles from behind.
There are subtle differences among special cases of the general PW model. In the PW model,

where c(k) = c0, the stability condition (34) can be violated and waves grow in magnitude and
eventually become shocks in the form of roll waves (Whitham 1974, Kuhne 1984) while in Zhang’s
model where c(k) = kv

′
∗(k) the stability condition is always satisfied and waves always damp in

magnitude (Zhang 1999). Thus, like the LWR model, Zhang’s model is also inherently stable.
Moreover, the asymptotic behavior of small perturbations of the kind k = k0 + ξ(x, t), v = v0 +
w(x, t) near equilibrium point (k0, v0) (v0 = v∗(k0) and ξ,w are small perturbations) in the PW and
Zhang models also differ. Such perturbations to Zhang’s model can be accurately approximated by
a convection equation

ξt + λ∗(k0)ξx = 0, (35)

while those to the PW model can be accurately approximated by a diffusion equation

ξt + λ∗(k0)ξx = D∗ξxx, or (36)

ξt′ = D∗ξx′x′ (37)

if a moving coordinate x
′
= x − λ∗(k0)t, t

′
= t is used, where D∗ is the diffusion coefficient, and

is given by −(λ1(k0, v0) − λ∗(k0))(λ2(k0, v0) − λ∗(k0)), a positive constant (Whitham 1974, del
Castillo et al. 1994, and Zhang 1999). Driven by relaxation, any non-equilibrium state (k, v) in the
PW model will become closer and closer to its corresponding equilibrium state (k, v∗(k)) with the
increase of time. This latter behavior, together with the properties of Eq. 37 (i.e., its solutions are
smooth), implies that at the end of a queue the PW model does backward smoothing to a sharp
density/speed profile, thus predicting possibly negative travel speeds (Daganzo 1995a). Zhang’s
model, however, is absent of this problem because its solutions are not diffusive.

3.2 Propagation of shock and expansion waves

When traffic conditions undergo sharp transitions, shocks or expansion waves arise. The LWR
theory possesses both types of waves and whether a particular kind of wave arises is determined
by the entropy condition. A LWR shocks has zero width and travels at a particular speed given by
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the Rankine-Hugoniot condition s = [f∗]/[k], which is derived from the integral conservation law.
The general PW model also has similar properties. It has both kinds of waves, actually two for
each kind—one associated with the first characteristic and the other with the second characteristic.
The first is referred to as 1-shock or 1-rarefaction waves, and the second 2-shock or 2- rarefaction
waves. Whether a shock or expansion wave arises in a general PW solution is also dependent on
entropy conditions, and they are as follows (Zhang 2000a):

1-Shock, (E-H1): λ1(Ur) < s < λ1(Ul), s < λ2(Ur), (38)

2-Shock, (E-H2): λ2(Ur) < s < λ2(Ul), s > λ1(Ul), (39)

1-Rarefaction, (E-R1): λ1(Ul) < λ1(Ur), (40)

2-Rarefaction, (E-R2): λ2(Ul) < λ2(Ur), (41)

And the speeds of shocks are also given by the Rankine-Hugoniot conditions derived from
integral conservation laws. A difficulty arises, however, from the fact that the momentum equation
is not a conservation law, it is simply an evolution equation for travel speeds. As a result, we do
not have a unique corresponding integral conservation law for the momentum equation, that is,
there are many different integral conservation forms that lead to the momentum equation. Two
such examples are:

∂

∂t

∫ x2

x1

v(x, t)dx =

(
v2

2
+ φ(k)

)
(x1, t) −

(
v2

2
+ φ(k)

)
(x2, t) (42)

+
∫ x2

x1

v∗ − v

τ
dx, φ

′
(k) =

c2(k)
k

,

∂

∂t

∫ x2

x1

(kv)(x, t)dx =

(
(kv)2

k
+ ψ(k)

)
(x1, t) −

(
(kv)2

k
+ ψ(k)

)
(x2, t) (43)

+
∫ x2

x1

kv∗ − kv

τ
dx, ψ

′
(k) = c2(k).

We cannot tell, from physical principles, which integral form is “correct”. The selection of a
particular integral form should therefore be guided by field observations, i.e., choosing the one that
produces closest shock speeds to field measurements. For illustration purposes, we shall take the
simplest, i.e., the first integral form in our subsequent presentations. The same arguments can be
applied directly to other integral forms. The first integral momentum equation leads to following
conservative differential form:

vt +

(
v2

2
+ φ(k)

)
x

=
v∗ − v

τ
.

together with the conservation of mass

kt + (kv)x = 0,
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we obtain the system of “conservation ” laws with a source term:

Ut + F (U)x = R(U), (44)

where F (U) =
(
kv, v2

2 + φ(k)
)t

, and U , R are as defined before.
The shock speeds of the general PW model is not affected by the presence of the source term,

and is still given by the Rankine-Hugoniot condition:

s[U ] = [F (U)], (45)

or

s[k] = [kv], s[v] =

[
v2

2
+ φ(k)

]
.

These equations imply a certain relation between k and v. This relation leads to the shock curves
(1-shock & 2-shock ) in the k − v phase plane (Zhang 2000a).

Expansion (or rarefaction) waves of the general PW model, however, are influenced by the
relaxation source term. The strength of this influence is determined by the relaxation time. In a
short time (compared to the relaxation time), one can neglect the effect of the source term and
obtain certain relations between k, v in an expansion wave solution. These are the 1-rarefaction and
2-rarefaction curves in the k − v phase plane (Zhang 2000a). Over time, however, the cumulative
effects of the source term, relaxation, build up into rarefaction wave solutions, and one addresses this
problem by modifying the solutions obtained without the source term. Also because of relaxation,
the general PW model either approaches to the LWR model or a viscous LWR model kt +(kv∗)x =
D∗kxx, depending on the choice of c(k).

Clearly one cannot ignore the effects of relaxation. Nevertheless, the study of the general PW
model without relaxation

Ut + F (U)x = 0 (46)

reveals much information about the properties of the general PW model with relaxation. And
computations of numerical solutions to the general PW model often rely on the Riemann solutions
of (46). Therefore we provide here the solutions of Riemann problems to the general PW model
without relaxation (46) (see Zhang 2000a for details).

The solution to the Riemann problem

Ut + F (U)x = 0, (47)

U (x, t = 0) =

{
Ul, x < 0
Ur , x > 0

(48)

are of 8 kinds:

1. 1-shock:

H1: vr − vl = −
√

2(kl − kr)(φ(kl) − φ(kr))
kl + kr

, kl < kr. (49)
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2. 2-shock:

H2: vr − vl = −
√

2(kl − kr)(φ(kl) − φ(kr))
kl + kr

, kl > kr. (50)

3. 1-rarefaction:
R1: vr =

∫
kl

c(k)
k

dk, kl > kr (51)

4. 2-rarefaction:
R2: vr =

∫
kl

c(k)
k

dk, kl < kr (52)

5. 1-shock + 2-shock:

H1: vm − vl = −
√

2(kl − km)(φ(kl) − φ(km))
kl + km

, kl < km. (53)

H2: vr − vm = −
√

2(km − kr)(φ(km) − φ(kr))
km + kr

, km > kr . (54)

6. 1-rarefaction + 2-rarefaction:

R1: vm =
∫

kl

c(k)
k

dk, kl > km (55)

R2: vr =
∫

km

c(k)
k

dk, km < kr (56)

7: 1-rarefaction + 2-shock:

H1: vm − vl = −
√

2(kl − km)(φ(kl) − φ(km))
kl + km

, kl < km. (57)

H2: vr − vm = −
√

2(km − kr)(φ(km) − φ(kr))
km + kr

, km > kr . (58)

8: 1-shock + 2-rarefaction:

H1: vm − vl = −
√

2(kl − km)(φ(kl) − φ(km))
kl + km

, kl < km. (59)

R2: vr =
∫

km

c(k)
k

dk, km < kr (60)

where Um = (km, vm)t is an intermediate state that provides the transition from a 1-wave to a
2-wave.

The transitions are most clearly seen from the phase diagram (Fig. 5). Note that for a state
Ul, there are four special curves (H1, R1, H2, R2) emanating from that point, dividing the quarter
plane of k − v into four regions: I, II, III, IV. If the downstream Ur in the Riemann problem falls
in region I, the solution would be of Type 6 ( R1+ R2); in region II, Type 7 (R1+ H2), in region
III, Type 5 (H1+H2), and in region IV, Type 8 (H1 + R2). Because of the entropy conditions, the
intermediate states always fall on a 1-wave curve (i.e., R1, H1). When Ur falls on a particular wave
curve, then the transition involves only one kind of wave and no intermediate state is produced.
These are the types 1-4 solutions.
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Figure 5: Phase transition diagram in the solution of Riemann problems (adopted from Zhang
(2000a))

3.3 Traveling waves, instability and roll waves

Besides traffic sound waves, shock waves and expansion waves, there is another kind of waves in
the general PW theory. This is the so-called traveling waves (Whitham 1974, Zhang 1999). It is
a wave that has a smooth profile and travels at a constant speed, and takes the following form:
(k, v)(x, t) = (k, v)(χ), χ = x − st (Fig. 7(a)). For the traveling wave solution to arise, a certain
stability condition has to be met. When this condition is violated, another kind of waves, the roll
waves, may arise. A roll wave is a series of smooth, monotonic profiles separated by jumps (Fig.
6). The existence of roll waves is a direct consequence of traffic instability.

In this section we first obtain the traveling waves, then construct roll waves based on the
traveling wave solution. Recall that a traveling wave is a steady profile with a translation speed s:

(k, v)(x, t) = (k, v)(χ), χ = x − st. (61)

Substitute the traveling wave solution (61) into the general PW model, one obtains

−skχ + (kv)χ = 0, (62)

−svχ + vvχ +
c2(k)

k
kχ =

v∗ − v

τ
, (63)
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which after integration and further substitution of terms become(
c2(k) − Q2

k2

)
kχ = f∗(k)− Q − ks, (64)

where Q is an integration constant and

Q = k(v − s). (65)

Because the two states at x = ±∞, (k, v) = (k1,2, v1,2) both satisfy (65), one can compute the
speed of the traveling wave

s =
k1v1 − k2v2

k1 − k2
,

which is the same as the shock speed given by the Rankine-Hugonoit condition.
Let h(k) denote the right hand side of (64), then h”(k) = f”(k) < 0. Moreover, h(k) crosses

the k−axis at most twice at ka, kb, ka ≤ kb. These crossing points corresponding to equilibrium
concentration values and in between them h(k) > 0 (Zhang 1999). Since both (k, v) = (k1,2, v1,2)
are equilibrium points, k1,2 are also roots of h(k). Moreover, we have k1 < k2, or kχ > 0 from the
fact that f∗(k) is strictly concave. Thus, for a smooth profile of k(χ) to exist, we must have

c2(k)− Q2

k2
> 0,

which yields the following stability condition

v + c(k) < s < v − c(k). (66)

That is, the traveling wave must travel slower than the fast characteristic and faster than the slow
characteristic.

When the stability condition is met, the smooth traveling wave profile can be obtained by
integrating

dχ

dk
=

c2(k)− Q2

k2

f∗(k) −Q − ks
, (67)

which is given by:

χ =
∫ k c2(η) − Q2

η2

f∗(η) −Q − ηs
dη. (68)

When the stability condition (66) is violated, that is, the traveling wave travels either faster
than the fast characteristic or slower than the slow characteristic, a smooth profile connecting k1

and k2 is no longer possible and a discontinuity (i.e., shock) must be inserted at the location where
the wave turns back on itself. This time one still obtains a monotonic profile but with a shock
separates two smooth pieces (Fig. 7(b)), and the speed of the shock is determined by the R-H
shock condition.

There is a special case when the stability condition is not met. This is the case where both the
numerator and denominator of (67) vanishes, which leads to non-smooth and periodic solutions to
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Figure 6: Roll waves in the moving coordinate χ

Figure 7: Traveling waves and shocks in the PW model
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the general PW model, often referred to as roll waves in hydraulic literature. Note that the physical
solution of these two algebraic equations is Q = −k0c(k0), where Q is the constant flux measured
relative to the moving coordinate χ and k0 is the critical density that makes both the numerator
and denominator of (67) vanish. It is necessary that (k0, v0) is an equilibrium state, which fixes the
shock speed s = v∗(k0) + c(k0). The critical state also fixes the integration constant in the profile
equation (68). The roll waves can then be constructed, in the same manner as shown in Dressler
(1949), by piecing together the smooth profiles with shocks at appropriate locations, which in turn
are determined by the R-H shock conditions. Although the existence of roll wave solutions in the
PW model were known to transportation researchers not long after the development of the PW
model (e.g., Leutzbach 1985), no one to date has obtained specific roll wave solutions to compare
with real world observations of stop-start waves. With the development of Section 3.2, however,
this can now be done.

3.4 Summary and Discussions

The PW-like higher-order traffic flow models extend the basic kinematic wave traffic flow model
in two ways: they allow for non-equilibrium phase transitions and introduce instability. These
are achieved through the addition of a momentum equation that describes speed evolution. The
resulting flow obtained from these higher-order models, however, are not all that different than
those obtained from the basic kinematic wave model—shocks, for example, exist in both types of
models. Moreover, owning to relaxation, similar types of solutions (e.g. shocks or expansion waves)
of these two families of models become much similar in long time (typically 10τ).

On the other hand, some significant differences also exist between the two family of models. For
one, higher-order models have two family of characteristics and waves as compared to one family of
the kinematic wave model. While the first family of waves in the higher-order models behave much
like those in the kinematic wave model, the second family behaves quite differently—they travel
faster than traffic, and reaches vehicles from behind. This property of the second characteristic
has led to doubts about the validity of higher-order traffic models and interesting discussions over
the pros and cons of higher-order approximations of traffic flow in general (e.g., Daganzo 1995a,
Papageorgiou 1998, Lebacque 1999, Zhang 2001). Because following vehicles usually cannot force
leading ones to speed up or slow down. fast-than-traffic waves are quite unrealistic when traffic is
on a single-lane highway. When traffic is flowing on a multi-lane highway and passing is allowed,
such faster-than-traffic waves do arise as a result of 1) lane-changing, or 2) averaging, or both (see
Zhang 2000c for details). Another difference between the two types of models is that higher-order
models contain traveling wave and roll wave solutions while the KW model does not. Roll wave
solutions are particularly interesting because of their similarity to observed stop-start waves.

Like the kinematic wave model, higher-order models can also be extended to model inhomo-
geneous roads. This is particularly straightforward with the PW model— one simply replace the
homogeneous equilibrium speed-density relation v∗(k) with a space-dependent one v∗(k, x). The
extension of higher-order models to model road networks, however, is not as straightforward and is
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a worthwhile research topic for traffic flow researchers.
One of the motivations for developing the PW model was to remove shocks from the model

solutions. This, however, is not fulfilled by the higher-order models that we have covered up to
now, although the PW model does admit smooth traveling wave solutions. Higher-order space
derivatives, in the form of kxx or vxx must be introduced to obtain shocks with a structure. We
call these models diffusive or viscous (higher-order) models. In contrast, PW like models are called
inviscid higher-order models. The next section briefly introduces some of the popular viscous traffic
models, and a stochastic extension to a particular viscous higher-order model.

4 Diffusive, viscous and stochastic traffic flow models

4.1 Diffusive and viscous traffic flow models

The first diffusive traffic flow model, which was mentioned in the classical book of Whitham (1974)
was obtained by considering a flux that is dependent not only on vehicle concentration, but also
on the concentration gradient:

q = f∗(k) − νkx,

which, after substitution into the conservation equation, leads to

kt + f∗(k)x = νkxx, (69)

where ν is a positive parameter.
This diffusive model, when f∗(k) is quadratic, can be manipulated into the following form

ct + ccx = νcxx, c = f
′
∗(k), (70)

which is the well-known Burger’s equation.
Analytical solutions to the Burger’s equation with given initial data can be obtained through

the so-called Cole-Hopf transformation. We refer the reader to Whitham (1974, pp 96-112) for the
detailed solution formulas and only discuss the qualitative properties of various kinds of solutions
to the Burger’s equation. These are:

1. The solution to the initial value problem ct + ccx = νcxx, c(x, t = 0) = F (x) always exists,
and is smooth after t > 0.

2. When ν → 0, the solution approaches that of ct + ccx = 0.

3. For initial data F (x) =

{
cl x < 0
cr x > 0,

cl > cr (A step function), the solution is a traveling

wave c(x − st), with s = c1+c2
2 . The width of the traveling wave, as measured by the range

where 90% of the change in cl − cr occurs, is proportional to ν
cl−cr

. As ν → 0, the width of
the traveling wave becomes nil and the traveling wave becomes a shock of ct + ccx = 0. Thus
the viscous model provides a shock structure to the LWR model.
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4. For initial data F (x) = Aδ(x) (A single hump), the solution is a nonlinear diffusion wave,
similar to those of the heat equation ct = νcxx when R = A

2ν � 1.

5. Also, N-waves and periodic waves can be found in the solution with proper initial data.

Clearly, the addition of the second order derivative kxx to the LWR conservation law does two
things to it because of diffusion: 1) it smoothes the shocks of the LWR conservation law, thereby
providing a shock structure, and 2) it guarantees the uniqueness of solution for small ν, thereby
providing a way to pick solutions from the LWR conservation law. This latter property is often
exploited in numerical computations of shock wave solutions.

The diffusion corrected conservation law of (69), when f∗(k) is not quadratic, can be approx-
imated by the Burger’s equation. In fact, the aforementioned properties of the Burger’s equation
(except Property #2, which must be modified) are shared by all known diffusion corrected or
viscous traffic flow models, including the following popular viscosity-corrected PW model:(

k

v

)
t

+

(
v k

c2(k)
k v

)(
k

v

)
x

=

(
0

v∗−v
τ

)
+

(
0 0
0 ν

)(
k

v

)
xx

. (71)

The viscosity-corrected PW model, however, can become unstable in certain ranges of traffic and
therefore has additional properties. These properties, including the collapse of homogeneous traffic
under local and global perturbations and the formation of vehicle-clusters in stop-and-go traffic, are
well documented in (Kerner &Konhaüser 1993, 1994; Kerner, Konhaüser & Schilke 1995; Kerner and
Rehborn 1999; Kühne & Beckschulte 1993). Interested readers are referred to the aforementioned
literature for detailed discussions of these properties.

4.2 Acceleration noise and a stochastic flow model

Same as section 5.3 in the original text.

5 Numerical approximations of continuum models

All of our continuum models are described by partial differential equations, some (i.e, LWR, PW
and Zhang) are hyperbolic while others (e.g., the viscous model of (69)) parabolic. Proper ini-
tial/boundary conditions must be prescribed to these equations to form a well posed problem. The
solutions of continuum models involving general initial/boundary conditions are tedious, if not
difficult, to obtain analytically. Numerical procedures are often employed to solve such problems.

Typically, finite difference methods are applied to solve hyperbolic traffic flow models while
finite difference or finite element methods are used to solve parabolic traffic flow models. Both
methods start with a discretization of the time-space domain (t ≥ 0,−L < x < L), with the
following grid mesh being the most common:

xi = ih, i = 0,±1,±2, · · · , L/h,

tj = jk, j = 0, 1, 2, · · · , T/k.
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where h ≡ Δx and k ≡ Δt, and (xi, tj) are the grid points of this mesh.
Let the values of U (x, t) on those grid points denoted by Uj

i (see Fig. 8). Then the time-space
derivatives in a continuum model can be approximated using values at these grid points, and we
obtain a set of finite difference equation(s) (FDE). For example, the space derivative Ux can be
approximated in a number of ways:

[Ux]ji =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Uj
i −Uj

i−1

h , Forward Difference
Uj

i+1−Uj
i−1

2h , Center Difference
Uj

i+1−Uj
i

h , Backward Difference

(72)

Figure 8: Time-space grid

However, the numerical approximation of continuum models is not a simple exercise of replacing
continuous variables and their derivatives with discrete ones and their differences. This is particu-
larly true for hyperbolic traffic models, because in these models discontinuities or shock waves can
develop spontaneously even from smooth initial data. The existence of shocks presents a major
challenge to the development of numerical approximations that are consistent with and convergent
to the model equations when the mesh size is further and further refined. A valid approximation
must meet the following three conditions:

1. it is consistent with the original PDE, i.e., the FDE converges to the PDE when h and κ

approach 0 (consistency),

2. numerical errors introduced by the FDE do not increase over time ( stability), and

3. its solutions converge to the right solutions of the original PDE when h and κ approach 0
(convergence).

In this section we present two consistent, stable and convergent finite difference approximations
of the system (31) with initial/boundary data of (73) and a finite element approximation of the
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viscous model (33) with the same initial and boundary data. It should noted that the LWR,
PW and Zhang models can all be expressed in the form of (31). Therefore the finite difference
approximations presented here applies to all three models. We begin our presentation with finite
difference approximations.

5.1 Finite difference methods for solving inviscid models

In this section we present two finite difference schemes to solve the system of (31) with the following
initial/boundary data:

I.C.: U(x, 0) = U0(x), −L ≤ x ≤ L

B.C.: U(−L, t) = U−(t), U(L, t) = U+(t), t ≥ 0.
(73)

where U0 and U± are vector valued functions of space and time, respectively, and may contain a
countable number of jumps. This system of equations include the Kinematic wave model of LWR,
the higher-order models of Payne-Whitham and of Zhang.

It turns out that a particular form of hyperbolic PDEs, called the conservative form, is specially
suited for developing finite difference schemes that ensure the aforementioned three conditions. A
conservative form of (31), for example, is given by (44), i.e.,

Ut + F (U)x = R(U).

(44) is called a conservative form because it arises from certain conservative phenomena in convec-
tive transport:

∂

∂t

∫
L

U (x, t)dx +
∫

∂L
F (U)dx =

∫
L

R(U)dx. (74)

For example, the conservation of vehicles on a finite road segment [x1, x2] leads to a specific case
of (74):

∂

∂t

∫ x2

x1

k(x, t)dx + (kv)(x2, t)− (kv)(x1, t) =
∫ x2

x1

r(k, v)dx. (75)

Using the conservative form, we can develop a conservative finite difference approximation of (44).
The advantage of a conservative finite difference approximation is that it ensures the correct com-
putation of shock speeds. A finite difference approximation of (44) is conservative if it can be
written as

U j+1
i − U j

i

κ
+

F̃ (U j
i+1, U

j
i ) − F̃ (U j

i , U j
i−1)

h
= R̃(U j

i+1, U
j
i , U

j
i−1), (76)

where F̃ in (76) is called numerical flux (explained later) 3. When a finite difference scheme is
in conservative form, the condition for consistency is particularly simple. It requires that the
numerical flux function satisfies

F̃ (U, U) = F (U).
3The argument list of the numerical flux function can involve more than two nodal points, depending on the

required accuracy of the finite difference approximation. (76) uses two nodal values to compute its numerical flux

and is first order accurate.
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Examples of consistent conservative finite difference schemes in traffic flow are the finite difference
schemes of (Michalopoulos, Beskos & Lin (1984)), (Daganzo 1994), and (Lebacque, 1996) in the
scalar case (i.e., the LWR model), the finite difference scheme of Leo and Pretty (Leo and Pretty
1992) and Zhang (2000b) in the system case (e.g., the PW model).

A consistent, conservative finite difference approximation, if linear, is guaranteed to converge
to the correct solution if it meets a stability condition (LeVeque 1992). This condition, generally
referred to as the CFL (Courant-Friedrichs-Lewy) condition, says that the cell advance speed h

κ

cannot be greater than the maximum absolute characteristic velocity, i.e.,

max
∣∣∣∣κhλi

∣∣∣∣ ≤ 1, i = 1, · · · , n.

Although this theorem has not been proven for most nonlinear systems, computational expe-
riences indicate that the CFL condition is sufficient to ensure convergence for a large number of
nonlinear systems. Thus we require the CFL condition in all of our finite difference approximations.

The remaining task in our finite difference approximations is to obtain the numerical flux
function that ensures the consistency, stability and convergence properties. Before explaining what
a numerical flux function is, we first make clear what U

j
i represents in our scheme of things. Suppose

that u(x, t) is a weak solution of the integral conservation law (74). We can write (74) as
∫ xi+1/2

xi−1/2

u(x, tj+1)dx =
∫ xi+1/2

xi−1/2

u(x, tj)dx +
∫ tj+1

tj

∫ xi+1/2

xi−1/2

R(u(x, t))dxdt (77)

−
[∫ tj+1

tj
F (u(xi+1/2, t)dt −

∫ tj+1

tj
F (u(xi−1/2, t)dt

]

where i− 1/2 and i + 1/2 denotes the left and right boundary of cell i (see Fig. 8), respectively.
If we interpret Uj

i as the cell average

Uj
i =

1
h

∫ xi+1/2

xi−1/2

u(x, tj)dx (79)

then
F̃ (U j

i+1, U
j
i ) =

1
κ

∫ tj+1

tj
F (u(xi+1/2, t)dt (80)

is the average flux passing through the cell boundary xi+1/2 in the time interval (tj , tj+1), and

hR̃ =
1
κ

∫ tj+1

tj

∫ xi+1/2

xi−1/2

R(u(x, t))dxdt

is the average inflow into cell i from the source during time interval (tj , tj+1). With these definitions,
the integral conservation law (74) reduces to (76), and this is why (76) is called a conservative
approximation.

There are a number of ways to construct a numerical flux function, perhaps the most intuitive
and illustrative is the one obtained using Godunov’s finite difference method. The Godunov method
solves locally a Riemann problem at each cell boundary for the time interval (tj, tj+1), using the
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cell averages U j
i as initial data. It then pieces together these Riemann solutions at time tj+1 and

average them using (79) to obtain new initial data for tj+2, and this process is repeated until T/k

is reached. Recall that the Riemann problem for the homogeneous equation

Ut + F (U)x = 0 (81)

of our continuum traffic models have been solved in Sections 2 and 3. We can then apply the
principle of superposition to solve the traffic models with source terms:

Ut + F (U)x = R(U). (82)

Using the aforementioned procedure, we obtain a Godunov type of difference equation for (44):

U j+1
i − Uj

i

k
+

F
(
U ∗j

i+1/2

)
− F

(
U∗j

i−1/2

)
h

= R̃. (83)

in which the numerical flux function reads

F̃ (U j
i+1, U

j
i ) = F

(
U

∗j
i+1/2

)
, (84)

and the source flux is computed by

R̃ = R

(
Ui+1 + Ui−1

2

)
.

The variables U ∗j
i+1/2, i = 0,±1,±2, · · · ,±L/h are obtained from solving a series of Riemann

problems to the homogeneous equation at cell boundaries. Owing to space limitations, we cannot
in this monograph fully describe how this is done for higher-order models (interested readers are
referred to Zhang 2000b). However, the computation of U∗j

i+1/2 is particularly simple when the
equilibrium relation v = v∗(k) is assumed. It leads to the following finite difference equation

kj+1
i − kj

i

k
+

f∗
(
k∗j

i+1/2

)
− f∗

(
k∗j

i−1/2

)
h

= 0, vj+1
i = v∗(k

j+1
i ), (85)

where the cell boundary flow f∗
(
k∗j

i+1/2

)
is given by a simple formula (LeVeque 1992, Bui, et. al.

1992):

f∗
(
ρ
∗j
i+1/2

)
=

⎧⎨
⎩

minkj
i ≤k≤ρj

i+1
f∗(k), if k

j
i < k

j
i+1

max
kj

i≥k≥ρj
i+1

f∗(k), if kj
i > kj

i+1

.

When f∗(k) is concave, this formula can be further streamlined through the introduction of a supply
and demand function for each cell (Daganzo 1994, 1995b; Lebacque 1996):

Demand: D(i, j) =

{
f∗(k

j
i ), if j

i < k∗
f(k∗), if j

i ≥ k∗ , (86)

Supply: S(i, j) =

{
f∗(k

j
i ), if kj

i > k∗
f(k∗), if kj

i ≤ k∗ , (87)
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where k∗ is the critical density at which f
′
∗(k∗) = 0. And we have

f∗
(
k
∗j
i+1/2

)
= min{Di, Si+1}, (88)

which also applies to boundary cells and bottlenecks.
Another difference approximation of (31) uses the idea of Lax-Friedrichs center differencing. It

leads to the following numerical flux:

F̃ (U j
i+1, U

j
i ) =

F (U j
i+1) + F (U j

i )
2

− h

κ

U j
i+1 + Uj

i

2
. (89)

It is easy to check that this flux function meets the consistency requirement and the resulting finite
difference approximation

U j+1
i =

U
j
i+1 + U

j
i

2
− κ

2h

[
F (U j

i+1) − F (U j
i−1)

]
+ hκR̃

is also conservative. This center difference scheme remained till recent years a popular choice
of approximation of the kinematic wave model (e.g., Michalopolous 1988, Michalopolous, Beskos
& Yamauchi 1984, Michalopolous, Kwon, & Khang 1991, Michalopolous, Lin, & Beskos 1987)
and being used lately to approximate higher-order models (Zhang 2000d). Zhang and Wu (1999)
investigated the convergence properties of this scheme and found that in comparison with Godunov-
type of schemes, the center difference scheme has faster convergence rate with respect to expansion
wave solutions and slower convergence rate with respect to shock solutions. The reason is that this
difference scheme has built-in numerical viscosity which smoothes shocks.

5.2 Finite element methods for solving viscous models

Apart from finite difference methods, the method of finite element is also employed to solve con-
tinuum traffic flow equations. In this section we show how the latter is used to solve the viscosity-
corrected PW equations.

First we introduce an auxiliary variable w : w = vx, and normalize all the state and time-space
variables in the following way:

k′ =
k

kjam
v′ =

v

vf
w′ =

w

vf
x′ =

x

vfτ
t′ =

t

τ
. (90)

Then the unknown variables in the viscosity-corrected PW model can be expressed by a vector

η =

⎛
⎜⎝

k′

v′

w′

⎞
⎟⎠ (91)

and the model itself by the following vector-valued quasi-linear partial differential equation:

Aηt + Bηx = C (92)
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with (note that for convenience the ′’s are dropped from the notations)

A =

⎛
⎜⎝

1 0 0
0 1 0
0 0 0

⎞
⎟⎠ B =

⎛
⎜⎝

v 0 0
1
k

1
Fr 0 1

Re

0 1 0

⎞
⎟⎠ C =

⎛
⎜⎝

−kw

−vw +v∗ −v

w

⎞
⎟⎠ , (93)

Fr ≡ Froude number =
kinetic energy (inertia influence)

potential energy(pressure)

=

(
1
2

)
kv2

f

c2
0k

=
(

vf

c0

)2

R ≡ Reynolds number =
length velocity

kinem. viscosity
=

v2
fτ

ν0
. (94)

The problem also comes with possibly two initial conditions and six boundary conditions. Be-
cause of the hyperbolic nature of the viscosity-corrected PW model, however, only certain combi-
nations of these initial/boundary data are allowed.

In the finite element method, we replace the continuous functions

η(x, t) =

⎛
⎜⎝

k(x, t)
u(x, t)
w(x, t)

⎞
⎟⎠ (95)

by functions defined as a lattice:

η(x0 + iΔx, t0 + jΔt) ≡ ηi,j (96)

and all derivatives by center difference quotients:

ηx → 1
2Δx

(ηi+1,j+1 − ηi,j+1 + ηi+1,j − ηi,j) (97)

and the function values by the midpoint values:

ηt → 1
2Δt

(ηi+1,j+1 + ηi,j+1 − ηi+1,j − ηi,j). (98)

η → 1
4
(ηi+1,j+1 + ηi,j+1 + ηi+1,j + ηi,j) (99)

We then do step-wise integration, starting from time step j = 0 and ending at time step j = J , as
shown in Fig. (fig 5.16 from original text). To ensure the stability of the numerical procedure, an
implicit integration scheme is used to compute the unknown variables ηi,j , ηi+1,j (for notational
simplicity we’ll drop subscript j in the remaining text of this section). It turns out that the
Newtonian iteration procedure is perfectly suited for this purpose. In this procedure the variables
ηi, ηi+1 are replaced by an approximation η̃i, ˜ηi+1 and the deviations δηi, δηi+1 are computed by
linearizing the original equations. Denoting the deviation vector by

δi ≡
⎛
⎜⎝

δ ki

δ ui

δ wi

⎞
⎟⎠ (100)
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then the basic equations can be written in the form of

Aiδi+1 + Biδi = Ri (101)

with (
α =

2
Δx

, β =
2

Δt
, κ =

1
Fr

=
c2
0

v2
f

)
(102)

Ai =

⎛
⎜⎝

β + αU + W Kx K

−U ′
e(K)− κKx

K2 + ακ 1
K β + W + 1 U − αν

0 α −1

⎞
⎟⎠ (103)

Bi =

⎛
⎜⎝

β − αU + W Kx K

−U ′
e(K) − κKx

K2 − ακ 1
K β + W + 1 U + αν

0 α −1

⎞
⎟⎠ (104)

Ri = −4

⎛
⎜⎝

Kt + KxU + K

Ut + UW − Ue(K) + U + κKx
K − νWx

Ux −W

⎞
⎟⎠ (105)

where abbreviations
K =

1
4
(ki+1 + ki + ki+1,j + ki,j) (106)

Kt =
1

2Δt
(ki+1 + ki − ki+1,j − ki,j) (107)

are used.
Starting with the initial condition as the lowest approximation

ηi = ηi,j=0 ηi−1 = 0 (108)

and using the left boundary condition

ki=0,j , Vi=0,j =⇒ δ0 =

⎛
⎜⎝

0
0

δw0

⎞
⎟⎠ (109)

the δi is computed recursively by
δi+1 = A−1

i (Ri −Biδi) (110)

as a function of δw0, which in turn is determined by the right boundary condition

vi=I,j =⇒ δI =

⎛
⎜⎝

δkI

0
δwI

⎞
⎟⎠ . (111)

An alternative rearrangement of the deviations δi is possible in order to produce a tridiagonal
form which facilitates the fit of the boundary conditions (Kerner and Konhaüser, 1993).
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5.3 Applications

5.3.1 Calibration of model parameters with field measurements

All the continuum models discussed in this monograph contain certain static relations and pa-
rameters. These relations include, for the LWR model, the fundamental diagram f∗(k), and for
higher-order models, v∗(k). Since f∗(k) = kv∗(k), knowing one would know the other. The pa-
rameters include, but not limited to, free flow speed vf , jam wave speed cj , sound speed c0(< 0)
(PW model), jam density kjam, critical density kc, capacity qc, and relaxation time τ (PW model).
These relations and parameters capture certain fundamental characteristics of the local driving
environment and driver population, and have to be calibrated/obtained locally before application
of the corresponding models. The attainment of the parameters are achieved in two ways: direct
measurement and data fitting. The former, when its cost is acceptable, is always preferred if there’s
a a choice of the two.

The interpretations of the parameters, in most cases, are straightforward and intuitive, which
also suggest ways to measure them directly from field data. Among the various speeds, for example,
one can easily measure free flow speed and jam wave speed, but not traffic sound speed c0. For those
parameters that can be directly measured, to obtain them is a simple matter of data gathering and
processing and we will not elaborate on them here. Rather, we focus on the calibration of those
parameters that have confusing interpretations in literature and are difficult to measure directly.
These include sound speed c0 and relaxation time τ .

Recall that the definition of traffic sound speed is the speed of sound waves minus the speed of
traffic that carries these sound waves. In the LWR model, the sound wave speeds are f

′
∗(k), and

the traffic speed is v∗(k), therefore c0 = f
′
∗(k)− v∗(k) = kv

′
∗(k) is variable. That is, sound speed in

the LWR (and Zhang’s model for that matter) is not a fundamental parameter. The PW model,
however, fixes the sound speed c0 as a fundamental parameter and assumes that it is a constant.
The latter assumption is questionable because it is unlikely that drivers respond to stimuli with
the same intensity under free-flow and jam traffic conditions. With that being said, we turn our
attention to the possible ways of measuring c0. Recall that λ1,2 = v ± c0 in the PW model, which
suggests that if we can measure the speed of the slower wave λ1 and traffic speed v, we can then
compute the sound speed c0. This can be done with instrumented vehicles on a single lane-highway
where one can measure the acceleration, speed and position of each vehicle in the traffic stream.
Clearly, this is a costly way of obtaining sound speed and is rarely done in practice. In reality, c0,
together with another parameter τ , is obtained through data fitting.

Before describing the data fitting procedure, we want to reexamine the interpretation of τ , such
that we have a sense of its range and would know roughly if the value obtained from our data fitting
exercise makes sense. Relaxation in traffic flow refers to the process where non-equilibrium traffic
approaches equilibrium traffic overtime4. The pace of this process is controlled by relaxation time
τ . Clearly, τ takes the human reaction time as its lower limit, which is about 1 − 1.8 seconds. Its

4one should not confuse the latter with free-flow traffic, although free-flow traffic is also equilibrium traffic, so is

jam traffic!
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upper limit, in theory, can be infinite. In practice, one never observes congestion that lasts longer
than a day, not to mention infinite. The upper limit of relaxation, one speculates, would be in the
order of a few minutes, the period of a stop-start wave. This speculation tends to be supported by
existing calibration exercises (del Castillo and Benitez 1995, Cremer et al 1993, Kühne 1991, 1984,
Papageorgiou et al 1990) that reported τ values ranging from1.8s to 108s.

The calibration of model parameters through data fitting usually involves the following steps:

1. Data collection: collection of road data in the forms of number of lanes, locations of ramps,
and so forth, and traffic data, in the forms of time series data of flux, occupancy and spot
speeds, at various locations,

2. Numerical approximations of the traffic flow model involved,

3. Calibration: obtain the fundamental diagram for each location from measured data, which in
turn determines parameters such as free-flow speed, jam density, capacity flux, and jam wave
speed, and obtain other parameters in the model through data fitting.

The process of data fitting involves minimizing some pre-defined performance measures. One
common measure is the sum of square errors between model outputs and measured data:

PI = γ1

∫
dt (vcal.(d, t) − vmeas.(d, t))2 + γ2

∫
dt (kcal.(d, t) − kmeas.(d, t))2 (112)

which is a function of model parameters to be calibrated, e.g.,

PI = PI(c0, τ) (113)

for the PW model.
Because of the hyperbolic nature of the continuum traffic flow models, it is crucial to make sure

that the finite difference or finite element approximations are correct and accurate. For this reason
it is advocated that another step be added to the calibration or validation procedure: the step of
checking the finite difference approximation (Zhang 2001). The best way to check the correctness
of a numerical approximation, apart from theoretical considerations, is to run through benchmark
problems, such as Riemann problems. In this way one can rid of transient and boundary conditions
that may hide the inadequacies of the approximation (Zhang 2001).

For the specific examples of calibrating the model parameters, the readers are referred to the
following literature:

• del Castillo and Benitez 1995 (A2 Amsterdam-Utrecht, the Netherlands).

• Kühne and Langbein-Euchner 1993 (A3 Fürth-Erlangen near Nuremberg, Germany)

• Papageorgiou et al 1990 (Boulevard Peripherique, Paris, France), and

• Sailer 1996 (Interstate 35W in Minneapolis, Minnesota, U.S.A.).
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5.3.2 Multilane traffic flow dynamics

Numerical examples of a two-lane ring road to be provided by Panos?

5.3.3 Traffic flow on a ring road with a bottleneck5

In this section we use the finite difference approximations of the LWR and PW models developed
earlier to simulate traffic on a ring road. The length of the ring road is L = 800l = 22.4 km. The
simulation time is T = 500τ = 2500 s = 41.7 min. We partition the road [0, L] into N = 100 cells
and the time interval [0, T ] into K = 500 steps. Hence, the length of each cell is Δx = 0.224 km
and the length of each time step is Δt = 5 s. Since λ∗ ≤ vf = 5l/τ , we find the CFL condition
number

λ∗
Δt

Δx
≤ 0.625 < 1.

Moreover, we adopt in this simulation the fundamental diagram used in (Kerner and Konhäuser,
1994; Herrman and Kerner, 1998) with the following parameters: the relaxation time τ = 5 s; the
unit length l = 0.028 km; the free flow speed vf = 5.0l/τ = 0.028 km/s = 100.8 km/h; the jam
density of a single lane ρj = 180 veh/km/lane; c0 = 2.48445l/τ = 0.014 km/s = 50.0865 km/h;
The equilibrium speed-density relationship is therefore

v∗(ρ, a(x)) = 5.0461

⎡
⎣
(

1 + exp{[ ρ

a(x)ρj
− 0.25]/0.06}

)−1

− 3.72 × 10−6

⎤
⎦ l/τ,

where a(x) is the number of lanes at location x. The equilibrium functions v∗(ρ, a(x)) and f∗(ρ, a(x))
are given in Figure 9.

The first simulation is about the homogeneous LWR model. Here we assume that the ring road
has single lane everywhere; i.e., a(x) = 1, for x ∈ [0, L] , and use a global perturbation as the initial
condition

ρ(x, 0) = ρh + Δρ0 sin 2πx
L , x ∈ [0, L],

v(x, 0) = v∗(ρ(x, 0), 1), x ∈ [0, L],
(114)

with ρh = 28 veh/km and Δρ0 = 3 veh/km; and the corresponding initial condition (114) is depicted
in Figure 10.

The results are shown as contour plots in Figure 11, from which we observe that initially wave
interactions are strong but gradually the bulge sharpens from behind and expands from front to
form a so-called N -wave that travels around the ring with a nearly fixed profile.

In the second simulation we created a bottleneck on the ring road with the following lane
configuration:

a(x) =

{
1, x ∈ [320l, 400l),
2, elsewhere .

(115)

5The results in this section are from unpublished material of Jin and Zhang (2000a,b)
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Figure 9: The Kerner-Konhäuser model of speed-density and flow-density relations

Figure 10: Initial condition (114) with ρh = 28 veh/km and Δρ0 = 3 veh/km
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Figure 11: Solutions of the homogeneous LWR model with initial condition in Figure 10
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As before, we also use a global perturbation as the initial condition

ρ(x, 0) = a(x)(ρh + Δρ0 sin 2πx
L ), x ∈ [0, L],

v(x, 0) = v∗(ρ(x, 0), a(x)), x ∈ [0, L],
(116)

with ρh = 28 veh/km/lane and Δρ0 = 3 veh/km/lane (the corresponding initial condition (116) is
depicted in Figure 12).

Figure 12: Initial condition (116) with ρh = 28 veh/km/lane and Δρ0 = 3 veh/km/lane

The results for this simulation are shown in Figure 13, and are more interesting. We observe
from this figure that at first flow increases in the bottleneck to make the bottleneck saturated, then
a queue forms upstream of the bottleneck, whose tail propagates upstream as a shock. In the same
time, traffic emerges from the bottleneck accelerates in an expansion wave. After a while, all the
commotion settles and an equilibrium state is reached, where a stationary queue forms upstream
of the bottleneck, whose in/out flow rate equals the capacity of the bottleneck.

The third and fourth simulation runs are for the PW model, where we used the same initial con-
ditions for density as in the first and second simulations, respectively, but different initial conditions
for traffic speeds. These initial conditions (I.C.) are
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Figure 13: Solutions of the inhomogeneous LWR model with initial condition (116)
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I.C. for the third simulation

a(x) = 1, x ∈ [0, L]
ρ(x, 0) = ρh + Δρ0 sin 2πx

L , x ∈ [0, L],
v(x, 0) = v∗(ρh, 1) + Δv0 sin 2πx

L , x ∈ [0, L].
(117)

I.C. for the fourth simulation

a(x) =

{
1, x ∈ [320l, 400l)
2, elsewhere

ρ(x, 0) = a(x)(ρh + Δρ0 sin 2πx
L ), x ∈ [0, L],

v(x, 0) = v∗(ρh, a(x)) + Δv0 sin 2πx
L , x ∈ [0, L].

(118)

The parameters are ρh = 28 veh/km, Δρ0 = 3 veh/km and Δv0 = 0.002 km/s.
Again we use the same time step and cell size, which yields a CFL number of

λ2
Δt

Δx
≤ 0.9375 < 1

that ensures numerical stability of our finite difference approximation. The results of these simu-
lation runs are shown in Figure 14 and Figure 15 respectively. Note that the PW model solution
for the homogeneous road is slightly different that the corresponding LWR solution due to non-
equilibrium initial speed, but the PW solution soon (about 10τ) looks very much like the LWR
solution. This can be seen more clearly from time-slice plots of vehicle density, speed and flow rate
shown in Figure 16. As can been seen from that figure, the solutions are nearly indistinguishable
after t = 140τ . In contrast, the PW solution for the inhomogeneous road, although shows similar
patterns as the the corresponding LWR solution, does not converge to the LWR solution in long
time (see Figure 15 & Figure 17). In long time, both solutions predict the same location of the
tail anb head of the queue, but different discharge rate from the queue—traffic leaving the queue
at capacity flow rate in the LWR solution, but below capacity flow rate in the PW solution (see
Figure 17). This result highlights not only the differences between the two models, but also the
importance and need for careful experimental validations of these models6.

6The pikes in density that exceed jam density are possibly caused by traffic being unstable near the tail of the

queue.
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Figure 14: Solutions of the PW model with initial condition (117)
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Figure 15: Solutions of the PW model with initial condition (118)
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Figure 16: Comparison of the LWR model and the PW model on a homogeneous ring road: Solid
line is used for the LWR model, and dashed line for the PW model
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Figure 17: Comparison of the LWR model and the PW model on an inhomogeneous ring road:
Solid line is used for the LWR model, and dashed line for the PW model
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CHAPTER 6 - Frequently used Symbols

Note to reader: The symbols used in Chapter 6 are the same as those used in the original sources.  Therefore, the reader is cautioned that
the same symbol may be used for different quantities in different sections of this chapter.  The symbol definitions below include the sections
in which the symbols are used if the particular symbol definition changes within the chapter or is a definition particular to this chapter.
In each case, the symbols are defined as they are introduced within the text of the chapter.  Symbol units are given only where they help
define the quantity; in most cases, the units may be in either English or metric units as necessary to be consistent with other units in a
relation.

A = area of town (Section 6.2.1)
c = capacity (vehicles per unit time per unit width of road) (Section 6.2.1)
D = delay per intersection (Section 6.2.2)
f = fraction of area devoted to major roads (Section 6.1.1)
f = fraction of area devoted to roads (Section 6.2.1)
f = number of signalized intersections per mile (Section 6.2.2)
f = fraction of moving vehicles in a designated network (Section 6.3)r

f = fraction of stopped vehicles in a designated network (Section 6.3)s

f = minimum fraction of vehicles stopped in a network (Section 6.4)s,min

I = total distance traveled per unit area, or traffic intensity (pcu/hour/km) (Sections 6.1.1 and 6.2.3)
J = fraction of roadways used for traffic movement (Section 6.2.1)
K = average network concentration (ratio of the number of vehicles in a network and the network length, Section 6.4)
K = jam network concentration (Section 6.4)j

N = number of vehicles per unit time that can enter the CBD (Section 6.2.1)
n = quality of traffic indicator (two-fluid model parameter, Section 6.3)
Q = capacity (pcu/hr) (Section 6.2.2)
Q = average network flow, weighted average over all links in a designated network (Section 6.4)
q = average flow (pcu/hr)
R = road density, i.e., length or area of roads per unit area (Section 6.2.3)
r = distance from CBD
T = average travel time per unit distance, averaged over all vehicles in a designated network (Section 6.3)
T = average minimum trip time per unit distance (two-fluid model parameter, Section 6.3)m

T = average moving (running) time per unit distance, averaged over all vehicles in a designated network (Section 6.3)r

T = average stopped time per unit distance, averaged over all vehicles in a designated network (Section 6.3)s

V = average network speed, averaged over all vehicles in a designated network (Section 6.4)
V = network free flow speed (Section 6.4)f

V = average maximum running speed (Section 6.2.3)m

V = average speed of moving (running) vehicles, averaged over all in a designated network (Section 6.3)r

v = average speed
v = weighted space mean speed (Section 6.2.3)
v = average running speed, i.e., average speed while moving (Section 6.2.2)r

w = average street width
� = Zahavi’s network parameter (Section 6.2.3)
� = g/c time, i.e. ration of effective green to cycle length
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6.
MACROSCOPIC FLOW MODELS

Mobility within an urban area is a major component of that area's level provides this measurement in terms of the three basic
quality of life and an important issue facing many cities as they variables of traffic flow: speed, flow (or volume), and
grow and their transportation facilities become congested.  There concentration.  These three variables, appropriately defined, can
is no shortage of techniques to improve traffic flow, ranging also be used to describe traffic at the network level.  This
from traffic signal timing optimization (with elaborate, description must be one that can overcome the intractabilities of
computer-based routines as well as simpler, manual, heuristic existing flow theories when network component interactions are
methods) to minor physical changes, such as adding a lane by the taken into account.
elimination of parking.  However, the difficulty lies in evaluating
the effectiveness of these techniques.  A number of methods The work in this chapter views traffic in a network from a
currently in use, reflecting progress in traffic flow theory and macroscopic point of view.  Microscopic analyses run into two
practice of the last thirty years, can effectively evaluate changes major difficulties when applied to a street network:
in the performance of an intersection or an arterial.  But a
dilemma is created when these individual components, 1) Each street block (link) and intersection are modeled
connected to form the traffic network, are dealt with collectively. individually.  A proper accounting of the interactions

The need, then, is for a consistent, reliable means to evaluate case of closely spaced traffic signals) quickly leads to
traffic performance in a network under various traffic and intractable problems.
geometric configurations.  The development of such
performance models extends traffic flow theory into the network 2) Since the analysis is performed for each network
level and provides traffic engineers with a means to evaluate component, it is difficult to summarize the results in a
system-wide control strategies in urban areas.  In addition, the meaningful fashion so that the overall network performance
quality of service provided to the motorists could be monitored can be evaluated.
to evaluate a city's ability to manage growth.  For instance,
network performance models could also be used by a state Simulation can be used to resolve the first difficulty, but the
agency to compare traffic conditions between cities in order to second remains; traffic simulation is discussed in Chapter 10.
more equitably allocate funds for transportation system
improvements. The Highway Capacity Manual (Transportation Research Board

The performance of a traffic system is the response of that service, yet does not address the problem at the network level.
system to given travel demand levels.  The traffic system consists While some material is devoted to assessing the level of service
of the network topology (street width and configuration) and the on arterials, it is largely a summation of effects at individual
traffic control system (e.g., traffic signals, designation of one- intersections.  Several travel time models, beginning with the
and two-way streets, and lane configuration).  The number of travel time contour map, are briefly reviewed in the next section,
trips between origin and destination points, along with the followed by a description of general network models in Section
desired arrival and/or departure times comprise the travel 6.2.  The two-fluid model of town traffic, also a general network
demand levels.  The system response, i.e., the resulting flow model, is discussed separately in Section 6.3 due to the extent of
pattern, can be measured in terms of the level of service the model's development through analytical, field, and simulation
provided to the motorists.  Traffic flow theory at the intersection studies.  Extensions of the two-fluid model into general network
and arterial models are examined in Section 6.4, and the chapter references

between adjacent network components (particularly in the

1994) is the basic reference used to evaluate the quality of traffic

are in the final section.

6.1  Travel Time Models

Travel time contour maps provide an overview of how well a dispatched away from a specified location in the network, and
street network is operating at a specific time.  Vehicles can be each vehicle's time and position noted at desired intervals.



I � A exp � r/a

f � B exp � r/b ,
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(6.1)

(6.2)

Contours of equal travel time can be established, providing  case, general model forms providing the best fit to the data were
information on the average travel times and mean speeds over
the network.  However, the information is limited in that the
travel times are related to a single point, and the study would
likely have to be repeated for other locations.  Also, substantial
resources are required to establish statistical significance.  Most
importantly, though, is that it is difficult to capture network
performance with only one variable (travel time or speed in this
case), as the network can be offering quite different levels of
service at the same speed.

This type of model has be generalized by several authors to
estimate average network travel times (per unit distance) or
speeds as a function of the distance from the central business
district (CBD) of a city, unlike travel time contour maps which
consider only travel times away from a specific point.

6.1.1 General Traffic Characteristics 
as a Function of the Distance 
from the CBD

Vaughan, Ioannou, and Phylactou (1972) hypothesized several
general models using data from four cities in England.  In each

selected.  Traffic intensity (I, defined as the total distance
traveled per unit area, with units of pcu/hour/km) tends to
decrease with increasing distance from the CBD,

where r is the distance from the CBD, and A and a are
parameters.  Each of the four cities had unique values of A and
a, while A was also found to vary between peak and off-peak
periods.  The data from the four cities is shown in Figure 6.1.
A similar relation was found between the fraction of the area
which is major road (f) and the distance from the CBD,

where b and B are parameters for each town.  Traffic intensity
and fraction of area which is major road were found to be
linearly related, as was average speed and distance from the
CBD.  Since only traffic on major streets is considered, these 

Figure 6.1
Total Vehicle Distance Traveled Per Unit Area on Major Roads as a 

Function of the Distance from the Town Center (Vaughan et al. 1972).



v � a r b

v � c � ar b ,

v � a � br .

v � a � be �cr ,

v �

1�b 2 r 2

a�cb 2 r 2

�� ����������� ���	��
���

� � �

(6.3)

(6.4)

(6.5)

(6.6)

(6.7)

results are somewhat arbitrary, depending on the streets selected had been fitted to data from a single city (Angel and Hyman
as major. 1970).  The negative exponential asymptotically approaches

6.1.2 Average Speed as a Function of
Distance from the CBD

Branston (1974) investigated five functions relating average
speed (v) to the distance from the CBD (r) using data collected
by the Road Research Laboratory (RRL) in 1963 for six cities in
England.  The data was fitted to each function using least-
squares regression for each city separately and for the aggregated
data from all six cities combined.  City centers were defined as
the point where the radial streets intersected, and the journey
speed in the CBD was that found within 0.3 km of the selected
center.  Average speed for each route section was found by
dividing the section length by the actual travel time
(miles/minute).  The five selected functions are described below,
where a, b, and c are constants estimated for the data.  A power
curve,

was drawn from Wardrop's work (1969), but predicts a zero
speed in the city center (at r = 0).  Accordingly, Branston also
fitted a more general form,

where c represents the speed at the city center.

Earlier work by Beimborn (1970) suggested a strictly linear
form, up to some maximum speed at the city edge, which was
defined as the point where the average speed reached its
maximum (i.e., stopped increasing with increasing distance from
the center).  None of the cities in Branston's data set had a clear
maximum limit to average speed, so a strict linear function alone
was tested:

A negative exponential function,

some maximum average speed.

The fifth function, suggested by Lyman and Everall (1971),

also suggested a finite maximum average speed at the city
outskirts.  It had originally be applied to data for radial and ring
roads separately, but was used for all roads here.

Two of the functions were quickly discarded: The linear model
(Equation 6.5) overestimated the average speed in the CBDs by
3 to 4 km/h, reflecting an inability to predict the rapid rise in
average speed with increasing distance from the city center.  The
modified power curve (Equation 6.4) estimated negative speeds
in the city centers for two of the cities, and a zero speed for the
aggregated data.  While obtaining the second smallest sum of
squares (negative exponential, Equation 6.6, had the smallest),
the original aim of using this model (to avoid the estimation of
a zero journey speed in the city center) was not achieved.

The fitted curves for the remaining three functions (negative
exponential, Equation 6.6; power curve, Equation 6.3; and
Lyman and Everall, Equation 6.7) are shown for the data from
Nottingham in Figure 6.2.  All three functions realistically
predict a leveling off of average speed at the city outskirts, but
only the Lyman-Everall function indicates a leveling off in the
CBD.  However, the power curve showed an overall better fit
than the Lyman-Everall model, and was preferred.  

While the negative exponential function showed a somewhat
better fit than the power curve, it was also rejected because of its
greater complexity in estimation (a feature shared with the
Lyman-Everall function).  Truncating the power function at
measured downtown speeds was suggested to overcome its
drawback of estimating zero speeds in the city center.  The
complete data set for Nottingham is shown in Figure 6.3,
showing the fitted power function and the truncation at r = 0.3
km.
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Figure 6.2
Grouped Data for Nottingham Showing Fitted a) Power Curve, 

b) Negative Exponential Curve, and c) Lyman-Everall Curve 
(Branston 1974, Portions of Figures 1A, 1B, and 1C).

Figure 6.3
Complete Data Plot for Nottingham; Power Curve 

Fitted to the Grouped Data (Branston 1974, Figure 3).
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If the data is broken down by individual radial routes, as shown Hutchinson (1974) used RRL data collected in 1967 from eight
in Figure 6.4, the relation between speed and distance from the cities in England to reexamine Equations 6.3 and 6.6 (power
city center is stronger than when the aggregated data is curve and negative exponential) with an eye towards simplifying
examined. them.

Figure 6.4
Data from Individual Radial Routes in Nottingham, 

Best Fit Curve for Each Route is Shown (Branston 1974, Figure 4).
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(6.8)
(6.9)

(6.10)

(6.11)

(6.12)

The exponents of the power functions fitted by Branston (1974) city.  Assuming that any speed between 50 and 75 km/h would
fell in the range 0.27 to 0.36, suggesting the following make little difference, Hutchinson selected 60 km/h, and
simplification

When fitted to Branston's data, there was an average of 18 30 percent (on the average) over the general form used by
percent increase in the sum of squares.  The other parameter, k, Branston.  R was found to be strongly correlated with the city
was found to be significantly correlated with the city population, population, as well as showing different averages with peak and
with different values for peak and off-peak conditions.  The
parameter k was found to increase with increasing population, population nor the peak vs. off-peak conditions.  The difference
and was 9 percent smaller in the peak than in the off-peak.

In considering the negative exponential model (Equation 6.6),
Hutchinson reasoned that average speed becomes less
characteristic of a city with increasing r, and, as such, it would used RRL data collected in 1967 from eight cities in England to
be reasonable to select a single maximum limit for v for every

Hutchinson found that this model raised the sum of squares by

off-peak conditions, while a was correlated with neither the city

in the Rs between peak and off-peak conditions (30 percent
higher during peaks) implies that low speeds spread out over
more of the network during the peak, but that conditions in the
city center are not significantly different.  Hutchinson (1974)

reexamine Equations 6.3 and 6.6 (power curve and negative
exponential) with an eye towards simplifying them.

6.2  General Network Models

A number of models incorporating performance measures other
than speed have been proposed.  Early work by Wardrop and
Smeed (Wardrop 1952; Smeed 1968) dealt largely with the
development of macroscopic models for arterials, which were
later extended to general network models.

6.2.1  Network Capacity

Smeed (1966) considered the number of vehicles which can
"usefully" enter the central area of a city, and defined N as the
number of vehicles per unit time that can enter the city center.
In general, N depends on the general design of the road network,
width of roads, type of intersection control, distribution of
destinations, and vehicle mix.  The principle variables for towns
with similar networks, shapes, types of control, and vehicles are:
A, the area of the town; f, the fraction of area devoted to roads;
and c, the capacity, expressed in vehicles per unit time per unit
width of road (assumed to be the same for all roads).  These are
related as follows:

where � is a constant.  General relationships between f and
(N/c�A) for three general network types (Smeed 1965) are
shown in Figure 6.5.  Smeed estimated a value of c (capacity per
unit width of road) by using one of Wardrop's speed-flow
equations for central London (Smeed and Wardrop 1964),

where v is the speed in kilometers/hour, and q the average flow
in pcus/hour, and divided by the average road width, 12.6
meters,

A different speed-flow relation which provided a better fit for
speeds below 16 km/h resulted in c = 68 -0.13 v  (Smeed 1963).2

Equation 6.12 is shown in Figure 6.6 for radial-arc, radial, and
ring type networks for speeds of 16 and 32 km/h.  Data from
several cities, also plotted in Figure 6.6, suggests that �c=30,  
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Note: (e=excluding area of ring road, I=including area of ring road)

Figure 6.5
Theoretical Capacity of Urban Street Systems (Smeed 1966, Figure 2).

Figure 6.6
Vehicles Entering the CBDs of Towns Compared with the Corresponding

Theoretical Capacities of the Road Systems (Smeed 1966, Figure 4).
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(6.13)

(6.14)

and using the peak period speed of 16 km/h in central London,
Equation 6.10 becomes

where v is in miles/hour and A in square feet.  It should be noted
that f represents the fraction of total area usefully devoted to
roads.  An alternate formulation (Smeed 1968) is

where f is the fraction of area actually devoted to roads, while J
is the fraction of roadways used for traffic movement.  J was
found to range between 0.22 and 0.46 in several cities in
England.  The large fraction of unused roadway is mostly due to
the uneven distribution of traffic on all streets.  The number of
vehicles which can circulate in a town depends strongly on their
average speed, and is directly proportional to the area of usable
roadway.  For a given area devoted to roads, the larger the
central city, the smaller the number of vehicles which can
circulate in the network, suggesting that a widely  dispersed town
is not necessarily the most economical design.

6.2.2  Speed and Flow Relations

Thomson (1967b) used data from central London to develop a
linear speed-flow model.  The data had been collected once
every two years over a 14-year period by the RRL and the
Greater London Council.  The data consisted of a network-wide
average speed and flow each year it was collected.  The average
speed was found by vehicles circulating through central London
on predetermined routes.  Average flows were found by first
converting measured link flows into equivalent passenger
carunits, then averaging the link flows weighted by their
respective link lengths.  Two data points (each consisting of an
average speed and flow) were found for each of the eight years
the data was collected: peak and off-peak.

Plotting the two points for each year, Figure 6.7, resulted in a
series of negatively sloped trends.  Also, the speed-flow capacity
(defined as the flow that can be moved at a given speed)
gradually increased over the years, likely due to geometric and
traffic control improvements and "more efficient vehicles."  This
indicated that the speed-flow curve had been gradually changing,
indicating that each year's speed and flow fell on different curves.
Two data points were inadequate to determine the shape of the
curve, so all sixteen data points were used by accounting for the

Figure 6.7
Speeds and Flows in Central London, 1952-1966, 
Peak and Off-Peak (Thomson 1967b, Figure 11) 
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(6.15)

changing capacity of the network, and scaling each year's flow The equation implies a free-flow speed of about 48.3 km/h
measurement to a selected base year.  Using linear regression, however, there were no flows less than 2200 pcu/hour in the
the following equation was found: historical data.

where v is the average speed in kilometers/hour and q is the
average flow in pcu/hour.  This relation is plotted in Figure 6.8.

Thomson used data collected on several subsequent Sundays
(Thomson 1967a) to get low flow data points.  These are
reflected in the trend shown in Figure 6.9.Also shown is a curve
developed by Smeed and Wardrop using data from a single year
only.

Note: Scaled to 1964 equivalent flows.
Figure 6.8

Speeds and Scaled Flows, 1952-1966 (Thomson 1967b, Figure 2).

Figure 6.9
Estimated Speed-Flow Relations in Central London 

(Main Road Network) (Thomson 1967b, Figure 4).
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(6.16)

(6.17)

(6.18)

(6.19)

(6.20)

The selected area of central London could be broken into inner
and outer zones, distinguished principally by traffic signal
densities, respectively 7.5 and 3.6 traffic signals per route-mile.
Speed and flow conditions were found to be significantly
different between the zones, as shown in Figure 6.10, and for the
inner zone,

and for the outer zone,

Wardrop (1968) directly incorporated average street width and
average signal spacing into a relation between average speed and
flow, where the average speed includes the stopped time.  In
order to obtain average speeds, the delay at signalized
intersections must be considered along with the running speed
between the controlled intersections, where running speed is
defined as the average speed while moving.  Since speed is the
inverse of travel time, this relation can be expressed as:

where v is the average speed in mi/h, v , the running speed inr

mi/h, d  the delay per intersection in hours, and f the number of
signalized intersections per mile.  Assuming v  = a(1-q/Q) andr

d = b/(1-q/�s), where q is the flow in pcu/hr, Q is the capacity
in pcu/hr, � is the g/c time, and s is the saturation flow in pcu/hr,
and combining into Equation 6.18,

Using an expression for running speed found for central London
(Smeed and Wardrop 1964; RRL 1965), 

Figure 6.10
Speed-Flow Relations in Inner and Outer Zones of Central Area 

(Thomson 1967a, Figure 5).
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(6.21)

(6.22)

(6.23)

(6.24)

(6.25)

(6.26)

where w is the average roadway width in feet, and an average
street width of 42 feet (in central London), Equation 6.20
becomes v  = 28 - 0.0056 q, or 24 mi/h, whichever is less.  Ther

coefficient of q was modified to 0.0058 to better fit the observed
running speed.

Using observed values of 0.038 hours/mile stopped time, 2180
pcu/hr flow, and 2610 pcu/hr capacity, the numerator of the
second term of Equation 6.19 (fb) was found to be 0.0057.
Substituting the observed values into Equation 6.19,

Simplifying,

Revising the capacity to 2770 pcu/hour (to reflect 1966 data),
thus changing the coefficient of q in the second term of Equation
6.21 to 0.071, this equation provided a better fit than Thomson's
linear relation (Thomson 1967b) and recognizes the known
information on the ultimate capacity of the intersections.

Generalizing this equation for urban areas other than London,
and knowing that the average street width in central London was
12.6 meters, the running speed can be written

Since a/w = 0.0058 when w = 42 by Equation 6.21, a=0.0244,
then

For the delay term, five controlled intersections per mile and a
g/c of 0.45 were found for central London.  Additionally, the
intersection capacity was assumed to be proportional to the
average stop line width, given that it is more than 5 meters wide
(RRL 1965), which was assumed to be proportional to the
roadway width.  The general form for the delay equation (second
term of Equation 6.21) is

where k is a constant.  For central London, w = 42, � =  0.45,
and k�w = Q = 2770, thus k = 147, yielding

Given that f = 5 signals/mile and fb = 0.00507 for central
London, b = 0.00101, yielding

Combining, then, for the general equation for average speed:

The sensitivity of Equation 6.26 to flow, average street width,
number of signalized intersections per mile, and the fraction of
green time are shown in Figures 6.11, 6.12, and 6.13.  By
calibrating this relation on geometric and traffic control features
in the network, Wardrop extended the usefulness of earlier speed
flow relations.  While fitting nicely for central London, the
applicability of this relation to other cities in its generalized
format (Equation 6.26) is not shown, due to a lack of available
data.
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Figure 6.11
Effect of Roadway Width on Relation Between Average (Journey) 

Speed and Flow in Typical Case (Wardrop 1968, Figure 5).

Figure 6.12
Effect of Number of Intersections Per Mile on Relation Between 

Average (Journey) Speed and Flow in Typical Case (Wardrop 1968, Figure 6).
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(6.27)

(6.28)

Figure 6.13
Effect of Capacity of Intersections on Relation Between 

Average (Journey) Speed and Flow in Typical Case (Wardrop 1968, Figure 7).

Godfrey (1969) examined the relations between the average �-relationship, below, and the two-fluid theory of town traffic.
speed and the concentration (defined as the number of vehicles The two-fluid theory has been developed and applied to a greater
in the network), shown in Figure 6.14, and between average extent than the other models discussed in this section, and is
speed and the vehicle miles traveled in the network in one hour, described in Section 6.3.
shown in Figure 6.15.  Floating vehicles on circuits within the
network were used to estimate average speed and aerial
photographs were used to estimate concentration. 

There is a certain concentration that results in the maximum flow
(or the maximum number of miles traveled, see Figure 6.15),
which occurs around 10 miles/hour.  As traffic builds up past
this optimum, average speeds show little deterioration, but there
is excessive queuing to get into the network (either from car
parking lots within the network or on streets leading into the
designated network).  Godfrey also notes that expanding an
intersection to accommodate more traffic will move the queue to
another location within the network, unless the bottlenecks
downstream are cleared.

6.2.3 General Network Models
Incorporating Network Parameters

Some models have defined specific parameters which intend to
quantify the quality of traffic service provided to the users in the
network.  Two principal models are discussed in this chapter, the

Zahavi (1972a; 1972b) selected three principal variables, I, the
traffic intensity (here defined as the distance traveled per unit
area), R, the road density (the length or area of roads per unit
area), and v, the weighted space mean speed.  Using data from
England and the United States, values of I, v, and R were found
for different regions in different cities.  In investigating various
relationships between I and v/R, a linear fit was found between
the logarithms of the variables:

where � and m are parameters.  Trends for London and
Pittsburgh are shown in Figure 6.16.  The slope (m) was found
to be close to -1 for all six cities examined, reducing Equation
6.27 to

where � is different for each city.  Relative values of the
variables were calculated by finding the ratio between observed
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Figure 6.15
Relationship Between Average (Journey) Speed of Vehicles 

and Total Vehicle Mileage on Network (Godfrey 1969, Figure 2).

Figure 6.14
Relationship Between Average (Journey)
Speed and Number of Vehicles on Town
Center Network (Godfrey 1969, Figure 1).
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Figure 6.16
The ��-Relationship for the Arterial Networks of London and Pittsburgh, 

in Absolute Values (Zahavi 1972a, Figure 1).

values of I and v/R for each sector and the average value for the
entire city.  The relationship between the relative values is
shown in Figure 6.17, where the observations for London and
Pittsburgh fall along the same line.

The physical characteristics of the road network, such as street
widths and intersection density, were found to have a strong
effect on the value of � for each zone in a city.  Thus, � may
serve as a measure of the combined effects of the network
characteristics and traffic performance, and can possibly be used
as an indicator for the level of service.   The � map of London is
shown in Figure 6.18.  Zones are shown by the dashed lines,
with dotted circles indicating zone centroids.  Values of � were
calculated for each zone and contour lines of equal � were
drawn, showing areas of (relatively) good and poor traffic flow
conditions.  (The quality of traffic service improves with
increasing �.)

Unfortunately, Buckley and Wardrop (1980) have shown that �
is strongly related to the space mean speed, and Ardekani
(1984), through the use of aerial photographs, has shown that �
has a high positive correlation with the network concentration.

The two-fluid model also uses parameters to evaluate the level
of service in a network and is described in Section 6.3.

6.2.4  Continuum Models

Models have been developed which assume an arbitrarily fine
grid of streets, i.e., infinitely many streets, to circumvent the
errors created on the relatively sparse networks typically used
during the trip or network assignment phase in transportation
planning (Newell 1980).  A basic street pattern is superimposed
over this continuum of streets to restrict travel to appropriate
directions.  Thus, if a square grid were used, travel on the street
network would be limited to the two available directions (the x
and y directions in a Cartesian plot), but origins and destinations
could be located anywhere in the network.  

Individual street characteristics do not have to be specifically
modeled, but network-wide travel time averages and capacities
(per unit area) must be used for traffic on the local streets.  Other
street patterns include radial-ring and other grids (triangular, for
example).
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Figure 6.17
The ��-Relationship for the Arterial Networks of London and Pittsburgh, 

in Relative Values (Zahavi 1972a, Figure 2).

Figure 6.18
The ��-Map for London, in Relative Values (Zahavi 1972b, Figure 1).
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While the continuum comprises the local streets, the major (within the constraints provided by the superimposed grid) to the
streets (such as arterials and freeways) are modeled directly. network of major streets.
Thus, the continuum of local streets provides direct access

6.3  Two-Fluid Theory

An important result from Prigogine and Herman's (1971) kinetic
theory of traffic flow is that two distinct flow regimes can be
shown.  These are individual and collective flows and are a
function of the vehicle concentration.  When the concentration
rises so that the traffic is in the collective flow regime, the flow
pattern becomes largely independent of the will of individual
drivers.  

Because the kinetic theory deals with multi-lane traffic, the two-
fluid theory of town traffic was proposed by Herman and
Prigogine (Herman and Prigogine 1979; Herman and Ardekani
1984) as a description of traffic in the collective flow regime in
an urban street network.  Vehicles in the traffic stream are
divided into two classes (thus, two fluid): moving and stopped
vehicles.  Those in the latter class include vehicles stopped in the
traffic stream, i.e., stopped for traffic signals and stop signs,
stopped for vehicles loading and unloading which are blocking
a moving lane, stopped for normal congestion, etc., but excludes
those out of the traffic stream (e.g., parked cars).

The two-fluid model provides a macroscopic measure of the
quality of traffic service in a street network which is independent
of concentration.  The model is based on two assumptions: 

(1) The average running speed in a street network is
proportional to the fraction of vehicles that are moving,
and 

(2) The fractional stop time of a test vehicle circulating in
a network is equal to the average fraction of the
vehicles stopped during the same period.  

The variables used in the two-fluid model represent network-
wide averages taken over a given period of time. 

The first assumption of the two-fluid theory relates the average
speed of the moving (running) vehicles, V , to the fraction ofr

moving vehicles, f , in the following manner:r

(6.29)

where V  and n are parameters.  V  is the average maximumm      m

running speed, and n is an indicator of the quality of traffic
service in the network; both are discussed below.  The average
speed, V, can be defined as V  f , and combining with Equationr r

6.29,

(6.30)

Since f  + f  = 1, where f  is the fraction of vehicles stopped,r s    s
Equation 6.30 can be rewritten

(6.31)

Boundary conditions are satisfied with this relation: when f =0,s

V=V , and when f =1, V=0.m    s

This relation can also be expressed in average travel times rather
than average speeds.  Note that T represents the average travel
time, T  the running (moving) time, and T  the stop time, all perr      s

unit distance, and that T=1/V, T =1/V , and T =1/V , where Tr r m m m
is the average minimum trip time per unit distance.  

The second assumption of the two-fluid model relates the
fraction of time a test vehicle circulating in a network is stopped
to the average fraction of vehicles stopped during the same
period, or

(6.32)

This relation has been proven analytically (Ardekani and
Herman 1987), and represents the ergodic principle embedded
in the model, i.e., that the network conditions can be represented
by a single vehicle appropriately sampling the network.

Restating Equation 6.31 in terms of travel time,
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(6.33)

Incorporating Equation 6.32,

(6.34)

realizing that T = T  + T , and solving for T ,r s     r

(6.35)

The formal two-fluid model formulation, then, is

(6.36)

A number of field studies have borne out the two-fluid model
(Herman and Ardekani 1984; Ardekani and Herman 1987; the y-intercept (i.e., T at T =0), and n by the slope of the curve.
Ardekani et al. 1985); and have indicated that urban street Data points representing higher concentration levels lie higher
networks can be characterized by the two model parameters, n
and T .  These parameters have been estimated usingm

observations of stopped and moving times gathered in each
network.  The log transform of Equation 6.35, 

(6.37)

provides a linear expression for the use of least squares analysis.

Empirical information has been collected with chase cars
following randomly selected cars in designated networks.  Runs
have been broken into one- or two-mile trips, and the running
time (T ) and total trip time (T) for each one- or two-mile tripr

from the observations for the parameter estimation.  Results tend
to form a nearly linear relationship when trip time is plotted
against stop time (Equation 6.36) as shown in Figure 6.19 for
data collected in Austin, Texas.  The value of T  is reflected bym

s

along the curve.

Note: Each point represents one test run approximately 1 or 2 miles long. 

Figure 6.19
Trip Time vs. Stop Time for the Non-Freeway Street Network of the Austin CBD 

(Herman and Ardekani 1984, Figure 3).
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6.3.1  Two-Fluid Parameters

The parameter T  is the average minimum trip time per unitm
distance, and it represents the trip time that might be
experienced by an individual vehicle alone in the network with
no stops.  This parameter is unlikely to be measured directly,
since a lone vehicle driving though the network very late at night
is  likely  to  have  to  stop  at  a  red traffic signal or a stop sign.
T , then, is a measure of the uncongested speed, and a higherm
value would indicate a lower speed, typically resulting in poorer
operation.  T  has been found to range from 1.5 to 3.0m
minutes/mile, with smaller values typically representing better
operating conditions in the network.

As stop time per unit distance ( T  ) increases for a single values

of n, the total trip time also increases.  Because T=T +T , ther s 
total trip time must increase at least as fast as the stop time.  If
n=0, T  is constant (by Equation 6.35), and trip time wouldr

increase at the same rate as the stop time.  If n>0, trip time
increases at a faster rate than the stop time, meaning that running
time is also increasing.  Intuitively, n must be greater than zero,
since  the  usual  cause  for  increased  stop  time  is  increased

 congestion, and when congestion is high, vehicles when moving,
travel at a lower speed (or higher running time per unit distance)
than they do when congestion is low.  In fact, field studies have
shown that n varies from 0.8 to 3.0, with a smaller value
typically indicating better operating conditions in the network.
In other words, n is a measure of the resistance of the network to
degraded operation with increased demand.  Higher values of n
indicate networks that degrade faster as demand increases.
Because the two-fluid parameters reflect how the network
responds to changes in demand, they must be measured and
evaluated in a network over the entire range of demand
conditions.

While lower n and T  values represent, in general, better trafficm
operations in a network, often there is a tradeoff.  For example,
two-fluid trends for four cities are shown in Figure 6.20.  In
comparing Houston (T =2.70 min/mile, n=0.80) and Austinm

(T =1.78 min/mile, n=1.65), one finds that traffic in Austinm
moves at significantly higher average speeds during off-peak
conditions (lower concentration); at higher concentrations, the
curves essentially overlap, indicating similar operating
conditions.  Thus, despite a higher value of n, traffic conditions

Note: Trip Time vs. Stop Time Two-Fluid Model Trends for CBD Data From the Cities of Austin, Houston, and San Antonio,
Texas, and Matamoros, Mexico. 

Figure 6.20
Trip Time vs. Stop Time Two-Fluid Model Trends 

(Herman and Ardekani 1984, Figure 6).
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are better in Austin than Houston, at least at lower being chased imitating the other driver's actions so as to reflect,
concentrations.  Different values of the two-fluid parameters are as closely as possible, the fraction of time the other driver spends
found for different city street networks, as was shown above and stopped.  The objective is to sample the behavior of the drivers
in Figure 6.21.  The identification of specific features which have in the network as well as the commonly used routes in the street
the greatest effect on these parameters has been approached network.  The chase car's trip history is then broken into one-
through extensive field studies and computer simulation.

6.3.2  Two-Fluid Parameters: Influence
     of Driver Behavior

Data for the estimation of the two-fluid parameters is collected
through chase car studies, where the driver is instructed to follow
a randomly selected vehicle until it either parks or leaves the
designated network, after which a nearby vehicle is selected and
followed.  The chase car driver is instructed to follow the vehicle

mile (typically) segments, and T  and T calculated for each mile.r

The (T ,T) observations are then used in the estimation of ther
two-fluid parameters.

One important aspect of the chase car study is driver behavior,
both that of the test car driver and the drivers sampled in the
network.  One study addressed the question of extreme driver
behaviors, and found that a test car driver instructed to drive
aggressively established a significantly different two-fluid trend
than one instructed to drive conservatively in the same network
at the same time (Herman et al. 1988).

Note: Trip Time vs. Stop Time Two-Fluid Model Trends for Dallas and Houston, Texas, compared to the trends in Milwaukee,
Wisconsin, and in London and Brussels.

Figure 6.21
Trip Time vs. Stop Time Two-Fluid Model Trends Comparison 

(Herman and Ardekani 1984, Figure 7).
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The two-fluid trends resulting from the these studies in two cities at lower network concentrations, the aggressive driver can take
are shown in Figure 6.22.  In both cases, the normal trend was advantage of the less crowded streets and significantly lower his
found through a standard chase car study, conducted at the same trip times.
time as the aggressive and conservative test drivers were in the
network.  In both cases, the two-fluid trends established by the As shown in Figure 6.22b, aggressive driving behavior more
aggressive and conservative driver are significantly different.  In closely reflects normal driving habits in Austin, suggesting more
Roanoke (Figure 6.22a), the normal trend lies between the aggressive driving overall.  Also, all three trends converge at
aggressive and conservative trends, as expected.  However, the high demand (concentration) levels, indicating that, perhaps, the
aggressive trend approaches the normal trend at high demand Austin network would suffer congestion to a greater extent than
levels, reflecting the inability of the aggressive driver to reduce Roanoke, reducing all drivers to conservative behavior (at least
his trip and stop times during peak periods.  On the other hand, as represented in the two-fluid parameters).

Note: The two-fluid trends for aggressive, normal, and conservative drivers in (a) Roanoke, Virginia, and (b) Austin, Texas 

Figure 6.22
Two-Fluid Trends for Aggressive, Normal, and Conservative Drivers 

(Herman et al. 1988, Figures 5 and 8).



Tm � 3.59 � 0.54 C6 and
n � �0.21 � 2.97 C3 � 0.22 C7

Tm � 3.93 � 0.0035 X5 � 0.047 X6 � 0.433 X10
and n � 1.73 � 1.124 X2 � 0.180 X3 � 0.0042 X5 � 0.271 X9
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(6.38)

(6.39)

The results of this study reveal the importance of the behavior of approaches with signal progression.  Of these, only two features
the chase car driver in standard two-fluid studies.  While the (average block length and intersection density) can be
effects on the two-fluid parameters of using two different chase considered fixed, and, as such, not useful in formulating network
car drivers in the same network at the same time has not been improvements.  In addition, one feature (average number of
investigated, there is thought to be little difference between two lanes per street), also used in the previous study (Ayadh 1986),
well-trained drivers.  To the extent possible, however, the same can typically be increased only by eliminating parking (if
driver has been used in different studies that are directly present), yielding only limited opportunities for improvement of
compared. traffic flow.  Data was collected in ten cities; in seven of the

6.3.3 Two-Fluid Parameters:  Influence
of Network Features (Field Studies)

Geometric and traffic control features of a street network also
play an important role in the quality of service provided by a
network.  If relationships between specific features and the two-
fluid parameters can be established, the information could be
used to identify specific measures to improve traffic flow and
provide a means to compare the relative improvements.

Ayadh (1986) selected seven network features: lane miles per
square mile, number of intersections per square mile, fraction of
one-way streets, average signal cycle length, average block
length, average number of lanes per street, and average block
length to block width ratio.  The area of the street network under
consideration is used with the first two variables to allow a direct
comparison between cities.  Data for the seven variables were
collected for four cities from maps and in the field.  Through a
regression analysis, the following models were selected:

where C  is the fraction of one-way streets, C  the average3       6

number of lanes per street, and C  the average block length to7
block width ratio.  Of these network features, only one (the
fraction of one-way streets) is relatively inexpensive to
implement.  One feature, the block length to block width ratio,  by Computer Simulation
is a topological feature which would be considered fixed for any
established street network.

Ardekani et al. (1992), selected ten network features: average
block length, fraction of one-way streets, average number of
lanes per street, intersection density, signal density, average
speed limit, average cycle length, fraction of curb miles with
parking allowed, fraction of signals actuated, and fraction of

cities, more than one study was conducted as major geometric
changes or revised signal timings were implemented, yielding
nineteen networks for this study.  As before, the two-fluid
parameters in each network were estimated from chase car data
and the network features were determined from maps, field
studies, and local traffic engineers.  Regression analysis yielded
the following models:

where X  is the fraction of one-way streets, X  the average2       3

number of lanes per street, X  the signal density, X  the average5    6

speed limit, X  the fraction of actuated signals, and X  the9       10
fraction of approaches with good progression.  The R  for these2

equations, 0.72 and 0.75 (respectively), are lower than those for
Equation 6.38 (both very close to 1), reflecting the larger data
size.  The only feature in common with the previous model
(Equation 6.38) is the appearance of the fraction of one-way
streets in the model for n.  Since all features selected can be
changed through operational practices (signal density can be
changed by placing signals on flash), the models have potential
practical application.  Computer simulation has also been used
to investigate these relationships, and is discussed in Section
6.3.4.

6.3.4 Two-Fluid Parameters: Estimation

Computer simulation has many advantages over field data in the
study of network models.  Conditions not found in the field can
be evaluated and new control strategies can be easily tested.  In
the case of the two-fluid model, the entire vehicle population in
the network can be used in the estimation of the model
parameters, rather than the small sample used in the chase car
studies.  TRAF-NETSIM (Mahmassani et al. 1984), a
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microscopic traffic simulation model, has been used successfully can be simulated by recording the trip history of a single vehicle
with the two-fluid model.  for one mile, then randomly selecting another vehicle in the

Most of the simulation work to-date has used a generic grid (specifically, Equation 6.35, the log transform of which is used
network in order to isolate the effects of specific network to estimate the parameters), estimations performed at the
features on the two-fluid parameters (FHWA 1993).  Typically, network level and at the individual vehicle level result in
the simulated network has been a 5 x 5 intersection grid made up different values of the parameters, and are not directly
entire of two-way streets.  Traffic signals are at each intersection comparable.  The sampling strategy, which was found to provide
and uniform turning movements are applied throughout.  The the best parameter estimates, required a single vehicle
network is closed, i.e., vehicles are not allowed to leave the circulating in the network for at least 15 minutes.  However, due
network, thus maintaining constant concentration during the to the wide variance of the estimate (due to the possibility of a
simulation run.  The trip histories of all the vehicles circulating relatively small number of "chased" cars dominating the sample
in the network are aggregated to form a single (T , T)r
observation for use in the two-fluid parameter estimation.  A
series of five to ten runs over a range of network concentrations
(nearly zero to 60 or 80 vehicles/lane-mile) are required to
estimate the two-fluid parameters.

Initial simulation runs in the test network showed both T and Ts

increasing with concentration, but T  remaining nearly constant,r

indicating a very low value of n  (Mahmassani et al. 1984).  In
its default condition, NETSIM generates few of the vehicle
interaction of the type found in most urban street networks,
resulting in flow which is much more idealized than in the field.
The short-term event feature of NETSIM was used to increase
the inter-vehicular interaction (Williams et al. 1985).  With this
feature, NETSIM blocks the right lane of the specified link at
mid-block; the user specifies the average time for each blockage
and the number of blockages per hour, which are stochastically
applied by NETSIM.  In effect, this represents a vehicle stopping
for a short time (e.g., a commercial vehicle unloading goods),
blocking the right lane, and requiring vehicles to change lanes to
go around it.  The two-fluid parameters (and n in particular)
were very sensitive to the duration and frequency of the short-
term events.  For example, using an average 45-second event
every two minutes, n rose from 0.076 to 0.845 and T  fell fromm
2.238 to 2.135.  With the use of the short-term events, the values
of both parameters were within the ranges found in the field
studies.  Further simulation studies found both block length
(here, distance between signalized intersections) and the use of
progression to have significant effects on the two-fluid
parameters (Williams et al. 1985).

Simulation has also provided the means to investigate the use of
the chase car technique in estimating the two-fluid parameters
(Williams et al. 1995).  The network-wide averages in a
simulation model can be directly computed; and chase car data

network.  Because the two-fluid model is non-linear

estimation), the estimate using a single vehicle was often far
from the parameter estimated at the network level.  On the other
hand, using 20 vehicles to sample the network resulted in
estimates much closer to those at the network level.  The much
smaller variance of the estimates made with twenty vehicles,
however, resulted in the estimate being significantly different
from the network-level estimate.  The implication of this study
is that, while estimates at the network and individual vehicle
levels can not be directly compared, as long as the same
sampling strategy is used, the resulting two-fluid parameters,
although biased from the "true" value, can be used in making
direct comparisons.

6.3.5 Two-Fluid Parameters: 
Influence of Network Features
(Simulation Studies)

The question in Section 6.3.3, above, regarding the influence of
geometric and control features of a network on the two-fluid
parameters was revisited with an extensive simulation study
(Bhat 1994).  The network features selected were:  average
block length, fraction of one-way streets, average number of
lanes per street, signals per intersection, average speed limit,
average signal cycle length, fraction of curb miles with parking,
and fraction of signalized approaches in progression.  A
uniform-precision central composite design was selected as the
experimental design, resulting in 164 combination of the eight
network variables.  The simulated network was increased to 11
by 11 intersections; again, vehicles were not allowed to leave the
network, but traffic data was collected only on the interior 9 by
9 intersection grid, thus eliminating the edge effects caused by
the necessarily different turning movements at the boundaries.
Ten simulation runs were made for each combination of



Tm � 1.049 � 1.453 X2 � 0.684 X3 � 0.024 X6 and
n � 4.468 � 1.391 X3 � 0.048 X5 � 0.042 X6

V � f (K) ,
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(6.40)

(6.41)

variables over a range of concentrations from near zero to about NETSIM reflected traffic conditions in San Antonio, NETSIM
35 vehicles/lane-mile. was calibrated with the two-fluid model.

Regression analysis yielded the following models: Turning movement counts used in the development of the new

where X  is the fraction of one-way streets, X  the number of2       3

lanes per street, X  average speed limit, and X  average cycle5     6
length.  The R  (0.26 and 0.16 for Equation 6.40) was2

considerably lower than that for the models estimated with data
from field studies (Equation 6.39).  Additionally, the only
variable in common between Equations 6.39 and 6.40 is the
number of lanes per street in the equation for n.  Additional work
is required to clarify these relationships.

6.3.6 Two-Fluid Model:
A Practical Application

When the traffic signals in downtown San Antonio were retimed,
TRAF-NETSIM was selected to quantify the improvements in
the network.   In  order  to  assure  that  the  results  reported  by

signal timing plans were available for coding NETSIM.
Simulation runs were made for 31 periods throughout the day,
and the two-fluid parameters were estimated and compared with
those found in the field.  By a trial and error process, NETSIM
was calibrated by

� Increasing the sluggishness of drivers, by increasing
headways during queue discharge at traffic signals
and reducing maximum acceleration,

� Adding vehicle/driver types to increase the range of
sluggishness represented in the network, and

� Reducing the desired speed on all links to 32.2 km/h
during peaks and 40.25 km/h otherwise (Denney
1993).

Three measures of effectiveness (MOEs) were used in the
evaluation: total delay, number of stops, and fuel consumption.
The changes noted for all three MOEs were greater between
calibrated and uncalibrated NETSIM results than between
before and after results.  Reported relative improvements were
also affected.  The errors in the reported improvements without
calibration ranged from 16 percent to 132 percent (Denney
1994).

6.4  Two-Fluid Model and Traffic Network Flow Models

Computer simulation provides an opportunity to investigate fluid model, to the concentration.  In addition, using values of
network-level relationships between the three fundamental flow, speed, and concentration independently computed from the
variables of traffic flow, speed (V), flow (Q), and concentration
(K), defined as average quantities taken over all vehicles in the
network over some observation period (Mahmassani et al.
1984).  While the existence of "nice" relations between these
variables could not be expected, given the complexity of network
interconnections, simulation results indicate relationships similar
to those developed for arterials may be appropriate (Mahmassani model system assumed Q=KV and the two-fluid model, and
et al. 1984; Williams et al. 1985).  A series of simulation runs, consisted of three relations:
as described in Section 6.3.4, above, was made at concentration
levels between 10 and 100 vehicles/lane-mile.  The results are
shown in Figure 6.23, and bear a close resemblance to their
counterparts for individual road sections.  The fourth plot shows
the relation of f , the fraction of vehicles stopped from the two-s

simulations, the network-level version of the fundamental
relation Q=KV was numerically verified (Mahmassani et al.
1984; Williams et al. 1987).

Three model systems were derived and tested against simulation
results (Williams et al. 1987; Mahmassani et al. 1987); each



fs � h (K) .

Q � g (K) , and
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(6.43)

(6.42)

Figure 6.23
Simulation Results in a Closed CBD-Type Street Network. 

(Williams et al. 1987, Figures 1-4).

A model system is defined by specifying one of the above relationships; the other two can then be analytically derived.  (A
relation between Q and V could also be derived.)

Model System 1 is based on a postulated relationship between
the average fraction of vehicles stopped and the network
concentration from the two-fluid theory (Herman and Prigogine



fs � fs,min � ( 1�fs,min ) ( K/Kj )� ,

V � Vm (1�fs,min )n�1 [1�(K/Kj )�]n�1 ,

Q � K Vm (1�fs,min )n�1 [1�(K/Kj )
�]n�1 .

V � Vf (1�K/Kj ) ,

fs � 1 � [(Vf /Vm) (1�K/Kj) ]1/(n�1) ,

Q � Vf (K� K 2 /Kj ) .

V � Vf exp[��(K/Km )d ] ,

fs�1�{(Vf /Vm ) exp [��(K/Km )d ]}1/(n�1) and

Q � K Vf exp[��(K/Km )d ] .
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(6.44)

(6.45)

(6.46)

(6.47)

(6.48)

(6.49)

(6.50)

(6.51)

(6.52)

1979), later modified to reflect that the minimum  f  > 0 then by using Q=KV,s
(Ardekani and Herman 1987):

where f  is the minimum fraction of vehicles stopped in as,min

network, K  is the jam concentration (at which the network isj

effectively saturated), and � is a parameter which reflects the
quality of service in a network.  The other two relations can be
readily found, first by substituting f  from Equation 6.44 intos
Equation 6.31:

then by using Q=KV,

Equations 6.44 through 6.46 were fitted to the simulated data
and are shown in Figure 6.24.  Because the point representing
the highest concentration (about 100 vehicles/lane-mile) did not
lie in the same linear lnT  - lnT trend as the other points, the two-r

fluid parameters n and T  were estimated with and without them
highest concentration point, resulting in the Method 1 and
Method 2 curves, respectively, in the V-K and Q-K curves in
Figure 6.24.  

Model System 2 adopts Greenshields' linear speed-concentration
relationship (Gerlough and Huber 1975),

where V  is the free flow speed (and is distinct from V ;f          m

V � V  always, and typically V  < V ).  The f -K relation can bef m    f m    s
found by substituting Equation 6.47 into Equation 6.31 and
solving for f :s

Equations 6.47 through 6.49 were fitted to the simulation data
and are shown in Figure 6.25.  The difference between the
Method 1 and Method 2 curves in the f -K plot (Figure 6.25) iss
described above.  Model System 3 uses a non-linear bell-shaped
function for the V-K model, originally proposed by Drake, et al.,
for arterials (Gerlough and Huber 1975):

where K  is the concentration at maximum flow, and � and d arem

parameters.  The f -K and Q-K relations can be derived as showns
for Model System 2:

Equations 6.50 through 6.52 were fitted to the simulation data
and are shown in Figure 6.26.  

Two important conclusions can be drawn from this work.  First,
that relatively simple macroscopic relations between network-
level variables appear to work.  Further, two of the models
shown are similar to those established at the individual facility
level.  Second, the two-fluid model serves well as the theoretical
link between the postulated and derived functions, providing
another demonstration of the model's validity.  In the second and
third model systems particularly, the derived f -K functions
performed remarkable well against the simulated data, even
though it was not directly calibrated using that data.
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Figure 6.24
Comparison of Model System 1 with Observed Simulation Results 

(Williams et al. 1987, Figure 5, 7, and 8).
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Figure 6.25
Comparison of Model System 2 with Observed Simulation Results 

(Williams et al. 1987, Figures 9-11).
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Figure 6.26
Comparison of Model System 3 with Observed Simulation Results 

(Williams et al. 1987, Figures 12-14).



�� ����������� ���	��
���

� � ��

6.5  Concluding Remarks

As the scope of traffic control possibilities widens with the optimization of the control system) becomes clear.  While the
development of ITS (Intelligent Transportation Systems) models discussed in this chapter are not ready for easy
applications, the need for a comprehensive, network-wide implementation, they do have promise, as in the application of
evaluation  tool   (as   well   as   one   that   would   assist   in  the the two-fluid model in San Antonio (Denney et al. 1993; 1994).
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Chapter 7 - Frequently used Symbols

� = fuel consumption per unit distance
� = parameter
a = instantaneous acceleration rate (a>0, km/hr/sec)

A = acceleration rate  
AADT = average annual daily traffic (vehicles/day)   
ACCT = acceleration time
ADT = average daily traffic (vehicles/day)
C1 = average peak hour concentration
C8 = annual maximum 8-hour concentration
CLT = Deceleration time
d = average stopped delay per vehicle (secs)s

E = Engine size (cm )3

EFI = idle emission factor
EFL = intersection link composite emission factor
f = instantaneous fuel consumption (mL/sec)
F = fuel consumed (lit/km) [Watson, et al model]
F = average fuel consumption per roadway section (mL) [Akcelik model]
f = fuel consumption rate while cruising (mL/km)1

f = fuel consumption rate while idling (mL/sec)2

f = excess fuel consumption per vehicle stop (mL)3

f = steady-state fuel consumption rate at cruising speed (mL/km)c

h = average number of stops per vehicle
K = parameter representing idle flow rate (mL/sec)1

K = parameter representing fuel consumption to overcome rolling resistance2

K ,K = parameters related to fuel consumption due to positive acceleration4 5

L = payload (Kg)
LQU = queue length         
m = expected number of single-vehicle accidents per unit time 
NDLA = vehicles delayed per cycle per lane
P = probability of a single-vehicle accident  
PKE = positive kinetic energy
q = flow (vph)
q = flow rate of type i vehicles (vph) i
S = speed
SPD = cruise speed
T = average travel time per unit distance
u = model parameter related to driving conditions
V = average speed (km/hr) [Elemental model]
V = instantaneous speed (km/hr) [Akcelik and Bayley model]
V = steady-state cruising speed (km/hr)c

V = final speed (km/hr)f

V = initial speed (km/hr)i

VMT = vehicle miles of travel
V = space mean speed (km/hr)s

VSP = at-rest vehicle spacing 
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7.
TRAFFIC IMPACT MODELS

7.1 Traffic and Safety

7.1.1  Introduction

This section ought to be about how traffic flow, speed and the pertains to the same period of time which the accident frequency
like are related to accident frequency and severity.  However, represents.  Thus, eg., if the ordinate shows the expected number
due to limitation of space, only the relationship between accident of fatal accidents/year in 1972-1976 for a certain road section,
frequency and traffic flow will be discussed.  The terminology then the AADT is the average for the period 1972-1976. 
that pertains to characteristics of the traffic stream has already
been established and only a few definitions need to be added.
The ‘safety’ of an entity is defined as ‘the number of accidents Thus, eg., head-on collisions may depend on the two opposing
by type, expected to occur on the entity in a certain period,
per unit of time’.  In this definition, ‘accident types’ are
categories such as rear-end, sideswipe, single-vehicle, multi-
vehicle, injury, property damage only, etc.  The word ‘expected’
is as in probability theory: what would be the average-in-the-
long-run if it was possible to freeze all the relevant
circumstances of the period at their average, and then repeat it In practice it is common to use the term ‘accident rate’.  The
over and over again.  The word ‘entity’ may mean a specific road accident rate is proportional to the slope of the line joining the
section or intersection, a group of horizontal curves with the origin and a point of the safety performance function.  Thus, at
same radius, the set of all signalized intersections in point A of Figure 7.1, where AADT is 3000 vehicles per day
Philadelphia, etc.  Since the safety of every entity changes in and where the expected number of accidents for this road section
time, one must be specific about the period.  Furthermore, to is 1.05 accidents per year, the accident rate is
facilitate communication, safety is usually expressed as a 1.05/(3000×365)=0.96×10  accidents/vehicle.  At point B the
frequency.  Thus, eg., one might speak about the expected accident rate is 1.2/(4000×365)=0.82×10  accidents/vehicle.  If
number of fatal accidents/year in 1972-1976 for a certain road the road section was, say, 1.7 km long, the same accident rates
section.  To standardize further one often divides by the section could be written as 1.05/(3000×365×1.7)=0.56×10
length; now the units may be, say, accidents/(year × km). accidents/vehicle-km and 1.2/(4000×365×1.7)=0.48×10

As defined, the safety of an entity is a string of expected
frequencies, m , m , . . . ,m , . . . , one for each accident type1 2 i
chosen.  However, for the purpose of this discussion it will
suffice to speak about one (unspecified) accident type, the
expected accident frequency of which is m .i

7.1.2  Flow and Safety

The functional relationship between m  and the traffic flow whichi

the entity serves, is a ‘safety performance function’. A safety
performance function is depicted schematically in Figure 7.1.
For the moment its shape is immaterial.  It tells how for some
entity the expected frequency of accidents of some type would be
changing if traffic flow on the entity changed while all other
conditions affecting accident occurrence remained fixed.  While
the flow may be in any units, it is usually understood that it

Naturally, m  can be a function of more than one traffic flow.i

flows; collisions between pedestrians and left-turning traffic
depend on the flow of pedestrians, the flow of straight-through
vehicles, and the flow of left-turning vehicles etc..  In short, the
arguments of the safety performance function can be several
flows.  

-6

-6

-6

-6

accidents/vehicle-km.

The safety performance function of an entity is seldom a straight
line.  If so, the accident rate is not constant but varies with traffic
flow.  As a consequence, if one wishes to compare the safety of
two or more entities serving different flows, one can not use the
accident rate for this purpose.  The widespread habit of using
accident rates to judge the relative safety of different entities or
to assess changes in safety of the same entity is inappropriate and
often harmful.  To illustrate, suppose that the AADT on the road
section in Figure 7.1 increased from 3000 ‘before pavement
resurfacing’ to 4000 ‘after pavement resurfacing’ and that the
average accident frequency  increased from 1.05 ‘before’ to 1.3
‘after’.  Note that 1.2 accidents/year would be expected at
AADT=4000 had the road surface remained unchanged (see
Figure 7.1).   Since 1.3 > 1.2 one must conclude that following
resurfacing there was a deterioration of 0.1 accidents/year.  But
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Figure 7.1
Safety Performance Function and Accident Rate.

less than the accident rate ‘before resurfacing’ (1.05/3000×365=
0.96×10 ) which erroneously suggests that there has been an-6

improvement.  Similar arguments against the use of accident
rates can be found in Pfundt (1969), Hakkert et al. (1976),
Mahalel (1986), Brundell-Freij & Ekman (1991), Andreassen
(1991).  

To avoid such errors, the simple rule is that safety comparisons
are legitimate only when the entities or periods are compared as
if they served the same amount of traffic.  To accomplish
such equalization, one needs to know the safety performance
function.  Only in the special case when the performance
function happens to be a straight line, may one divide by traffic
flow and then compare accident rates.  However, to judge
whether the safety performance function is a straight line, one
must know its shape, and when the shape of the safety
performance function is known, the computation of an accident
rate is superfluous.  It is therefore best not to make use of
accident rates.  For this reason, the rest of the discussion is about
expected accident frequencies, not rates.  

Knowledge of safety performance functions is an important
element of rational road safety management.  The nature and
shape of this function is subject to some logical considerations.
However, much of the inquiry must be empirical. 

7.1.3  Logical Considerations

It stands to reason that there is some kind of relationship
between traffic flow and safety.  For one, without traffic there are
no traffic accidents.  So, the safety performance function must go
through the origin.  Also, the three interrelated characteristics of
the traffic stream - flow, speed and density - all influence the
three interrelated aspects of safety - the frequency of
opportunities for accidents to occur, the chance of accident
occurrence given an opportunity, and the severity of the outcome
given an accident.  However, while a relationship may be
presumed to exist, it is rather difficult to learn much about its
mathematical form by purely deductive reasoning.  

Using logic only, one could argue as follows: "If, as in
probability theory, the passage of a vehicle through a road
section or an intersection is a ‘trial’ the ‘outcome’ of which can
be ‘accident’ or ‘no-accident’ with some fixed probability.
Assume further that vehicle passages are so infrequent that this
probability is not influenced by the frequency at which the
‘trials’ occur.  Under such conditions the expected number of
single-vehicle accidents in a fixed time period must be
proportional to the number of trials in that time period - that is
to flow."  In symbols, m =qp, where q is flow and p is thesingle-vehicle
probability of a single-vehicle accident in one passage of a
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vehicle.  In this, p is a constant that does not depend on q.  Thus,
one may argue, that the number of single-vehicle accidents ought
to be proportional to flow, but only at very low flows.  

As flow and density increase to a point where a driver can see
the vehicle ahead, the correspondence between the mental
picture of independent trials and between reality becomes
strained.  The probability of a ‘trial’ to result in a single-vehicle
accident now depends on how close other vehicles are;  that  is
p = p(q).   Should  p(q)  be an increasing function  of  q, then
m would increase more than in proportion with flow.single-vehicle 
Conversely, if an increase in flow diminishes the probability that
a vehicle passing the road section will be in a single-vehicle
accident, then m  would increase less than in proportionsingle-vehicle

to traffic flow; indeed, m = qp(q) can even decrease assingle-vehicle
traffic flow increases beyond a certain point.  Thus, by logical
reasoning one can only conclude that near the origin, the safety
performance function for single-vehicle accidents ought to be a
straight line.  

If the safety performance function depends on two conflicting
flows (car-train collisions at rail-highway grade crossings, car-
truck collisions on roads, car-pedestrian collision at intersections
etc.) then, near the origin, m  should be proportional to thei

product of the two flows.  One could also use the paradigm of
probability theory to speculate that (at very low flows) the
expected number of collisions with vehicles parked on shoulders
is proportional to the square of the flows: in the language of
‘trials’, ‘outcomes’, the number of vehicles parked on the
shoulder ought to be proportional to the passing flow and the
number of vehicles colliding with the parked cars ought to be
proportional to the same flow.  From here there is only a small
step to argue that, say, the number of rear-end collisions should
also be proportional to q .  Again, this reasoning applies only to2

very low flows.  How m depends on q when speed choice,
alertness and other aspects of behavior are also a function of
flow, cannot be anticipated by speculation alone. 

This is as far as logical reasoning seems to go at present.  It only
tells us what the shape of the safety performance function should
be near the origin.  Further from the origin, when p changes with
q, not much is gained thinking of m as the product qp(q).  Since
the familiar paradigm of ‘trials’ and ‘outcomes’ ceased to fit
reality, and the notion of ‘opportunity to have an accident’ is
vague, it might be better to focus directly on the function m =
m(q) instead of its decomposition into the product qp(q).

Most theoretical inquiry into the relationship between flow and
safety seems to lack detail.  Thus, eg., most researchers try to
relate the frequency of right-angle collisions at signalized
intersections to the two conflicting flows.  However, on
reflection, the second and subsequent vehicles of a platoon may
have a much lesser chance to be involved in such a collision than
the first vehicle.  Therefore it might make only a slight difference
whether 2 or 20 vehicles have to stop for the same red signal.
For this reason, the total flow is likely to be only weakly and
circuitously related to the number of situations which generate
right angle collisions at signalized intersections.  There seems to
be scope and promise for more detailed, elaborate and realistic
theorizing.  In addition, most theorizing to date attempted to
relate safety to flow only.  However, since flow, speed and
density are connected, safety models could be richer if they
contained all relevant characteristics of the traffic stream.  Thus,
eg., a close correspondence has been established between the
number of potential overtakings derived from flow and speed
distribution and accident involvement as a function of speed
(Hauer 1971).  Welbourne (1979) extends the ideas to crossing
traffic and collisions with fixed objects.  Ceder (1982) attempts
to link accidents to headway distributions (that are a function of
flow) through probabilistic modeling. 

There is an additional aspect of the safety performance function
which may benefit from logical examination.  The claim was that
it is reasonable to postulate the existence of a relationship
between the traffic triad ‘flow, speed and density’ and between
the safety triad ‘frequency of opportunities, chance of accident
given opportunity, and severity of the outcome given accident’.
However, if there is a cause-effect relationship, it must be
between accidents and the traffic characteristics near the time of
their occurrence.   One must ask whether there still is some
meaningful safety performance function between accidents and
traffic flow when flow is averaged over, say, a year.  Whether the
habit of relating accidents to AADTs (that is, averages over a
year) materially distorts the estimated safety performance
function is at present unclear.  In a study by Quaye et al. (1993)
three separate models were estimated from 15 minute flows,
which then were aggregated into 1 hour flows and then into 7
hour flows.  The three models differed but little.  Persaud and
Dzbik (1993) call models that relate hourly flows to accidents
"microscopic" and models that relate AADT to yearly accident
counts "macroscopic". 

As will become evident shortly, empirical inquiries about safety
performance functions display a disconcerting variety of results.



�� ������� �������	
��


� � �

A part of this variety could be explained by the fact that the most whether the result of a cross section study enables one to
ubiquitous data for such inquiries consist of flow estimates anticipate how safety of a certain facility would change as a
which are averages pertaining to periods of one year or longer. result of a change in traffic flow.

7.1.4  Empirical Studies

Empirical studies about the association of traffic flow and
accident frequency  seldom involve experimentation; their nature
is that of fitting functions to data.  What is known about safety
performance functions comes from studies in which the
researcher assembles a set of data of traffic flows and accident
counts, chooses a certain function that is thought to represent the
relationship between the two, and then uses statistical techniques
to estimate the parameters of the chosen function.  Accordingly,
discussion here can be divided into sections dealing with: (1) the
kinds of study and data, (2) functional forms or models, (3)
parameter estimates. 

7.1.4.1  Kinds Of Study And Data

Data for the empirical investigations are accident counts and
traffic flow estimates.  A number-pair consisting of the accident
count for a certain period and the estimated flow for the same
period is a ‘data point’ in a Cartesian representation such as
Figure 7.1.  To examine the relationship between traffic flow and
accident frequency, many such points covering an adequate
range of traffic flows are required. 

There are two study prototypes (for a discussion see eg., Jovanis
and Chang 1987).  The most common way to obtain data points
for a range of flows is to choose many road sections or
intersections that are similar, except that they serve different
flows.  In this case we have a ‘cross-section’ study.  In such a
study the accident counts will reflect not only the influence of
traffic flow but also of all else that goes with traffic flow.  In
particular, facilities which carry larger flows tend to be built and
maintained to higher standards and tend to have better markings
and traffic control features.  This introduces a systematic bias
into ‘cross-section’ models.  If a road that is built and maintained
to a higher standard is safer, then accident counts on high-flow
roads will tend to be smaller than had the roads been built,
maintained and operated in the same way as the lower flow
roads.  Thus, in a cross-section study, it is difficult to separate
what is due to traffic flow, and what is due to all other factors
which depend on traffic flow.  It is therefore questionable

Less common are studies that relate different traffic flows on the
same facility to the corresponding accident counts.  In this case
we have a ’time-sequence’ study.  In such a study one obtains
the flow that prevailed at the time of each accident and the
number of hours in the study period when various flows
prevailed.  The number of accidents in a flow group divided by
the number of hours when such flows prevailed is the accident
frequency (see, eg., Leutzbach et al. 1970, Ceder and Livneh
1978, Hall and Pendelton 1991).  This approach might obviate
some of the problems that beset the cross-section study.
However, the time-sequence study comes with its own
difficulties.  If data points are AADTs and annual accident
counts over a period of many years, then the range of the AADTs
is usually too small to say much about any relationship.  In
addition, over the many years, driver demography, norms of
behavior, vehicle fleet, weather, and many other factors also
change.  It is therefore difficult to distinguish between what is
due to changes in traffic flow and what is due to the many other
factors that have also changed. If the data points are traffic flows
and accidents over a day, different difficulties arise.  For one, the
count of accidents (on one road and when traffic flow is in a
specified range) is bound to be small.  Also, low traffic flows
occur mostly during the night, and can not be used to estimate
the safety performance function for the day.  Also, peak hour
drivers are safer en-route to work than on their way home in the
afternoon, and off-peak drivers tend to be a different lot
altogether.

7.1.4.2  Models 

The first step of an empirical study of the relationship between
traffic flow and accident frequency is to assemble, plot  and
examine the data.  The next step is to select the candidate model
equation(s) which might fit the data and serve as the safety
performance function.  Satterthwaite (1981, section 3) reviews
the most commonly used models.  Only those that are plausible
and depend on traffic flow only are listed below.  Traffic flow,
while important, is but one of the many variables on which the
expected accident frequency depends.  However, since the
monograph is devoted to traffic flow, the dependence on other
variables will not be pursued here.  The Greek letters are the
unknown parameters to be estimated from data.
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When only one traffic stream is relevant the power function and The common feature of the models most often used is that they
polynomial models have been used: are linear or can be made so by logarithmization.  This simplifies

m = �q (7.1)�

m = �q + �q  +... (7.2)2

At times the more complex power form 

m = �q (7.1a)�+�log(q)

is used which is also akin to the polynomial model 7.2 when
written in logarithms a straight line even for the higher flows where p(q) is not

constant any more.  Similarly, if logic says that �=2, the
log(m) = log(�) + �log(q) + �[log(q)] (7.2a) quadratic growth applies for all q.  In short, if � is selected to2

When two or more traffic streams or kinds of vehicles are from the origin.  Conversely, if � is selected to fit the data best,
relevant, the product of power functions seems common: the logical requirements will not be met.

m = �q q ... (7.3)1 2
� �

statistical parameter estimation.  The shapes of these functions
are shown in Figure 7.2.

The power function (Equation 7.1) is simple and can well satisfy
the logical requirements near the origin (namely, that when q=0
m=0, and that �=1 when one flow is involved or �=2 when two
flows are involved).  However, its simplicity is also its downfall.
If logic dictates, eg., that near the origin �=1 (say, for single-
vehicle accidents), then the safety performance function has to be

meet requirements of logic, the model may not fit the data further

Figure 7.2
Shapes of Selected Model Equations.
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The popularity of the power function in empirical research
derives less from its suitability than from it being ‘lazy user
friendly’; most software for statistical parameter estimation can
accommodate the power function with little effort.  The
polynomial model (Equation 7.2) never genuinely satisfies the
near-origin requirements.  Its advantage is that by using more
terms (and more parameters) the curve can be bent and shaped
almost at will.  This is achieved at the expense of parsimony in
parameters.

If the data suggest that as flow increases beyond a certain level,
the slope of m(q) is diminishing, perhaps even grows negative,
an additional model that is parsimonious in parameters might
deserve consideration:

m=�q e   (7.4)k �q

where k = 1 or 2 in accord with the near-origin requirements.
When �<0 the function has a maximum at q = -k/�.   Its form
when k=1 and k=2 is shown in Figure 7.3.  The advantage of this
model is that it can meet the near-origin requirements and still
can follow the shape of the data.

A word of caution is in order.  In the present context the focus is
on how accident frequency depends on traffic flow. Accordingly,
the models were written with flow (q) as the  principal
independent variable.  However, traffic flow is but one of the
many causal factors which affect accident frequency.  Road
geometry, time of day, vehicle fleet, norms of behaviour and the
like all play a part.  Therefore, what is at times lumped into a
single parameter (� in equation 7.1, 7.1a, 7.3 and 7.4) really
represents a complex multivariate expression.  In short, the
modeling of accident frequency is multivariate in nature.

Figure 7.3
Two Forms of the Model in Equation 7.4.
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7.1.4.3  Parameter Estimates in model 7.1 is 0.58; for rear-end accidents the exponent of

With the data in hand and the functional form selected, the next
step is to estimate the parameters (�, �,...).  In earlier work,
estimation was often by minimization of squared deviations.
This practice now seems deficient.  Recognizing the discrete
nature of accident counts, the fact that their variance increases
with their mean, and the possible existence of over-dispersion,
it now seems that more appropriate statistical techniques are
called for (see eg., Hauer 1992, Miaou and Lum 1993).

Results of past research are diverse.  Part of the diversity is due
to the problems which beset both the cross-section and the time
sequence of studies; another part is due to the use of AADT and
similar long-period averages that have a less than direct  tie  to
accident  occurrence;  some of the diversity may come from
various methodological shortcomings (focus on accident rates,
choice of simplistic model equations, use of inappropriate
statistical techniques); and much is due to the diversity between
jurisdictions in what counts as a reportable accident and in the
proportion of reportable accidents that get reported.  Hauer and
Persaud (1996) provide a comprehensive review of safety
performance functions and their parameter values (for two-lane
roads, multi-lane roads without access control, freeways,
intersections and interchanges) based on North American data.
A brief summary of this information and some international
results are given below.

A. Road Sections.  In a cross-section study of Danish rural + (.94 × 10 )ADT  for six-lane freeways and  m =  (5.4  ×
roads Thorson (1967) estimated the exponent of ADT to be
0.7.  In a similar study of German rural roads Pfundt (1968)
estimated the exponent of ADT to be 0.85. Kihlberg and
Tharp (1968) conducted an extensive cross-section study
using data from several states.  For sections that are 0.5 miles
long, they estimate the parameters for a series of road types
and geometric features.  The model used is an elaborated
power function m=�(ADT) (ADT) .  The report� �log(ADT)

contains a rich set of results but creates little order in the
otherwise bewildering variety.  Ceder and Livneh (1982)
used both cross-sectional and time-sequence data for
interurban road sections in Israel, using the simple power
function model (Equation. 1). The diverse results are difficult
to summarize.  Cleveland et al. (1985) divide low-volume
rural two-lane roads into ‘bundles’ by geometry and find the
ADT exponents to range from 0.49 to 0.93 for off-road
accidents Recent studies in the UK show that on urban road
sections, for single-vehicle accidents the exponent of AADT

AADT is 1.43.  In a time-sequence study, Hall and Pendelton
(1990) use ten mile 2 and 4-lane road segments surrounding
permanent counting stations in New Mexico and provide a
wealth of information about accident rates in relations to
hourly flows and time of day.  In an extensive cross-section
study, Zegeer et al. (1986) find that the exponent of ADT is
0.88 for the total number of accidents on rural two-lane
roads.  Ng and Hauer (1989) use the same data as Zegeer
and show that the parameters differ from state to state and
also by lane width.  For non-intersection accidents on rural
two lane roads in New York State, Hauer et al. (1994) found
that  when m is measured in [accidents/(mile-year)] and
AADT is used for q, then in model 1, in 13 years � varies
from 0.0024-0.0028 and �=0.78.  Persaud (1992) using data
on rural roads in Ontario finds the exponent of AADT to vary
between  0.73 and 0.89, depending on lane and shoulder
width.  For urban two-lane roads in Ontario the exponent is
0.72 For urban multi-lane roads (divided or undivided)
�=1.14, for rural multi-lane divided roads it is 0.62 but for
undivided roads it is again 1.13.

For California freeways Lundy (1965) shows that the
accidents per million vehicle miles increase roughly linearly
with ADT.  This implies the quadratic relationship of model
2.  Based on the figures in Slatterly and Cleveland (1969),
with m measured in [accidents/day], m = (5.8×10 )ADT +-7

(2.4×10 )ADT  for four-lane freeways, m = (6.6×10 )ADT-11 2      -7

-11 2

10 )  ×  ADT  +  (.78 × 10 ) × ADT  for eight-lane-7           -11 2

freeways.  Leutzbach (1970) examines daytime accidents on
a stretch of an autobahn.   Fitting a power function to his
Figure (1c)  and  with  m  measured  in  accidents  per day,
m =(3×10 )×(hourly flow) . However, there is an indication-11 3

in this and other data that as flow increases, the accident rate
initially diminishes and then increases again. If so a third
degree polynomial might be a better choice. Jovanis and
Chang (1987) fit model 7.3 to the Indiana Toll Road and find
the exponents to be 0.25 and 0.23 for car and truck-miles.
Persaud and Dzbik (1993) find that when yearly accidents
are related to AADT, m=0.147×(AADT/1000)  for 4-lane1.135

freeways but, when hourly flows are related to
accidents/hour, m = 0.00145 × (hourly flow/1000) . 0.717

Huang et al. (1992) report for California that Number of
accidents = 0.65 + 0.666 × million-vehicle-miles. 
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B. Intersections.   Tanner (1953) finds for rural T intersections
in the UK the exponents to be 0.56 and 0.62 for left turning turning  vehicles  have  to  find  gaps  in the opposing traffic,
traffic and main road traffic respectively. Roosmark (1966) m  =  1.29  ×  10  (hourly flow of left-turning cars)  ×
finds for similar intersections in Sweden the corresponding (hourly pedestrian flow) .
exponents to be 0.42 and 0.71. For intersections on divided
highways McDonald (1953) gives m in accidents per year as
m  =  0.000783  ×  (major road ADT)   ×  (cross road0.455

ADT) .  For signalized intersections in California, Webb0.633

(1955) gives m in accidents per year, as m  =  0.00019  ×
(major road ADT)   ×  (cross road ADT) in urban areas0.55      0.55

with speeds below 40 km/h ;  =  0.0056  ×  (major road
ADT)   ×  (cross road ADT) in semi-urban areas with0.45      0.38

speeds in the 40-70 km/h  range; and  =  0.007  ×  (major
road ADT) × (cross road ADT) in rural areas with0.51    0.29

speeds above 70 km/h. For rural stop-controlled intersections
in Minnesota, Bonneson and McCoy (1993) give m [in
accidents/year]  =  0.692  × (major road ADT/1000)   ×0.256

(cross road ADT/1000) .  Recent studies done in the UK0.831

show that at signalized intersections for single vehicle
accidents the exponent of AADT in model 1 is 0.89; for right
angle accidents (model 7.3) the exponents of AADT are 0.36
and 0.60 and for accident to left-turning traffic (their right
turn) the exponents are 0.57 and 0.46.  Using data from
Quebec, Belangér  finds   that   the   expected  annual
number of accidents at unsignalized rural intersections is
0.002×(Major road ADT) ×(Cross road ADT) .0.42 0.51

C. Pedestrians. Studies in the UK show that for nearside
pedestrian accidents on urban road sections the exponents for
vehicle and pedestrian AADTs in model 7.3 are 0.73 and
0.42.  With m measured in [pedestrian accidents/year]
Brüde  and  Larsson   (1993)   find  that,  at  intersections,
m = (7.3 × 10 )(incoming traffic/day)  (crossing-6 0.50

pedestrians/day)  .  With m measured in (pedestrian0.7

accidents/hour), Quaye et al. (1993) find that if left-turning
vehicles at signalized intersections do not face opposing
vehicular traffic then  m  =  1.82  ×  10 (hourly flow of left--8

turning cars)   ×  (hourly pedestrian flow) ; when the left1.32      0.34

-7     0.36

0.86

7.1.5 Closure

Many aspects of the traffic stream are related to the frequency
and severity of accidents; only the relationship with flow has
been discussed here.  How safety depends on flow is important
to know.  The relationship of traffic flow to accident frequency
is called the ‘safety performance function’.  Only when the safety
performance function is known, can one judge whether one kind
of design is safer than another, or whether an intervention has
affected the safety of a facility.  Simple division by flow to
compute accident rates is insufficient because the typical safety
performance function is not linear. 

Past research about safety performance functions has led to
diverse results.  This is partly due to the use of flow data which
are an average over a long time period (such as AADT), partly
due to the difficulties which are inherent in the cross-sectional
and the time-sequence studies, and partly because accident
reporting and roadway definitions vary among jurisdictions.
However, a large part of the diversity is due to the fact that
accident frequency depends on many factors in addition to traffic
flow and that the dependence is complex.Today, some of the past
difficulties can be overcome.  Better information about traffic
flows is now available (eg. from freeway-traffic-management-
systems, permanent counting stations, or weight-in-motion
devices); also better methods for the multivariate analysis of
accident counts now exist. However, in addition to progress in
statistical modeling, significant advances seem possible through
the infusion of detailed theoretical modeling which makes use of
all relevant characteristics of the traffic stream such as speed,
flow, density, headways and shock waves.

7.2  Fuel Consumption Models

Substantial energy savings can be achieved through urban traffic saved each day.  It is further estimated that 45 percent of the total
management strategies aimed at improving mobility and energy consumption in the U.S. is by vehicles on roads.  This
reducing delay.  It is conservatively estimated, for example, that amounts to some 240 million liters (63 million gallons) of
if all the nearly 250,000 traffic signals in the U.S. were optimally petroleum per day, of which nearly one-half is used by vehicles
timed, over 19 million liters (5 million gallons) of fuel would be under urban driving conditions.  
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Fuel consumption and emissions have thus become increasingly pavement roughness, grades, wind, altitude, etc. is hoped to be
important measures of effectiveness in evaluating traffic small due to collective effects if data points represent aggregate
management strategies.  Substantial research on vehicular energy values over sufficiently long observation periods. Alternatively,
consumption has been conducted since the 1970's, resulting in model estimates may be adjusted for known effects of roadway
an array of fuel consumption models.  In this section, a number grade, ambient temperature, altitude, wind conditions, payload,
of such models which have been widely adopted are reviewed. etc.

7.2.1 Factors Influencing Vehicular
Fuel Consumption

Many factors affect the rate of fuel consumption.  These factors
can be broadly categorized into four groups: vehicle,
environment, driver, and traffic conditions.  The main variables
in the traffic category include speed, number of stops, speed
noise and acceleration noise.  Speed noise and acceleration noise
measure the amount of variability in speed and acceleration in
terms of the variance of these variables.  The degree of driver
aggressiveness also manifests itself in speed and acceleration
rates and influences the fuel consumption rate.

Factors related to the driving environment which could affect
fuel consumption include roadway gradient, wind conditions,
ambient temperature, altitude, and pavement type (for example,
AC/PCC/gravel) and surface conditions (roughness, wet/dry).
Vehicle characteristics influencing energy consumption include
total vehicle mass, engine size, engine type (for example,
gasoline, diesel, electric, CNG), transmission type, tire type and
size, tire pressure, wheel alignment, the status of brake and
carburetion systems, engine temperature, oil viscosity, gasoline
type (regular, unleaded, etc.), vehicle shape, and the degree of
use of auxiliary electric devices such as air-conditioning, radio,
wipers, etc.  A discussion of the degree of influence of most of
the above variables on vehicle fuel efficiency is documented by
the Ontario Ministry of Transportation and Communications
(TEMP 1982).

7.2.2  Model Specifications

Fuel consumption models are generally used to evaluate the
effectiveness and impact of various traffic management
strategies.  As such these models are developed using data
collected under a given set of vehicle fleet and performance
characteristics such as weight, engine size, transmission type,
tire size and pressure, engine tune-up and temperature
conditions, etc.  The variation in fuel consumption due to other
factors such as driver characteristics, ambient temperature,

Given a fixed set of vehicle and driver characteristics and
environmental conditions, the influence of traffic-related factors
on fuel consumption can be modeled.  A number of studies in
Great Britain (Everall 1968), Australia (Pelensky et al. 1968),
and the United States (Chang et al. 1976; Evans and Herman
1978; Evans et al. 1976) all indicated that the fuel consumption
per unit distance in urban driving can be approximated by a
linear function of the reciprocal of the average speed.  One such
model was proposed by Evans, Herman, and Lam (1976), who
studied the effect of sixteen traffic variables on fuel consumption.
They concluded that speed alone accounts for over 70 percent of
the variability in fuel consumption for a given vehicle.
Furthermore, they showed that at speeds greater than about 55
km/h, fuel consumption rate is progressively influenced by the
aerodynamic conditions.  They classified traffic conditions as
urban (V < 55 km/h) versus highway (V > 55 km/h) traffic
showing that unlike the highway regime, in urban driving fuel
efficiency improves with higher average speeds (Figure 7.4).

7.2.3  Urban Fuel Consumption Models

Based on the aforementioned observations, Herman and co-
workers (Chang and Herman 1981; Chang et al. 1976; Evans
and Herman 1978; Evans et al. 1976) proposed a simple
theoretically-based model expressing fuel consumption in urban
conditions as  a linear function of the average trip time per unit
distance (reciprocal of average speed).  This model, known as
the Elemental Model, is expressed as:

� = K  + K  T,  V < 55 km/hr                      (7.5)1 2
where,

� : fuel consumption per unit distance 
T : average travel time per unit distance 

 and
V(=1/T) : average speed 

K  and K  are the model parameters.  K  (in mL/km) represents1 2      1
fuel used to overcome the rolling friction and is closely related
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Figure 7.4
Fuel Consumption Data for a Ford Fairmont (6-Cyl.)

Data Points represent both City and Highway Conditions.

to the vehicle mass (Figure 7.5).  K (in mL/sec) is a function In F = average fuel consumption per roadway section2
an effort to improve the accuracy of the Elemental Model, other (mL)
researchers have considered additional independent variables.
Among them, Akcelik and co-workers (Akcelik 1981;
Richardson and Akcelik1983) proposed a model which
separately estimates the fuel consumed in each of the three
portions of an urban driving cycle, namely, during cruising,
idling, and deceleration-acceleration cycle.  Hence, the fuel
consumed along an urban roadway section is estimated as:

F = f  X  + f  d  + f  h,                        (7.11)1 s 2 s 3

where,

X = total section distance (km)s

d = average stopped delay per vehicle (secs)s

h = average number of stops per vehicle
f = fuel consumption rate while cruising (mL/km)1

f = fuel consumption rate while idling (mL/sec)2

f = excess fuel consumption per vehicle stop (mL)3

The model is similar to that used in the TRANSYT-7F
simulation package (Wallace 1984).

Herman and Ardekani (1985), through extensive field studies,
have shown that delay and number of stops should not be used
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Figure 7.5
Fuel Consumption

Versus Trip Time 
per Unit Distance for a Number of Passenger Car Models.

together in the same model as estimator variables.  This is due where,
to the tendency for the number of stops per unit distance to be
highly correlated with delay per unit distance under urban traffic
conditions.  They propose an extension of the elemental model
of Equation 7.5 in which a correction is applied to the fuel
consumption estimate based on the elemental model depending
on whether the number of stops made is more or less than the
expected number of stops for a given average speed (Herman
and Ardekani 1985).  

A yet more elaborate urban fuel consumption model has been set
forth by Watson et al. (1980).  The model incorporates the
changes in the positive kinetic energy during acceleration as a
predictor variable, namely,

  F = K  + K /V  + K  V  + K  PKE,                     (7.12)1 2 s 3 s 4

where,
F = fuel consumed (Lit/km)
V =  space mean speed (km/hr)s

The term PKE represents the sum of the positive kinetic energy
changes during acceleration in m/sec , and is calculated as2

follows:

PKE =�(V  - V )/(12,960 X )                        (7.13)f i s
2 2

V = final speed (km/hr)f

V = initial speed (km/hr)i

X = total section length (km)s

A number of other urban fuel consumption models are discussed
by other researchers, among which the work by Hooker et al.
(1983), Fisk (1989), Pitt et al. (1987), and Biggs and Akcelik
(1986) should be mentioned.  

7.2.4  Highway Models

Highway driving corresponds to driving conditions under which
average speeds are high enough so that the aero-dynamic effects
on fuel consumption become significant.  This occurs at average
speeds over about 55 km/h (Evans et al. 1976).  Two highway
models based on constant cruising speed are those by Vincent et
al. (1980) and Post et al. (1981). The two models are valid at
any speed range, so long as a relatively constant cruise speed can
be maintained (steady state speeds). The steady-state speed
requirement is, of course, more easily achievable under highway
driving conditions.
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Figure 7.6
Fuel Consumption Data and the Elemental Model Fit 

for Two Types of Passenger Cars (Evans and Herman 1978).

The model by Vincent, Mitchell, and Robertson is used in the Calibration of this model for a Melbourne University test car
TRANSYT-8 computer package (Vincent et al. 1980) and is in (Ford Cortina Wagon, 6-Cyl, 4.1L, automatic transmission)
the form: yields (Akcelik 1983) the following parameter values (Also see

 f  = a + b V  + c V , c     c   c
2

(7.14) b = 15.9 mL/km

where,

V = steady-state cruising speed (km/hr)c

f = steady-state fuel consumption rate at cruising estimate fuel consumption for non-steady-state speed conditionsc
speed (mL/km), calibration of this model for a under both urban or highway traffic regimes.  These models are
mid-size passenger car yields used in a number of microscopic traffic simulation packages

a = 170 mL/km, 
b = -4.55 mL-hr/km ; and2

c = 0.049 mL-hr /km  (Akcelik 1983).2 3

A second steady-state fuel model formulated by Post et al.
(1981) adds a V  term to the elemental model of Equation 7.5 to2

account for the aero-dynamic effects, namely,

  f  = b  + b  /V  + b  V .                 (7.15)c 1 2 c 3 c
2

Figure 7.7):

1

b = 2,520 mL/hr2

b = 0.00792 mL-hr /km .3
2 3

Instantaneous fuel consumption models may also be used to

such as NETSIM (Lieberman et al. 1979) and MULTSIM
(Gipps and Wilson 1980) to estimate fuel consumption based on
instantaneous speeds and accelerations of individual vehicles. 

By examining a comprehensive form of the instantaneous model,
Akcelik and Bayley (1983) find the following simpler form of
the function to be adequate, namely,

 f = K  + K  V + K  V  + �K  aV + K  a V �   (7.16)1 2   3   4   5
3      2
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Figure 7.7
Constant-Speed Fuel Consumption per Unit Distance 
for the Melbourne University Test Car (Akcelik 1983).

where,
f = instantaneous fuel consumption (mL/sec)
V = instantaneous speed (km/hr)
a = instantaneous acceleration rate

(a > 0)(km/hr/sec)
K = parameter representing idle flow rate1

(mL/sec)
K = parameter representing fuel consumption2

to overcome rolling resistance
K = parameter representing fuel consumption3

to overcome air resistance     
K K = parameters related to fuel consumption due4, 5

to positive acceleration  

The above model has been used by Kenworthy et al. (1986) to
assess the impact of speed limits on fuel consumption.

7.2.5  Discussion

During the past two decades, the U.S. national concerns over
dependence  on  foreign  oil  and  air  quality  have  renewed
interest in vehicle fuel efficiency and use of alternative fuels.
Automotive engineers have made major advances in vehicular
fuel efficiency (Hickman and Waters 1991; Greene and Duleep
1993; Komor et al. 1993; Greene and Liu 1988).  

Such major changes do not however invalidate the models
presented, since the underlying physical laws of energy
consumption remain unchanged.  These include the relation
between energy consumption rate and the vehicle mass, engine
size, speed, and speed noise.  What does change is the need to
recalibrate the model parameters for the newer mix of vehicles.
This argument is equally applicable to alternative fuel vehicles
(DeLuchi et al. 1989), with the exception thatthere may also be
a need to redefine the variable units, for example, from mL/sec
or Lit/km to KwH/sec or KwH/km, respectively.    
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7.3  Air Quality Models

7.3.1 Introduction

Transportation affects the quality of our daily lives.  It influences
our economic conditions, safety, accessibility, and capability to
reach people and places.  Efficient and safe transportation
satisfies us all but in contrast, the inefficient and safe use of our
transportation system and facilities which result in traffic
congestions and polluted air produces personal frustration and
great economic loss.

The hazardous air pollutants come from both mobile and
stationary sources.  Mobile sources include passenger cars, light
and heavy trucks, buses, motorcycles, boats, and aircraft.
Stationary sources range from oil refineries to dry cleaners and
iron and steel plants to gas stations. 

This section concentrates on mobile source air pollutants which
comprise more than half of the U.S. air quality problems.
Transportation and tailpipe control measure programs in
addition to highway air quality models are discussed in the
section.

Under the 1970 U.S. Clean Air Act, each state must prepare a
State Implementation Plan (SIP) describing how it will controll
emissions from mobile and stationary sources to meet the
requirements of the National Ambient Air Quality Standards
(NAAQS) for six pollutants: (1) particulate matter (formerly
known as total suspended particulate (TSP) and now as PM10
which emphasizes the smaller particles), (2) sulfur dioxide
(SO2), (3) carbon monoxide (CO), (4) nitrogen dioxide (NO2),
(5) ozone (O3), and (6) lead (Pb).

The 1990 U.S. Clean Air Act requires tighter pollution standards
especially for cars and trucks and would empower the
Environmental Protection Agency (EPA) to withhold highway
funds from states which fail to meet the standards for major air
pollutants (USDOT 1990).  The 1970 and 1990 federal emission
standards for motor vehicles are shown in Table 7.1.

This section concentrates on mobile source air pollutants which
comprise more than half of the U.S. air quality problems.
Exhaust from these sources contain carbon monoxide, volatile
organic compounds (VOCs), nitrogen oxides, particulates, and
lead.  The VOCs along with nitrogen oxides are the major
elements contributing to the formation of "smog".

Carbon monoxide which is one of the main pollutants is a
colorless, and poisonous gas which is produced by the
incomplete burning of carbon in fuels.  The NAAQS standard
for ambient CO specifies upper limits for both one-hour and
eight-hour averages that should not be exceeded more than once
per year.  The level for one-hour standard is 35 parts per million
(ppm), and for the eight-hour standard is 9 ppm.  Most
information and trends focus on the 8-hour average because it is
the more restrictive limit (EPA 1990).

7.3.2 Air Quality Impacts of Transportation
Control Measures

Some of the measures available for reducing traffic congestion
and improving mobility and air quality is documented in a report
prepared by Institute of Transportation Engineers (ITE) in 1989.
This "toolbox" cites, as a primary cause of traffic congestion, the
increasing number of individuals commuting by automobile in
metropolitan areas, to and from locations dispersed throughout
a wide region, and through areas where adequate highway
capacity does not exist.  The specific actions that can be taken to
improve the situation are categorized under five components as
follows:

1) Getting the most out of the existing highway system
- Intelligent Transportation Systems (ITS)
- urban freeways (ramp metering, HOV's)
- arterial and local streets (super streets, parking

management)
- enforcement

2) Building new capacity (new highway, reconstruction)
3) Providing transit service (paratransit service, encouraging

transit use)
4) Managing transportation demand

- strategic approaches to avoiding congestion (road
pricing)

- mitigating existing congestion (ridesharing)
5) Funding and institutional measures

- funding (fuel taxes, toll roads)
- institutional measures (transportation management

associations)
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Table 7.1
Federal Emission Standards

1970 Standards 1990 Standards
(grams/km) (grams/km)

Light Duty Vehicles   (0-3, 340 Kgs)1

Carbon Monoxide    (CO) 2.11 2.11

Hydrocarbons (HC) 0.25 0.16

Oxides of Nitrogen  (NOx) 0.62 0.252

Particulates 0.12 0.05

Light Duty Vehicles   (1,700-2,600 Kgs)1

Carbon Monoxide (CO) 2.11 2.73

Hydrocarbons (HC) 0.25 0.20

Oxides of Nitrogen (NOx) 0.62 0.442

Particulates 0.12 0.05

1970 Standards 1990 Standards
(grams/km) (grams/km)

Light Duty Trucks  (over 2,600 Kgs GVWR)

Carbon Monoxide (CO) 6.22 3.11

Hydrocarbons (HC) 0.50 0.24

Oxides of Nitrogen (NOx) 1.06 0.68

Particulates 0.08 0.05

Light duty vehicles include light duty trucks.1

The new emission standards specified in this table are for useful life of 5 years or 80,000 Kms whichever first occurs.2

7.3.3  Tailpipe Control Measures

It is clear that in order to achieve the air quality standards and to
reduce the pollution from the motor vehicle emissions,
substantial additional emission reduction measures are essential.
According to the U.S. Office of Technology Assessment (OTA),
the mobile source emissions are even higher in most sources -
responsible for 48 percent of VOCs in non-attainment U.S. cities
in 1985, compared to other individual source categories (Walsh
1989).  

The following set of emission control measures, if implemented,
has the potential to substantially decrease exhaust emissions
from major air pollutants:

� limiting gasoline volatility to 62.0 KPa (9.0 psi) RVP;
� adopting "onboard" refueling emissions controls;
� "enhanced" inspection and maintenance programs;

requiring "onboard diagnostics" for emission control
systems;

� adopting full useful life (160,000 kms) requirements;
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� requiring alternative fuel usage; - humidity
� utilizing oxygenated fuels/reformulated gasoline - wind and temperature fluctuations

measures; � traffic data
� adopting California standards (Tier I and II). - traffic volume

Some of the measures recommended in California standards - vehicle length or type
include: improved inspection and maintenance such as � site types
"centralized" inspection and maintenance programs, heavy duty - at-grade sites
vehicle smoke enforcement, establishing new diesel fuel quality - elevated sites
standards, new methanol-fueled buses, urban bus system - cut sites
electrification, and use of radial tires on light duty vehicles. � period of measurement

In the case of diesel-fueled LDT's (0-3,750 lvw) and light-duty Some of these models which estimate the pollutant emissions
vehicles, before the model year 2004, the applicable standards from highway vehicles are discussed in more detail in the
for NOx shall be 0.62 grams/km for a useful life as  defined following sections.
above.

7.3.4 Highway Air Quality Models

As discussed earlier, federal, state, and local environmental
regulations require that the air quality impacts of transportation -
related projects be analyzed and be quantified.  For this purpose,
the Federal Highway Administration (FHWA) has issued
guidelines to ensure that air quality effects are considered during
planning, design, and construction of highway improvements, so
that these plans are consistent with State Implementation Plans
(SIPs) for achieving and maintaining air quality standards .

For example, the level of CO associated with a given project is
a highway - related air quality impact that requires evaluation.
In general, it must be determined whether the ambient standards
for CO (35 ppm for 1 hour and 9 ppm for 8 hours, not to be
exceeded more than once per year) will be satisfied or exceeded
as a result of highway improvements.  This requirement calls for
estimating CO concentrations on both local and areawide scales.

A number of methods of varying sophistication and complexity
are used to estimate air pollutant levels.  These techniques
include simple line-source-oriented Gaussian models as well as
more elaborate numerical models (TRB 1981).  The databases
used in most models could be divided into the following
categories:

� meteorological data
- wind speed and direction
- temperature

- vehicle speed

7.3.4.1 UMTA Model

The most simple of these air quality models is the one which
relates vehicular speeds and emission levels (USDOT 1985).
The procedure is not elaborate but is a quick-response technique
for comparison purposes.  This UMTA (now Federal Transit
Administration) model contains vehicular emission factors
related to speed of travel for freeways and surfaced arterials.

The model uses a combination of free flow and restrained (peak
period) speeds.  It assumes that one-third of daily travel would
occur in peak hours of flow reflecting restrained (congested)
speeds, while two-thirds would reflect free-flow speed
characteristics.  For a complete table of composite emission
factors categorized by autos and trucks for two calendar years of
1987 and 1995 refer to Characteristics of Urban Transportation
System, U.S. Department of Transportation, Urban Mass
Transportation Administration, October 1985.

7.3.4.2 CALINE-4 Dispersion Model

This line source air quality model has been developed by the
California Department of Transportation (FHWA 1984).  It is
based on the Gaussian diffusion equation and employs a mixing
zone concept to characterize pollutant dispersion over the
roadway.

The model assesses air quality impacts near transportation
facilities given source strength, meteorology, and site geometry.
CALINE-4 can predict pollution concentrations for receptors
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located within 500 meters of the roadway.  It also has special � distance from link endpoints to stopline;
options for modeling air quality near intersections, street � acceleration and deceleration times (ACCT, DCLT);
canyons, and parking facilities. � idle times at front and end of queue;

CALINE-4 uses a composite vehicle emission factor in grams � idle emission rate (EFI).
per vehicle-mile and converts it to a modal emission factor.  The
Environmental Protection Agency (EPA) has developed a series
of computer programs, the latest of which is called Mobile4.1
(EPA 1991), for estimating composite mobile emission factors
given average route speed, percent cold and hot-starts, ambient
temperature, vehicle mix, and prediction year.  These emission
factors are based on vehicle distribution weighted by type, age,
and operation mode, and were developed from certification and
surveillance data, mandated future emission standards, and
special emission studies.

Composite emission factors represent the average emission rate
over a driving cycle.  The cycle might include acceleration,
deceleration, cruise, and idle modes of operation.  Emission rates
specific to each of these modes are called modal emission
factors.  The speed correction factors used in composite emission
factor models, such as MOBILE4, are derived from variable
driving cycles representative of typical urban trips.  The Federal
Test Procedures (FTP) for driving cycle are the basis for most of
these data.

Typical input variables for the CALINE-4 model are shown in
Table 7.2.  In case of an intersection, the following assumptions
are made for determining emission factors:

� uniform vehicle arrival rate;
� constant acceleration and deceleration rates; constant time

rate of emissions over duration of each mode;
� deceleration time rate of emissions equals 1.5 times the idle

rate;
� an "at rest" vehicle spacing of 7 meters; and
� all delayed vehicles come to a full stop.

In addition to composite emission factor at 26 km/hr (EFL), the
following variables must be quantified for each intersection link:

� arrival volume in vehicles per hour;
� departure volume in vehicles per hour;
� average number of vehicles per cycle per lane for the

dominant; movement 
� average number or vehicles delayed per cycle per lane for

the dominant movement (NDLA);

� cruise speed (SPD); and

The following computed variables are determined for each link
from the input variables:

� acceleration rate;
� deceleration rate;
� acceleration length; 
� deceleration length; 
� acceleration-speed product;
� FTP-75 (BAG2) time rate emission factor;
� acceleration emission factor; 
� cruise emission factor; 
� deceleration emission factor; and
� queue length (LQU=NDLA*VSP), where VSP is the "at

rest"  vehicle spacing.

The cumulative emission profiles (CEP) for acceleration,
deceleration, cruise, and idle modes form the basis for
distributing the emissions.  These profiles are constructed for
each intersection link, and represent the cumulative emissions
per cycle per lane for the dominant movement.  The CEP is
developed by determining the time in mode for each vehicle
during an average cycle/lane event multiplied by the modal
emission time rate and summed over the number of vehicles.
CALINE4 can predict concentrations of relatively inert
pollutants such as carbon monoxide (CO), and other pollutants
like nitrogen dioxide (NO2) and suspended particles.  

7.3.4.3 Mobie Source Emission Factor Model

MOBILE4.1 is the latest version of mobile source emission
factor model developed by the U.S. Environmental Protection
Agency (EPA).  It is a computer program that estimates
hydrocarbon (HC), carbon monoxide (CO), and oxides of
nitrogen (NOx) emission factors for gasoline-fueled and diesel-
fueled highway motor vehicles.

MOBILE4.1 calculates emission factors for eight vehicle types
in two regions (low- and high-altitude). Its emission estimates
depend on various conditions such as ambient temperature,
speed, and mileage accrual rates.  MOBILE4.1 will estimate
emission factors for any calendar year between 1960 and 2020.
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Table 7.2
Standard Input Values for the CALINE4

I.  Site Variables

Temperature ©

Wind Speed (m/s)

Wind Direction (deg)

Directional Variability (deg)

Atmospheric Stability (F)

Mixing Height (m)

Surface Roughness (cm)

Settling Velocity (m/s)

Deposition Velocity (m/s)

Ambient Temperature ©

II.  Link Variables

Traffic Volume (veh/hr)

Emission Factor (grams/veh-mile)

Height (m)

Width (m)

Link Coordinates (m)

III.  Receptor Locations (m)

 The 25 most recent model years are considered to be in Speed correction factors are used by the model to correct exhaust
operation in each calendar year.  It is to be used by the states in emissions for average speeds other than that of the FTP (32
the preparation of the highway mobile source portion of the 1990 km/hr).  MOBILE4.1 uses three speed correction models:  low
base year emission inventories required by the Clean Air Act speeds (4-32 km/hr), moderate speeds (32-77 km/hr), and high
Amendments of 1990. speeds (77-105 km/hr).  The pattern of emissions as a function

MOBILE4.1 calculates emission factors for gasoline-fueled model year groups.  Emissions are greatest at the minimum
light-duty vehicles (LDVs), light-duty trucks (LDTs), heavy-duty speed of 4 km/hr, decline relatively rapidly as speeds increase
vehicles (HDVs), and motorcycles, and for diesel LDVs, LDTs, from 4 to 32 km/hr, decline more slowly as speeds increase from
and HDVs.  It also includes provisions for modeling the effects 32 to 77 km/hr, and then increase with increasing speed to the
of oxygenated fuels (gasoline-alcohol and gasoline- ether blends) maximum speed of 105 km/hr.
on exhaust CO emissions.  Some of the primary input variables
and their ranges are discussed below.

of vehicle speed is similar for all pollutants, technologies, and
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The vehicle miles traveled (VMT) mix is used to specify the based on interpolation of the calendar year 1990 and 1991
fraction of total highway VMT that is accumulated by each of the MOBILE4.1 emission factors.  
eight regulated vehicle types.  The VMT mix is used only to
calculate the composite emission factor for a given scenario on One important determinant of emissions performance is the
the basis of the eight vehicle class-specific emission factors. mode of operation.  The EPA's emission factors are based on
Considering the dependence of the calculated VMT mix on the testing over the FTP cycle, which is divided into three segments
annual mileage accumulation rates and registration distributions or operating modes: cold start, stabilized, and hot start.
by age, EPA expects that states develop their own estimates of Emissions generally are highest when a vehicle is in the cold-
VMT by vehicle type for specific highway facility, sub-zones, start mode: the vehicle, engine, and emission control equipment
time of day, and so on. are all at ambient temperature and thus not performing at

Many areas of the country have implemented inspection and start mode, when the vehicle is not yet completely warmed up
maintenance (I/M) programs as a means of further reducing but has not been sitting idle for sufficient time to have cooled
mobile source air pollution.  MOBILE4.1 has the capability of completely to ambient temperature.  Finally, emissions generally
modeling the impact of an operating I/M program on the are lowest when the vehicle is operating in stabilized mode, and
calculated emission factors, based on user specification of has been in continuous operation long enough for all systems to
certain parameters describing the program to be modeled.  Some have attained relatively stable, fully "warmed-up" operating
of the parameters include: temperatures.

� program start year and stringency level; The EPA has determined through its running loss emission test
� first and last model years of vehicles subject to programs that the level of running loss emissions depends on

program; several variables: the average speed of the travel, the ambient
� program type (centralized or decentralized); temperature, the volatility (RVP) of the fuel, and the length of
� frequency of inspection (annual or biennial); and the trip.  "Trip length" as used in MOBILE4.1 refers to the
� test types. duration of the trip (how long the vehicle has been traveling), not

MOBILE4.1 (EPA 1991) has the ability to model uncontrolled driven).  Test data show that for any given set of conditions
levels of refueling emissions as well as the impacts of the (average speed, ambient temperature, and fuel volatility),
implementation of either or both of the major types of vehicle running loss emissions are zero to negligible at first, but increase
recovery systems. These include the "Stage II" (at the pump) significantly as the duration of the trip is extended and the fuel
control of vehicle refueling emissions or the "onboard" (on the tank, fuel lines, and engine become heated.
vehicle) vapor recovery systems (VRS).  

The minimum and maximum daily temperatures are used in 7.3.4.4 MICRO2
MOBILE4.1 in the calculation of the diurnal portion of
evaporative HC emissions, and in estimating the temperature of
dispensed fuel for use in the calculation of refueling emissions.
The minimum temperature must be between -18 C to 38 C (0 F
and 100 F), and the maximum temperature must be between -12
C to 49 C (10 F and 120 F)  inclusive.  

The value used for calendar year in MOBILE4.1 defines the year
for which emission factors are to be calculated.  The model has
the ability to model emission factors for the year 1960 through
2020 inclusive.  The base year (1990) inventories are based on
a typical day in the pollutant season, most commonly Summer
for ozone and Winter for CO.  The base year HC inventories are

optimum levels.  Emissions are generally somewhat lower in hot

on the distance traveled in the trip (how far the vehicle has been

MICRO2 is an air quality model which computes the air
pollution emissions near an intersection.  The concentration of
the pollutants in the air around the intersection is not computed.
In order to determine the pollution concentration, a dispersion
model which takes weather conditions such as wind, speed, and
direction into account should be used (Richards 1983).

MICRO2 bases its emissions on typical values of the FTP
performed for Denver, Colorado in the early 1980s.  They are:

�  FTP (1) HC 6.2  grams/veh/km
�  FTP (2) CO 62.2 grams/veh/km
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�  FTP (3) NOx 1.2  grams/veh/km

For lower than Denver altitudes or years beyond 1980's,
emission rates may be lower and should change from these initial
values.

The emission formulas as a function of acceleration and speeds
are as follow:

HC Emission (gram/sec) =
0.018 + 5.668*10  (A*S) + 2.165*10  (A*S ) (7.17a)-3   -4 2

CO Emission (gram/sec) =
0.182 - 8.587*10  (A*S) + 1.279*10  (A*S ) (7.17b)-2   -2 2

NOx Emission (gram/sec) =
3.86*10  + 8.767*10 (A*S) (for A*S>0) (7.17c)-3 -3

NOx Emission (gram/sec) =
1.43*10  - 1.830*10 (A*S) (for A*S<0) (7.17d)-3 -4

where,
A = acceleration (meters/sec ) and2

S = speed (meters/sec). 

7.3.4.5 The TRRL Model

This model has been developed by the British Transport and
Road Research Laboratory (TRRL) and it predicts air pollution
from road traffic (Hickman and Waterfield 1984).  The
estimations of air pollution are in the form of hourly average
concentrations of carbon monoxide at selected locations around
a network of roads.  The input data required are the
configuration of the road network, the location of the receptor,
traffic volumes and speeds, wind speed, and wind direction.

The concentration of carbon monoxide may be used as to
approximate the likely levels of other pollutants using the
following relations:

  HC (ppm) = 1.8 CO (ppm) *  R + 4.0    (7.18a)

NOx (ppm) = CO (ppm) * R + 0.1 (7.18b)

where R is the ratio of pollutant emission rate to that of carbon
monoxide for a given mean vehicle speed,

Mean Speed NOx HC
(km/hr) (ppm) (ppm)

20 0.035 0.205
30 0.050 0.240
40 0.070 0.260
50 0.085 0.280
60 0.105 0.290
70 0.120 0.305

A quick but less accurate estimate of the annual maximum 8
hour CO concentration can also be obtained from the average
peak hour CO concentration estimate, as follows:

C  = 1.85 C  + 1.19                          (7.19)8   1

where C  is the annual maximum 8 hour concentration, and C8         1
is the average peak hour concentration.

A graphical screening test is introduced by which any properties
likely to experience an air pollution problem are identified.  The
procedure first reduces the network to a system of long roads and
roundabouts (if any).  Then from a graph, the concentration of
carbon monoxide for standard traffic conditions for locations at
any distance from each network element may be determined.
Factors are then applied to adjust for the traffic conditions at the
site and the sum of the contributions from each element gives an
estimate of the likely average peak hour concentration.  An
example of the graphical screening test results is shown in Table
7.3.

7.3.5 Other Mobile Source
Air Quality Models

There are many other mobile source models which estimate the
pollutant emission rates and concentrations near highway and
arterial streets.  Most of these models relate vehicle speeds and
other variables such as vehicle year model, ambient temperature,
and traffic conditions to emission rates.  A common example of
this  type  of  relation  could  be  found  in  Technical  Advisory
#T6640.10 of EPA report, "Mobile Source Emission Factor
Tables for MOBILE3."  Other popular models include HIWAY2
and CAL3QHC.  HIWAY2 model has been developed by U.S.
EPA to estimate hourly concentrations of non-reactive
pollutants, like CO, downwind of roadways.  It is usually used 
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Table 7.3
Graphical Screening Test Results for Existing Network

   Distance from Centerline (m) 13 45 53 103

  CO for 1000 vehs/hr at 100 km/h (ppm) 1.08 0.49 0.40 0.11

  Traffic Flow (vehs/hr) 2,600 1,400 800 400

  Speed (km/hr) 40 20 20 50

  Speed Correction Factor 2.07 3.59 3.59 1.73

  CO for Actual Traffic Conditions (ppm) 5.81 2.46 1.15 0.08

  Total 1-Hour CO = 9.50(ppm)
  Equivalent Annual Maximum 8-Hour = 18.76(ppm)

for analyzing at- grade highways and arterials in uniform wind is especially designed to handle near-saturated and/or over-
conditions at level terrain as well as at depressed sections (cuts) capacity traffic conditions and complex intersections where
of roadways.  The model cannot be used if large obstructions major roadways interact through ramps and elevated highways.
such as buildings or large trees hinder the flow of air.  The The model combines the CALINE3 line source dispersion model
simple terrain requirement makes this model less accurate for with an algorithm that internally estimates the length of the
urban conditions than CALINE4 type of models. queues formed by idling vehicles at signalized intersections.  The

The CAL3QHC model has the ability to account for the required by transportation models such as roadway geometries,
emissions generated by vehicles traveling near roadway receptor locations, vehicular emissions, and meteorological
intersections.  Because idling emissions account for a substantial conditions.  Emission factors used in the model should be
portion of the total emissions at an intersection, this capability obtained from mobile source emission factor models such as
represents a significant improvement in the prediction of MOBILE4.
pollutant  concentrations over previous models. This EPA model

inputs to the model includeinformation and data commonly
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Chapter 8 - Frequently used Symbols

b = proportion of volume of movement i of the total volume on the shared lanei

C = coefficient of variation of service timesw

D = total delay of minor street vehicles
D  = average delay of vehicles in the queue at higher positions than the firstq

E(h) = mean headway
E(t  ) = the mean of the critical gap, tc c

f(t) = density function for the distribution of gaps in the major stream
g(t) = number of minor stream vehicles which can enter into a major stream gap of size, t
L = logarithm
m = number of movements on the shared lane
n = number of vehicles
� = increment, which tends to 0, when Var(t ) approaches 0c c

� = increment, which tends to 0, when Var(t ) approaches 0f f

q = flow in veh/sec
q = capacity of the shared lane in veh/hs

q = capacity of movement i, if it operates on a separate lane in veh/hm,i

q = the entry capacitym

q = maximum traffic volume departing from the stop line in the minor stream in veh/secm

q = major stream volume in veh/secp

t = time
t = critical gap timec

t = follow-up timesf

t = the shift in the curvem

Var(t ) = variance of critical gapsc

Var(t ) = variance of follow-up-timesf

Var (W) = variance of service times
W = average service time. It is the average time a minor street vehicle spends in the first position of the queue near the intersection
W = service time for vehicles entering the empty system, i.e no vehicle is queuing on the vehicle's arrival1

W = service time for vehicles joining the queue when other vehicles are already queuing2
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8.
UNSIGNALIZED INTERSECTION THEORY

8.1 Introduction
Unsignalized intersections are the most common intersection driver and the pattern of the inter-arrival times are
type.  Although their capacities may be lower than other important.
intersection types, they do play an important part in the control
of traffic in a network. A poorly operating unsignalized This chapter describes both of these aspects when there are two
intersection may affect a signalized network or the operation of streams.  The theory is then extended to intersections with more
an Intelligent Transportation System. than two streams.

The theory of the operation of unsignalized intersections is
fundamental to many elements of the theory used for other
intersections. For instance, queuing theory in traffic engineering
used to analyze unsignalized intersections is also used to analyze
other intersection types.

8.1.1 The Attributes of a Gap
Acceptance Analysis Procedure

Unsignalized intersections give no positive indication or control
to the driver.  He or she is not told when to leave the intersection.
The driver alone must decide when it is safe to enter the
intersection.  The driver looks for a safe opportunity or "gap" in
the traffic to enter the intersection.  This technique has been
described as gap acceptance.  Gaps are measured in time and are
equal to headways.  At unsignalized intersections a driver must
also respect the priority of other drivers.  There may be other
vehicles that will have priority over the driver trying to enter the
traffic stream and the driver must yield to these drivers.

All analysis procedures have relied on gap acceptance theory to
some extent or they have understood that the theory is the basis
for the operation even if they have not used the theory explicitly.

Although gap acceptance is generally well understood, it is
useful to consider the gap acceptance process as one that has two
basic elements.

� First is the extent drivers find the gaps or opportunities
of a particular size useful when attempting to enter the
intersection.

� Second is the manner in which gaps of a particular size are
made available to the driver.  Consequently, the proportion
of gaps of a particular size that are offered to the entering

8.1.2 Interaction of Streams at
Unsignalized Intersections

A third requirement at unsignalized intersections is that the
interaction between streams be recognized and respected.  At all
unsignalized intersections there is a hierarchy of streams.  Some
streams have absolute priority, while others have to yield to
higher order streams.  In some cases, streams have to yield to
some streams which in turn have to yield to others.  It is useful
to consider the streams as having different levels of priority or
ranking.  For instance:

Rank 1 stream - has absolute priority and does not need to
yield right of way to another stream, 

Rank 2 stream - has to yield to a rank 1 stream,

Rank 3 stream - has to yield to a rank 2 stream and in turn  to
a rank 1 stream, and

Rank 4 stream - has to yield to a rank 3 stream and in turn to
a rank 2 stream and to a rank 1 stream.

8.1.3 Chapter Outline

Sections 8.2 discusses gap acceptance theory and this leads to
Section 8.3 which discusses some of the common headway
distributions used in the theory of unsignalized intersections.

Most unsignalized intersections have more than two interacting
streams.  Roundabouts and some merges are the only examples
of two interacting streams.  Nevertheless, an understanding of
the operation of two streams provides a basis to extend the
knowledge to intersections with more than two streams.  Section
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8.4 discusses the performance of intersections with two The theory described in this chapter is influenced by the human
interacting streams. factors and characteristics as described  in  Chapter 3, and in

Section 8.5 to 8.8 discuss the operation of more complex similarities between the material in this chapter and Chapter 9
intersections.  Section 8.9 covers other theoretical treatments of dealing with signalized intersections.  Finally, unsignalized
unsignalized intersections.  In many cases, empirical approaches intersections can quickly become very complicated and often the
have been used.  For instance the relationships for AWSC (All subject of simulation programs.  The comments in Chapter 10
Way Stop Controlled) intersections are empirical.  The time are particularly relevant here.
between successive departures of vehicles on the subject  
roadway are related to the traffic conditions on the other roadway
elements.

particular, Sections 3.13 and 3.15.  The reader will also note

8.2  Gap Acceptance Theory

8.2.1  Usefulness of Gaps

The gap acceptance theory commonly used in the analysis of
unsignalized intersections is based on the concept of defining the
extent drivers will be able to utilize a gap of particular size or
duration.  For instance, will drivers be able to leave the stop line
at a minor road if the time between successive vehicles from the
left is 10 seconds; and, perhaps how many drivers will be able
to depart in this 10 second interval ?

The minimum gap that all drivers in the minor stream are
assumed to accept at all similar locations is the critical gap.
According to the driver behavior model usually assumed, no
driver will enter the intersection unless the gap between vehicles
in a higher priority stream (with a lower rank number) is at least
equal to the critical gap, t .  For example, if the critical gap wasc
4 seconds, a driver would require a 4 second gap between Rank
1 stream vehicles before departing. He or she will require the
same 4 seconds at all other times he or she approaches the same
intersection and so will all other drivers at that intersection.

Within gap acceptance theory, it is further assumed that a
number of drivers will be able to enter the intersection from a
minor road in very long gaps.  Usually, the minor stream
vehicles (those yielding right of way) enter in the long gaps at
headways often referred to as the "follow-up time", t .f

Note that other researchers have used a different concept for the
critical gap and the follow-up time.  McDonald and Armitage
(1978) and Siegloch (1973) independently described a concept
where a lost time is subtracted from each major stream gap and

the remaining time is considered 'useable.'  This 'useable' time
divided by the saturation flow gives an estimate of the absorption
capacity of the minor stream.  As shown below, the effect of this
different concept is negligible.

In the theory used in most guides for unsignalized intersections
around the world, it is assumed that drivers are both consistent
and homogeneous.  A consistent driver is expected to behave the
same way every time at all similar situations.  He or she is not
expected to reject a gap and then subsequently accept a smaller
gap.  For a homogeneous population, all drivers are expected to
behave in exactly the same way.  It is, of course, unreasonable to
expect drivers to be consistent and homogeneous. 

The assumptions of drivers being both consistent and
homogeneous for either approach are clearly not realistic.
Catchpole and Plank (1986), Plank and Catchpole (1984),
Troutbeck (1988), and Wegmann (1991) have indicated that if
drivers were heterogeneous, then the entry capacity would be
decreased.  However, if drivers are inconsistent then the capacity
would be increased.  If drivers are assumed to be both consistent
and homogeneous, rather than more realistically inconsistent and
heterogeneous, then the difference in the predictions is only a
few percent.  That is, the overall effect of assuming that drivers
are consistent and homogeneous is minimal and, for simplicity,
consistent and homogeneous driver behavior is assumed.

It has been found that the gap acceptance parameters t  and tc f
may be affected by the speed of the major stream traffic (Harders
1976 and Troutbeck 1988).  It also expected that drivers are
influenced by the difficulty of the maneuver.  The more difficult
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a maneuver is, the longer are the critical gap and follow-up time distribution of follow-up times and the critical gap distribution
parameters.  There has also been a suggestion that drivers independently.  Each group is discussed below.
require a different critical gap when crossing different streams
within the one maneuver.  For instance a turn movement across
a number of different streams may require a driver having a
different critical gap or time period between vehicles in each
stream (Fisk 1989).  This is seen as a unnecessary complication
given the other variables to be considered.

8.2.2 Estimation of the Critical
 Gap Parameters

The two critical gap parameters that need to be estimated are the
critical gap t  and the follow-up time .  The techniques used toc
estimate these parameters fit into essentially two different
groups.  The first group of techniques are based on a regression
analysis  of  the  number  of  drivers  that  accept  a  gap  against
the  gap  size.    The  other  group  of  techniques  estimates  the

Regression techniques.
If there is a continuous queue on the minor street, then the
technique proposed by Siegloch (1973) produces acceptable
results because the output matches the assumptions used in a
critical gap analysis.  For this technique, the queue must have at
least one vehicle in it over the observation period.  The process
is then:

� Record the size of each gap, t, and the number of
vehicles, n, that enter during this gap;

� For each of the gaps that were accepted by only n
drivers, calculate the average gap size, E(t) (See Figure
8.1);

� Use linear regression on the average gap size values
(as the dependent variable) against the number of
vehicles that enter during this average gap size, n; and

Figure 8.1
Data Used to Evaluate Critical Gaps and Move-Up Times 

(Brilon and Grossmann 1991).
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� Given the slope is t and the intercept of the gap sizef

axis is t , then the critical gap t  is given by  o c

The regression line is very similar to the stepped line as shown
in Figure 8.2.  The stepped line reflects the assumptions made by
Tanner (1962), Harders (1976), Troutbeck (1986), and others.
The sloped line reflects the assumptions made by Siegloch
(1973), and McDonald and Armitage (1978).

Independent assessment of the critical gap and follow-up time
If the minor stream does not continuously queue, then the
regression approach cannot be used.  A probabilistic approach
must be used instead.

The follow-up time is the mean headway between queued
vehicles which move through the intersection during the longer
gaps in the major stream.  Consider the example of two major
stream vehicles passing by an unsignalized intersection at times
2.0 and 42.0 seconds.  If there is a queue of say 20 vehicles
wishing to make a right turn from the side street,  and  if  17  of

these minor street vehicles depart at 3.99, 6.22, 8.29, 11.13,
13.14, and so on, then the headways between the minor street
vehicles are 6.22-3.99, 8.29-6.22, 11.13-8.29 and so on.  The
average  headway  between  this  group  of  minor stream
vehicles is 2.33 sec.  This process is repeated for a number of
larger major stream gaps and an overall average headway
between the queued minor stream vehicles is estimated.  This
average headway is the follow-up time, t .  If a minor streamf
vehicle was not in a queue then the preceding headway would
not be included.  This quantity is similar to the saturation
headway at signalized intersections.

The estimation of the critical gap is more difficult.  There have
been numerous techniques proposed (Miller 1972; Ramsey and
Routledge 1973; Troutbeck 1975; Hewitt 1983; Hewitt 1985).
The difficulty with the estimation of the critical gap is that it
cannot be directly measured.  All that is known is that a driver's
individual critical gap is greater than the largest gap rejected and
shorter than the accepted gap for that driver.  If the accepted gap
was shorter than the largest rejected gap then the driver is
considered to be inattentive.  This data is changed to a value just
below the accepted gap.  Miller (1972) gives an alternative
method of handling this inconsistent data which uses the data as
recorded.  The difference in outcomes is generally marginal.

Figure 8.2
Regression Line Types.
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(8.7)

Miller (1972), and later Troutbeck (1975) in a more limited
study, used a simulation technique to evaluate a total of ten
different methods to estimate the critical gap distribution of
drivers.  In this study the critical gaps for 100 drivers were
defined from a known distribution.  The arrival times of priority
traffic were simulated and the appropriate actions of the
"simulated" drivers were noted.  This process was repeated for
100 different sets of priority road headways, but with the same
set of 100 drivers.  The information recorded included the size
of any rejected gaps and the size of the accepted gap and would
be similar to the information able to be collected by an engineer
at the road side.  The gap information was then analyzed using
each of the ten different methods to give an estimate of the
average of the mean of the drivers' critical gaps, the variance of
the mean of the drivers' critical gaps, mean of the standard
deviation of the drivers' critical gaps and the variance of the
standard deviation of the drivers' critical gaps.  These statistics
enabled the possible bias in predicting the mean and standard
deviation of the critical gaps to be estimated.  Techniques which
gave large variances of the estimates of the mean and the
standard deviation of the critical gaps were considered to be less
reliable and these techniques were identified.  This procedure
found that one of the better methods is the Maximum Likelihood
Method and the simple Ashworth (1968) correction to the
prohibit analysis being a strong alternative.  Both methods are
documented here.  The Probit or Logit techniques are also
acceptable, particularly for estimating the probability that a gap
will be accepted (Abou-Henaidy et al. 1994), but more care
needs to be taken to properly account for flows.  Kyte et al
(1996) has extended the analysis and has found that the
Maximum Likelihood Method and the Hewitt (1983) models
gave the best performance for a wide range of minor stream and
major stream flows.

The maximum likelihood method of estimating the critical gap
requires that the user assumes a probabilistic distribution of the
critical gap values for the population of drivers. A log-normal is
a convenient distribution.  It is skewed to the right and does not
have non-negative values.  Using the notation:

a = the logarithm of the gap accepted by the ith driver,i

a = � if no gap was accepted,i

r = the logarithm of the largest gap rejected by the ithi
driver,

r = 0 if no gap was rejected,i

μ and
� are the mean and variance of the logarithm of the2

individual drivers critical gaps (assuming a log-
normal distribution), and

f( ) and
 F( ) are the probability density function and the

cumulative distribution function respectively for
the normal distribution.

The probability that an individual driver's critical gap will be
between r  and a  is F(a ) – F(r ).  Summing over all drivers, thei i i i

likelihood of a sample of n drivers having accepted and largest
rejected gaps of (a , r ) isi i

The logarithm, L,  of this likelihood is then

The maximum likelihood estimators, μ and � , that maximize L,2

are given by the solution to the following equations.

and

Using a little algebra,
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This then leads to the following two equations which must be first gap offered without rejecting any gaps, then Equations 8.8
solved iteratively.  It is recommended that the equation and 8.9 give trivial results.  The user should then look at

should be used to estimate μ given a value of � .  An initial value2

of �  is the variance of all the a and r values.  Using this2
i i

estimate of μ from Equation 8.8, a better estimate of �  can be2

obtained from the equation,

where  is an estimate of μ. 

A better estimate of the μ can then be obtained from the
Equation 8.8 and the process continued until successive
estimates of μ and �  do not change appreciably.2

The mean, E(t  ), and the variance, Var(t  ), of the critical gap normal function is used, then E(t ) and Var(t ) are values givenc c
distribution is a function of the log normal distribution by the generic Equations 8.10 and 8.11.  This is a very practical
parameters, viz: solution and one which can be used to give acceptable results in

and

The critical gap used in the gap acceptance calculations is then
equal to E(t  ).  The value should be less than the mean of thec
accepted gaps.

This technique is a complicated one, but it does produce
acceptable results.  It uses the maximum amount of information,
without biasing the result, by including the effects of a large
number of rejected gaps.  It also accounts for the effects due to
the major stream headway distribution.  If traffic flows were
light, then many drivers would accept longer gaps without
rejecting gaps. On the other hand, if the flow were heavy, all
minor stream drivers would accept shorter gaps.  The
distribution of accepted gaps is then dependent on the major
stream flow.  The maximum likelihood technique can account for
these different conditions.  Unfortunately, if all drivers accept the

alternative methods or preferably collect more data.

Another very useful technique for estimating the critical gap is
Ashworth’s (1968) procedure.  This requires that the user
identify the characteristics of the probability distribution that
relates the proportion of gaps of a particular size that were
accepted to the gap size.  This is usually done using a Probit
analysis applied to the recorded proportions of accepted gaps.
A plot of the proportions against the gap size on probability
paper would also be acceptable.  Again a log normal distribution
may be used and this would require the proportions to be plotted
against the natural logarithm of the gap size.  If the mean and
variance of this distribution are E(t ) and Var(t ), thena a
Ashworth’s technique gives the critical gap as

where q  is the major stream flow in units of veh/sec.  If the logp

a a

the office or the field.

8.2.3  Distribution of Gap Sizes

The distribution of gaps between the vehicles in the different
streams has a major effect on the performance of the
unsignalized intersection.  However, it is important only to look
at the distribution of the larger gaps; those that are likely to be
accepted.  As the shorter gaps are expected to be rejected, there
is little point in modeling these gaps in great detail.

A common model uses a random vehicle arrival pattern, that is,
the inter-arrival times follow an exponential distribution.  This
distribution will predict a large number of headways less than 1
sec.  This is known to be unrealistic, but it is used because these
small gaps will all be rejected.

This exponential distribution is known to be deficient at high
flows and a displaced exponential distribution is often
recommended.  This model assumes that vehicle headways are
at least t  sec.m
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Better models use a dichotomized distribution.  These models In this chapter, the word "queues" is used to refer to a line of
assume that there is a proportion of vehicles that are free of stopped vehicles.  On the other hand, a platoon is a group of
interactions and travel at headways greater than t . These traveling vehicles which are separated by a short headway of t .m
vehicles are termed "free" and the proportion of free vehicles is When describing the length of a platoon, it is usual to include a
�.  There is a probability function for the headways of free platoon leader which will have a longer headway in front of him
vehicles.  The remaining vehicles travel in platoons and again or her.  A platoon of length one is a single vehicle travelling
there is a headway distribution for these bunched vehicles.  One without any vehicles close-by.  It is often useful to distinguish
such dichotomized headway model is Cowan's (1975) M3 model between free vehicles (or platoon leaders) and those vehicles in
which assumes that a proportion, �, of all vehicles are free and the platoon but behind the leader.  This latter group are called
have an displaced exponential headway distribution and the 1-� bunched vehicles.  The benefits of a number of different headway
bunched vehicles have the same headway of only t .m

m

models will be discussed later.

8.3  Headway Distributions Used in Gap Acceptance Calculations
8.3.1  Exponential Headways

The most common distribution is the negative exponential
distribution which is sometimes referred to as simply the
"exponential distribution".  This distribution is based on the
assumption that vehicles arrive at random without any
dependence on the time the previous vehicle arrived.  The
distribution can be derived from assuming that the probability of
a vehicle arriving in a small time interval (t, t+�t) is a constant.
It can also be derived from the Poisson distribution which gives
the probability of n vehicles arriving in time t, that is:

where q is the flow in veh/sec.  For n = 0 this equation gives the
probability that no vehicle arrives in time t.  The headway, h,
must be then greater than t and the probability, from Equation If the flow was 1440 veh/h or 0.4 veh/sec then the number of
8.13 is headways less than 0.1 seconds is then   or

The cumulative probability function of headways is then

The probability distribution function is then be considered to be the space around a vehicle that no other

This is the equation for the negative exponential distribution.
The parameter q can be estimated from the flow or the reciprocal
of the average headway.  As an example, if there were 228
headways observed in half an hour, then the flow is 228/1800 i.e.
q = 0.127 veh/sec.  The proportion of headways expected to be
greater than 5 seconds is then

P(h>5) =  e –q t

= e – 5*0.127

=  0.531

The expected number of headways greater than 5 seconds
observed in half an hour is then 0.531�228 or 116.

56 per hour.  This over-estimation of the number of very short
headways is considered to be unrealistic and the displaced
exponential distribution is often used instead of the negative
exponential distribution.

8.3.2  Displaced Exponential Distribution

The shifted or displaced exponential distribution assumes that
there is a minimum headway between vehicles, t .  This time canm
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vehicle can intrude divided by the traffic speed.  If the flow is q
veh/h then in one hour q vehicles will pass and there are t � qm
seconds lost while these vehicles pass. The remaining time must
then be distributed randomly after each vehicle and the average
random component is (1-t � q)/q seconds.  The cumulativem
probability distribution of headways is then:

where,

There, the terms, � and t  need to be evaluated.  These can bem
estimated from the mean and the variance of the distribution.
The mean headway, E(h), is given by:

The variance of headways is 1/� .  These two relationships can2

then be used to estimate � and t .m

This distribution is conceptually better than the negative
exponential distribution but it does not account for the
platooning that can occur in a stream with higher flows.  A
dichotomized headway distribution provides a better fit.

8.3.3  Dichotomized Headway Distributions

In most traffic streams there are two types of vehicles, the first
are bunched vehicles; these are closely following preceding
vehicles.  The second group are free vehicles that are travelling
without interacting with the vehicles ahead.  There have been a
number of dichotomized headway distributions developed over
time.  For instance, Schuhl (1955) proposed a distribution

where there are � vehicles that are free (not in platoons);

there are (1–�) bunched vehicles;

is the average headway for free vehicles;

is the average headway for bunched or constrained
vehicles;

t   is the shift in the curve.m

Other composite headway models have been proposed by
Buckley (1962; 1968). However, a better headway model for
gap acceptance is the M3 model proposed by Cowan (1975).
This model does not attempt to model the headways between the
bunched vehicles as these are usually not accepted but rather
models the larger gaps.  This headway model has a cumulative
probability distribution:

and
p(h� t)  =  0 otherwise.

Where � is a decay constant given by the equation

Cowan's headway model is rather general.  To obtain the
displaced exponential distribution set � to 1.0.  For the negative
exponential distribution, set � to 1.0 and t  to 0.  Cowan's modelm
can also give the headway distribution used by Tanner (1962) by
setting � to 1–t q, however the distribution of the number ofm
vehicles in platoons is not the same.  This is documented below.

Brilon (1988) indicated that the proportion of free vehicles could
be estimated using the equation,

where A values ranged from 6 to 9.  Sullivan and Troutbeck
(1993) found that this equation gave a good fit to data, from
more than 600 of hours of data giving in excess of 400,000
vehicle headways, on arterial roads in Australia.  They also
found that the A values were different for different lanes and for
different lane widths.  These values are listed in Table 8.1.  
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Table 8.1 theory when predicting capacity or delays.  The hyper-Erlang
“A” Values for Equation 8.23 from Sullivan and
Troutbeck (1993).

Median All other
Lane lanes

Lane width < 3.0 meters 7.5 6.5

3.0 � Lane width � 3.5 meters 7.5 5.25

Lane width> 3.5 meters 7.5 3.7

Typical values of the proportion of free vehicles are given in
Figure 8.3.

The hyper-Erlang distribution is also a dichotomized headway
distribution that provides an excellent fit to headway data.  It is
useful in simulation programs but has not been used in traffic 

distribution given by Dawson (1969) is:

8.3.4 Fitting the Different Headway
Models to Data

If the mean headway is 21.5 seconds and standard deviation is
19.55 seconds, then the flow is 1/21.5 or 0.0465 veh/seconds
(167 veh/hour).  A negative exponential curve that would fit this
data is then,

Figure 8.3
Typical Values for the Proportion of Free Vehicles.
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To estimate the parameters for the displaced exponential
distribution, the difference between the mean and the standard
deviation is the displacement, that is t  is equal to 21.49 – 19.55m
or 1.94 seconds.  The constant � used in Equation 8.21 is the
reciprocal of the standard deviation.  In this case, � is equal to
1/19.55 or 0.0512 veh/sec.  The appropriate equation is then:

The data and these equations are shown in Figure 8.4 which
indicates the form of these distributions.  The reader should not
make any conclusions about the suitability of a distribution from
this figure but should rather test the appropriateness of the model
to the data collected.

In many cases there are a substantial number of very short
headways and a dichotomized headway distribution performs
better.  As only the larger gaps are likely to be accepted by
drivers, there is no point in modeling the shorter gaps in great
detail.  An example of Cowan’s M3 model and headway data
from an arterial road is shown in Figure 8.5.  Figure 8.6 gives time of t .  Although the distribution of these 'revised' major
the same data and the hyper-Erlang distribution.

Under these conditions the mean platoon size is 

and the variance by

Another distribution of platoons used in the analysis of
unsignalized intersections is the Borel-Tanner distribution.  This
platooning distribution comes from Tanner's (1962) assumptions
where the major stream gaps are the outcome of a queuing
process with random arrivals and a minimum inter-departure

m

stream gaps is given  by Equation 8.21 with � equal to 1–t q,m

Figure 8.4
Exponential and Displaced Exponential Curves

(Low flows example).
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Figure 8.5
Arterial Road Data and a Cowan (1975) Dichotomized Headway Distribution 

(Higher flows example).

Figure 8.6 
Arterial Road Data and a Hyper-Erlang Dichotomized Headway Distribution

(Higher Flow Example).
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the distribution of the platoon length is Borel-Tanner (Borel Haight and Breuer  (1960) found the mean platoon size to be 
1942; Tanner 1953; 1961; and Haight and Breuer 1960).  Again,
q is the flow in veh/sec.  The Borel-Tanner distribution of (1- �) /� .  For the same mean platoon size, the Borel-Tanner
platoons gives the probability of a platoon of size n as

where n is an integer.

1 / (1 -  t q ) or 1/� and the variance to be orm
3

distribution has a larger variance and predicts a greater number
of longer platoons than does the geometric distribution.
Differences in the platoon size distribution does not affect an
estimate of capacity but it does affect the average delay per
vehicle as shown in Figure 8.13.

8.4  Interaction of Two Streams

For an easy understanding of traffic operations at an unsignalized
intersection it is useful to concentrate on the simplest case first
(Figure 8.7).

All methods of traffic analysis for unsignalized intersections are
derived from a simple queuing model in which the crossing of
two traffic streams is considered.  A priority traffic stream
(major stream) of the volume q  (veh/h) and a non-priority trafficp

stream (minor stream) of the volume q  (veh/h) are involved inn
this queuing model.  Vehicles from the major stream can cross
the conflict area without any delay.  Vehicles from the minor where,
stream are only allowed to enter the conflict area, if the next
vehicle from the major stream is still t  seconds away (t  is the stop line in the minor stream in veh/sec,c c
critical gap), otherwise they have to wait.  Moreover, vehicles
from the minor stream can only enter the intersection t secondsf

after the departure of the previous vehicle (t  is the follow-up the major stream, andf
time).

8.4.1  Capacity

The mathematical derivation of the capacity q for the minorm

stream is as follows.  Let  g(t)  be the number of minor stream
vehicles which can enter into a major stream gap of duration t.
The expected number of these t-gaps per hour is 3600q  f(t) p
where,

f(t) = statistical density function of the gaps in the
major stream and

q = volume of the major stream.p

Therefore, the amount of capacity which is provided by t-gaps
per hour is 3600 q  f(t) g(t).p

To get the total capacity, expressed in veh/second, we have to
integrate over the whole range of major stream gaps:

q = maximum traffic volume departing from them

q = major stream volume in veh/sec,p

f(t) = density function for the distribution of gaps in

g(t) = number of minor stream vehicles which can
enter into a major stream gap of size, t .

Based on the gap acceptance model, the capacity of the simple
2-stream situation (Figure 8.7) can be evaluated by elementary
probability theory methods if we assume:

(a) constant t and t  values,c f

(b) exponential distribution for priority stream headways
(cf. Equation 8.15), and

(c) constant traffic volumes for each traffic stream.
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Figure 8.7
Illustration of the Basic Queuing System.

Within assumption (a), we have to distinguish between two
different formulations for the term g(t).  These are the reason for
two different families of capacity equations.  The first family
assumes a stepwise constant function for g(t) (Figure 8.2):

where,
p (t)= probability that  n  minor streamn

vehicles enter a gap in the major stream
of duration t,

The second family of capacity equations assumes a continuous
linear function for g(t) . This is an approach which has first been
used by Siegloch (1973) and later also by McDonald and
Armitage (1978).
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where,

Once again it has to be emphasized that both in Equations 8.30
and 8.31, t  and t  are assumed to be constant values for all different manner:c f
drivers.

Both approaches for g(t) produce useful capacity formulae where
the resulting differences are rather small and can normally be
ignored for practical applications (cf. Figure 8.8).

If we combine Equations 8.29 and 8.30, we get the capacity
equation used by Drew (1968), Major and Buckley (1962), and
by Harders (1968), which these authors however, derived in a

Figure 8.8
Comparison Relation Between Capacity (q-m) and Priority Street Volume (q-p).
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(8.32)

(8.33)

If we combine Equations 8.29 and 8.31 we get Siegloch's (1973)
formula,

These formulae result in a relation of capacity versus conflicting
flow illustrated by the curves shown in Figure 8.8.

The idealized assumptions, mentioned above as (a), (b), (c),
however, are not realistic. Therefore, different attempts to drop
one or the other assumption have been made.  Siegloch (1973)
studied different types of gap distributions for the priority stream
(cf. Figure 8.9) based on analytical methods.  Similar studies
have also been performed by Catchpole and Plank (1986) and
Troutbeck (1986).  Grossmann (1991) investigated these effects
by simulations.  These studies showed

� If the constant t and values are replaced by realisticc
distributions (cf. Grossmann 1988) we get a decrease
in capacity.

� Drivers may be inconsistent; i.e. one driver can have
different critical gaps at different times; A driver might
reject a gap that he may otherwise find acceptable. This
effect results in an increase of capacity.

� If the exponential distribution of major stream gaps is
replaced by more realistic headway distributions, we
get an increase in capacity of about the same order of
magnitude as the effect of using a distribution for t  andc

t values (Grossmann 1991 and Troutbeck 1986).f

� Many unsignalized intersections have complicated
driver behavior patterns, and there is often little to be
gained from using a distribution for the variables t  andc

t or complicated headway distributions.  Moreover,f
Grossmann could show by simulation techniques that
these effects compensate each other so that the simple
capacity equations, 8.32 and 8.33, also give quite
realistic results in practice.

Note: Comparison of capacities for different types of headway distributions in the main street traffic flow for t = 6 seconds andc

t = 3 seconds.  For this example, t  has been set to 2 seconds.f m

Figure 8.9
Comparison of Capacities for Different Types of 

Headway Distributions in the Main Street Traffic Flow.
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(8.34)

(8.35)

(8.36)

(8.37)

(8.38)

More general solutions have been obtained by replacing the  equation:
exponential headway distribution used in assumption (b) with a
more realistic one e. g. a dichotomized distribution (cf. Section
8.3.3).  This more general equation is:

where

This equation is illustrated in Figure 8.10.  This is also similar
to equations reported by Tanner (1967), Gipps (1982),
Troutbeck (1986), Cowan (1987), and others.  If � is set to 1
and t  to 0, then Harders' equation is obtained.  If � is set tom
l– , then this equation reduces to Tanner's (1962) This was proposed by Jacobs (1979) .

If the linear relationship for g(t) according to Equation 8.37 is
used, then the associated capacity equation is

or

Figure 8.10
The Effect of Changing �� in Equation 8.31 and Tanner's Equation 8.36.
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(8.39)

(8.40)

(8.41)Tanner (1962) analyzed the capacity and delay at an intersection
where both the major and minor stream vehicles arrived at
random; that is, their headways had a negative exponential
distribution.  He then assumed that the major stream vehicles
were restrained such that they passed through the intersection at
intervals not less than t sec after the preceding major streamm
vehicle.  This allowed vehicles to have a finite length into which where,
other vehicles could not intrude.  Tanner did not apply the same
constraint to headways in the minor stream.  He assumed the
same gap acceptability assumptions that are outlined above.
Tanner considered the major stream as imposing 'blocks' and
'anti-blocks' on the minor stream.  A block contains one or more
consecutive gaps less than t  sec; the block starts at the firstc

vehicle with a gap of more than t sec in-front of it and ends c

sec after the last consecutive gap less than t   sec.  Tanner'sc
equation for the entry capacity is a particular case of a more
general equation.

An analytical solution for a realistic replacement of assumptions
(a) and (b) within the same set of formulae is given by Plank and
Catchpole (1984):

where

Var(t  ) = variance of critical gaps,c

Var(t  ) = variance of follow-up-times,f

� = increment, which tends to 0, when Var(tc c

) approaches 0, and
� = increment, which tends to 0, when Var(tf f

) approaches 0.

Wegmann (1991) developed a universal capacity formula which
could be used for each type of distribution for the critical gap, for
the follow-up time and for each type of the major stream
headway distribution.

E(C) = mean length of a "major road cycle" C,
C = G  +  B,
G = gap,
B = block,
� = probability (G  >  t ), andc

z(t) = expected number of departures within
the time interval of duration  t.

Since these types of solutions are complicated many researchers
have tried to find realistic capacity estimations by simulation
studies.  This applies especially for the German method (FGSV
1991) and the Polish method.

8.4.2 Quality of Traffic Operations

In general, the performance of traffic operations at an
intersection can be represented by these variables (measures of
effectiveness, MOE):

(a) average delay,
(b) average queue lengths,
(c) distribution of delays,
(d) distribution of queue lengths (i.e number of vehicles

queuing on the minor road),
(e) number of stopped vehicles and number of

accelerations from stop to normal velocity, and
(f) probability of the empty system (p ).o

Distributions can be represented by:

� standard deviations,
� percentiles, and
� the whole distribution.

To evaluate these measures, two tools can be used to solve the
problems of gap acceptance:

� queuing theory and
� simulation.
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(8.42)

(8.43)

(8.44)

(8.45)

(8.46)

(8.47)

Each of these MOEs are a function of q  and q ; the proportionp n
of "free" vehicles and the distribution of platoon size length in
both the minor and major streams.  Solutions from queuing
theory in the first step concentrate on average delays.

A general form of the equation for the average delay per vehicle
is

where � and � are constants
x is the degree of saturation = q /qn m

and D has been termed Adams' delay after Adams (1936).min
Adams' delay is the average delay to minor stream vehicles when
minor stream flow is very low.  It is also the minimum average
delay experienced by minor stream vehicles.

Troutbeck (1990) gives equations for �, � and D  based on themin
formulations by Cowan (1987).  If stream 2 vehicles are
assumed to arrive at random, then � is equal to 0. On the other
hand, if there is platooning in the minor stream, then � is greater
than 0.

For random stream 2 arrivals, � is given by

Note that � is approximately equal to 1.0.  D  depends on themin
platooning characteristics in stream 1.  If the platoon size
distribution is geometric, then

(Troutbeck 1986).

Tanner's (1962) model has a different equation for Adams' delay,
because the platoon size distribution in stream 1 has a Borel-
Tanner distribution.  This equation is

Another solution for average delay has been given by Harders
(1968).  It is not based on a completely sophisticated queuing
theory.  However, as a first approximation, the following
equation for the average delay to non-priority vehicles is quite
useful.

with q  calculated using Equation. 8.34 or similar.m

M/G/1 Queuing System -   A more sophisticated queuing theory
model can be developed by the assumption that the simple two-
streams system (Figure 8.7) can be represented by a M/G/1
queue.  The service counter is the first queuing position on the
minor street.  The input into the system is formed by the vehicles
approaching from the minor street which are assumed to arrive
at random, i.e. exponentially distributed arrival headways (i.e.
"M").  The time spent in the first position of the queue is the
service time. This service time is controlled by the priority
stream, with an unknown service time distribution.  The "G" is
for a general service time.  Finally, the "1" in M/G/1 stands for
one service channel, i.e. one lane in the minor street.

For the M/G/1 queuing system, in general, the Pollaczek-
Khintchine formula is valid for the average delay of customers in
the queue

where
W = average service time. It is the average

time a minor street vehicle spends in the
first position of the queue near the
intersection

C = coefficient of variation of service timesw
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(8.48)

(8.49)

(8.51)

Var (W) = variance of service times

The total average delay of minor street vehicles is then

D = D  + W.q

In general, the average service time for a single-channel queuing
system is: l/capacity.  If we derive capacity from Equations 8.32 critical gap parameters t and  and  the headway distributions.
and following and if we include the service time W in the total However, C, �, and � values are not available for all conditions.
delay, we get

where

Up to this point, the derivations are of general validity.  The real
problem now is to evaluate C.  Only the extremes can be defined
which are:

� Regular service: Each vehicle spends the same time in the
first  position.  This gives Var(W)  = 0, C  =  0, and C  = w

2

0.5

This is the solution for the M/D/l queue.

� Random service: The times vehicles spend in the first
position are exponentially distributed. This gives 
Var(W)  = E(W), C  =  1, and C  =  1.0w

2

This gives the solution for the M/M/1 queue.

Unfortunately, neither of these simple solutions applies exactly
to the unsignalized intersection problem.  However, as an
approximation, some authors recommend the application of
Equation 8.48 with C = 1.

Equation 8.42 can be further transformed to

where � and � are documented in Troutbeck (1990).

This is similar to the Pollaczek-Khintchine formula (Equation
8.48).  The randomness constant C is given by (�+�)/(l+�) and
the term 1/D *(l+�) can be considered to be an equivalentmin
'capacity' or 'service rate.'  Both terms are a function of the

c

For the M/G/1 system as a general property, the probability p  ofo
the empty queue is given by

p  = 1 - x (8.50)o

This formula is of sufficient reality for practical use at
unsignalized intersections.

M/G2/1 queuing system - Different authors found that the
service time distribution in the queuing system is better
described by two types of service times, each of which has a
specific distribution:

W = service time for vehicles entering the empty system, i.e1
no vehicle is queuing on the vehicle's arrival

W = service time for vehicles joining the queue when other2
vehicles are already queuing.

Again, in both cases, the service time is the time the vehicle
spends waiting in the first position near the stop line.  The first
ideas for this solution have been introduced by Kremser (1962;
1964) and in a comparable way by Tanner (1962), as well as by
Yeo and Weesakul (1964).

The average time which a customer spends in the queue of such
a system is given by Yeo's (1962) formula:

where,
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(8.53)

(8.54)

D  = average delay of vehicles in the queue atq
higher positions than the first,

E(W ) =  expectation of W ,1 1

E(W ) = expectation of (W *W )1 1 1
2

E(W ) = expectation of W ,2 2

E(W ) = expectation of (W * W ),2 2 2
2

v = y  + z,
y = 1 –q E(W ), andn 2

z = q  E(W ).n l

The probability p  of the empty queue iso

p = y/v (8.52)o

The application of this formula shows that the differences against
Equation 8.50 are quite small ( < 0.03).  Refer to Figure 8.11.

If we also include the service time ( = time of minor street
vehicles spent in the first position) in the total delay, we get 

(Brilon 1988):Formulae for the expectations of  W  and  W1 2
respectively have been developed by Kremser (1962):

Figure 8.11
Probability of an Empty Queue: Comparison of Equations 8.50 and 8.52.
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Kremser (1964), however, showed that the validity of these regarded as approximations and only apply for
equations is restricted to the special case of  t  = t , which isc f
rather unrealistic for two-way-stop-control unsignalized
intersections.  Daganzo (1977) gave an improved solution for
E(W ) and E(W ) which again was extended by Poeschl (1983).2 2

2

These new formulae were able to overcome Kremer's (1964)
restrictions.  It can, however be shown that Kremer's first
approach (Equation 8.56) also gives quite reliable approximate
results for t  and t  values which apply to realistic unsignalizedc f
intersections.  The following comments can also be made about
the newer equations.

� The formulae are so complicated that they are far from
being suitable for practice. The only imaginable application
is the use in computer programs.

� Moreover, these formulae are only valid under assumptions
(a), (b), and (c) in Section 8.4.1 of the paper.  That means
that  for  practical  purposes,  the  equations  can  only  be

undersaturated conditions and steady state conditions.

Figure 8.12 gives a graphical comparison for some of the delay
formulae mentioned.

Differences in the platoon size distribution affects the average
delay per vehicle as shown in Figure 8.13.  Here, the critical gap
was 4 seconds, the follow-up time was 2 seconds, and the
priority stream flow was 1000 veh/h.  To emphasize the point,
the average delay for a displaced exponential priority stream is
4120 seconds, when the minor stream flow was 400 veh/h.  This
is much greater than the values for the Tanner and exponential
headway examples which were around 11.5 seconds for the same
major stream flow.  The average delay is also dependent on the
average platoon size as shown in Figure 8.14.  The differences
in delays are dramatically different when the platoon size is
changed.

Note: For this example; q  = 600 veh/h,  t  = 6 sec , and t  = 3 sec.p c f

Figure 8.12
Comparison of Some Delay Formulae.
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Figure 8.13
Average Steady State Delay per Vehicle 

Calculated Using Different Headway Distributions.

Figure 8.14
Average Steady State Delay per Vehicle by Geometric 

Platoon Size Distribution and Different Mean Platoon Sizes.
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(8.57)

(8.58)

(8.59)

8.4.3  Queue Length

In each of these queuing theory approaches, the average queue
length (L) can be calculated by Little's rule (Little 1961):

L  =  q  D (8.55)n

Given that the proportion of time that a queue exists is equal to
the degree of saturation, the average queue length when there is
a queue is:

L   =  q  D/x  = q  D (8.56)q n m

The distribution of queue length then is often assumed to be
geometric.

However, a more reliable derivation of the queue length
distribution was given by Heidemann (1991). The following
version contains a correction of the printing mistakes in the
original paper  (there: Equations 8.30 and 8.31).

p(n)   =  probability that n vehicles are queuing on the              
   minor street

These expressions are based on assumptions  (a), (b), and (c)  in
Section 8.4.1.  This solution is too complicated for practical use.
Moreover, specific percentiles of the queue length is the desired
output rather than probabilities.  This however, can not be

calculated from these equations directly.  Therefore, Wu (1994)
developed another set of formulae which approximate the above
mentioned exact equations very closely:

p(n)   =  probability that n vehicles are queuing on the       
           minor street

where,

x = degree of saturation (q   according to Equationm
8.33).

For the rather realistic approximation  t � 2 t , we get :c f

From Equation 8.58 we get the cumulative distribution function

For a given percentile, S,  (e.g. S = F(n) = 0.95) this equation
can be solved for n to calculate the queue length which is only
exceeded during (1-S)*100 percent of the time (Figure 8.15).
For practical purposes, queue length can be calculated with
sufficient precision using the approximation of the M/M/1
queuing system and, hence, Wu’s equation.  The 95-percentile-
queue length based on Equation 8.59 is given in Figure 8.15.
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(8.60)

(8.61)

(8.62)

The parameter of the curves (indicated on the right side) is the degree of saturation ( x ).

Figure 8.15
95-Percentile Queue Length Based on Equation 8.59 (Wu 1994). 

8.4.4  Stop Rate

The proportion of drivers that are stopped at an unsignalized
intersection with two streams was established by Troutbeck
(1993).  The minor stream vehicles were assumed to arrive at
random whereas the major stream headways were assumed to
have a Cowan (1975) M3 distribution.  Changes of speed are
assumed to be instantaneous and the predicted number of
stopped vehicles will include those drivers who could have
adjusted their speed and avoided stopping for very short periods.

The proportion stopped, P(x,0), is dependent upon the degree of
saturation, x, the headways between the bunched major stream
vehicles, t , the critical gap, t . and the major stream flow, q .m c p
The appropriate equation is:

where � is given by �q /(1-t q ).  The proportion of driversp m p

stopped for more than a short period of t, where t is less than the

follow-up time t , increases from some minimum value, P(0,t),f
to 1 as the degree of saturation increases from 0 to 1.

The proportion of drivers stopped for more than a short period
t, P(x,t), is given by the empirical equation:

where

 and
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(8.63)

or

If the major stream is random then a  is equal to 1.25 and for0
bunched major stream traffic, it is 1.15.  The vehicles that are
stopped for a short period may be able to adjust their speed and
these vehicles have been considered to have a “partial stop."
Troutbeck (1993) also developed estimates of the number of
times vehicles need to accelerate and move up within the queue.

8.4.5  Time Dependent Solution

Each of the solutions given by the conventional queuing theory
above is a steady state solution.  These are the solutions that can
be expected for non-time-dependent traffic volumes after an
infinitely long time, and they are only applicable when the degree
of saturation  x is  less  than  1.   In practical terms, this means,
the  results  of  steady  state  queuing   theory   are   only   useful

approximations if T is considerably greater than the expression
on the right side of the following equation.

with T = time of observation over which the average delay
should be estimated in seconds,

after Morse (1962).

This inequality can only be applied if q  and q are nearlym n

constant during time interval  T.  The threshold given by
Equation 8.63 is illustrated by Figure 8.16. The curves are given
for time intervals T of 5, 10, 15, 30, and 60 minutes.  Steady
state conditions can be assumed if  q  is below the curve for then

corresponding T-value.  If this condition (Equation 8.63) is not
fulfilled, time-dependent solutions should be used.
Mathematical solutions for the time dependent problem have
been  developed  by  Newell  (1982)  and now  need to be made

Note: The curves are given for time intervals T of 5, 10, 15, 30, and 60 minutes.  Steady state cond itions can be assumed if  q  isn

below the curve for the corresponding T-value.

Figure 8.16
Approximate Threshold of the Length of Time Intervals For the Distinction

Between Steady-State Conditions and Time Dependent Situations. 
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(8.64)

(8.67)

more accessible to practicing engineers.  There is, however, a This delay formula has proven to be quite useful to estimate
heuristic approximate solution for the case of the peak hour delays and it has  a quite reliable background particularly for
effect given by Kimber and Hollis (1979) which are based on the temporarily oversaturated conditions.
ideas of Whiting, who never published his work.

During the peak period itself, traffic volumes are greater than ordinate transfer method.  This is a more approximate method.
those before and after that period.  They may even exceed The steady state solution is fine for sites with a low degree of
capacity.  For this situation, the average delay during the peak saturation and the deterministic solution is satisfactory for sites
period can be estimated as: with a very high degree of saturation say, greater than three or

q = capacity of the intersection entry during them

peak period of duration T,
q = capacity of the intersection entry before andmo

after the peak period,
q = minor street volume during the peak period ofn

duration T, and
q = minor street volume before and after the peakno

period

(each of these terms  in veh/sec;  delay in sec).

C is again similar to the factor C mentioned for the M/G/1
system, where

C = 1 for unsignalized intersections and
C = 0.5 for signalized intersections (Kimber and Hollis

1979).

A simpler equation can be obtained by using the same co-

four.  The co-ordinate transfer method is one technique to
provide estimates between these two extremes.  the reader
should also refer to Section 9.4.

The steady state solution for the average delay to the entering
vehicle is given by Equation 8.42.  The deterministic equation
for delay, D , on the other hand isd

x > 1 (8.65)

and D  =  0d
otherwise,

where L is the initial queue,0

T is time the system is operating in seconds, and
q is the entry capacity.m

These equations are diagrammatically illustrated in Figure 8.17.
For a given average delay the co-ordinate transformation method
gives a new degree of saturation, x  , which is related to thet

steady state degree of saturation, x , and the deterministic degrees

of saturation, x  , such thatd

x  – x  =  1 – x   =  a (8.66)d t s

Rearranging Equations 8.42 and 8.65 gives two equations for xs

and x  as a function of the delays and .  These twod
equations are:
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(8.68)

(8.69)

(8.70)

(8.71)

(8.72)

Figure  8.17
The Co-ordinate Transform Technique.

and

Using Equation 8.66, x is given by:t

Rearranging Equation 8.69 and setting D = D = D , x = x gives:s d �

where

and

Equation 8.66 ensures that the transformed equation will
asymptote to the deterministic equation and gives a family of
relationships for different degrees of saturation and period of
operation from this technique (Figure 8.18).

A simpler equation was developed by Akçelik in Akcelik and
Troutbeck (1991).  The approach here is to rearrange Equation
8.42 to give:
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(8.74)

(8.75)

(8.76)

Figure 8.18
A Family of Curves Produced from the Co-Ordinate Transform Technique.

and this is approximately equal to: The average delay predicted by Equation 8.74 is dependent on

If this is used in Equation 8.66 and then rearranged then the
resulting equation of the non-steady state delay is:

A similar equation for M/M/1 queuing system can be obtained
if � is set to 1, � is set to zero, and D is set to 1/q ; the resultmin m
is:

the initial queue length, the time of operation, the degree of
saturation, and the steady state equation coefficients. This
equation can then be used to estimate the average delay under
oversaturated conditions and for different initial queues.  The use
of these and other equations are discussed below.

8.4.6 Reserve Capacity

Independent of the model used to estimate average delays, the
reserve capacity (R) plays an important role
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(8.78)
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In the 1985 edition of the HCM but not the 1994 HCM, it is used
as the measure of effectiveness.  This is based on the fact that
average delays are closely linked to reserve capacity.  This close
relationship is shown in Figure 8.19.  In Figure 8.19, the average
delay, D, is shown in relation to reserve capacity, R.  The delay
calculations are based on Equation 8.64 with a peak hour
interval of duration T= 1 hour.  The parameters (100, 500, and
1000 veh/hour) indicate the traffic volume, q , on the majorp
street.  Based on this relationship, a good approximation of the
average delay can also be expressed by reserve capacities.  What
we also see is that - as a practical guide - a reserve capacity

R > 100 pcu/h  generally ensures an average delay
below 35 seconds.

Brilon (1995) has used a coordinate transform technique for the
"Reserve Capacity" formulation for average delay with
oversaturated conditions. His set of equations can be given by 

where

T = duration  of the peak period
q = capacity during the peak periodm

q = minor street flow during the peak periodn

R = reserve capacity during the peak period 
= q – qemax  n

L = average queue length in the period before and0
after the peak period

q = minor street flow in the period before and aftern0
the peak period

q = capacity in the period before and after the peakm0
period

R = reserve capacity in the period before and after the0
peak period

Figure 8.19
Average Delay, D, in Relation to Reserve Capacity R.
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All variables in these equations should be used in units of depart according to the gap acceptance mechanism.  The
seconds (sec), number of vehicles(veh), and veh/sec.  Any effect of limited acceleration and deceleration can, of
capacity formula to estimate  q   and  q   from Section 8.4.1 canm m0
be used.

The numerical results of these equations as well as their degree
of sophistication are comparable with those of Equation 8.75.

8.4.7   Stochastic Simulation

As mentioned in the previous chapters, analytical methods are
not capable of providing a practical solution, given the
complexity and the assumptions required to be made to analyze
unsignalized intersections in a completely realistic manner.  The
modern tool of stochastic simulation, however, is able to
overcome all the problems very easily.  The degree of reality of
the model can be increased to any desired level.  It is only
restricted by the efforts one is willing to undertake and by the
available (and tolerable) computer time.  Therefore, stochastic
simulation models for unsignalized intersections were developed
very early (Steierwald 1961a and b; Boehm, 1968).  More recent
solutions were developed in the U. K. (Salter 1982), Germany
(Zhang 1988; Grossmann 1988; Grossmann 1991), Canada
(Chan and Teply 1991) and Poland (Tracz 1991).  

Speaking about stochastic simulation, we have to distinguish two
levels of complexity:

1) Point Process Models - Here cars are treated like points,
i.e. the length is neglected.  As well, there is only limited
use of deceleration and acceleration. Cars are regarded as
if  they  were "stored"  at  the stop line.   From  here  they

course, be taken into account using average vehicle
performance values (Grossmann 1988).  The advantage of
this type of simulation model is the rather shorter computer
time needed to run the model for realistic applications.
One such model is KNOSIMO (Grossmann 1988, 1991).
It is capable of being operated by the traffic engineer on
his personal computer during the process of intersection
design.  A recent study (Kyte et al , 1996) pointed out that
KNOSIMO provided the most realistic representation of
traffic flow at unsignalized intersections among a group of
other models.

KNOSIMO in its present concept is much related to
German conditions.  One of the specialities is the
restriction to single-lane traffic flow for each direction of
the main street.  Chan and Teply (1991) found some easy
modifications to adjust the model to Canadian conditions
as well.  Moreover, the source code of the model could
easily be adjusted to traffic conditions and driver behavior
in other countries.

2) Car Tracing Models - These models give a detailed
account of the space which cars occupy on a road together
with the car-following process but are time consuming to
run.  An example of this type of model is described by
Zhang (1988).

Both types of models are useful for research purposes.  The
models can be used to develop relationships which can then be
represented by regression lines or other empirical evaluation
techniques.  

8.5  Interaction of Two or More Streams in the Priority Road

The models discussed above have involved only two streams; a single lane with the opposing flow being equal to the sum of
one being the priority stream and the second being a minor the lane flows.  This results in the following equation for
stream.  The minor stream is at a lower rank than the priority capacity in veh/h:
stream.  In some cases there may be a number of lanes that must
be given way to by a minor stream driver.  The capacity and the
delay incurred at these intersections have been looked at by a
number of researchers.  A brief summary is given here.

If the headways in the major streams have a negative exponential
distribution then the capacity is calculated from the equation for where q is the total opposing flow.
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(8.90)

Tanner (1967) developed an equation for the capacity of an
intersection where there were n major streams.  The traffic in
each lane has a dichotomized headway distribution in which
there is a proportion of vehicles in bunches and the remaining
vehicles free of interaction.  All bunched vehicles are assumed
to have a headway of t  and the free vehicles have a headwaym

equal to the t  plus a negative exponentially distributed (orm
random) time.  This is the same as Cowan's (1975) M3 model.
Using the assumption that headways in each lane are
independent, Tanner reviewed the distribution of the random
time periods and estimated the entry capacity in veh/h as:

where � = �  + � + . . . . . + � (8.84)1 2 n

� = �q / (1-t  q ) (8.85)i i i m i

q is the flow in the major stream i in veh/sec.i

�  is the proportion of free vehicles in the major stream i.i

This equation by Tanner is more complicated than an earlier
equation (Tanner 1962) based on an implied assumption that the
proportion of free vehicles, � , is a function of the lane flow.i
That is

�   =  (1-t  q )i m i

and then � reduces to q.  Fisk (1989) extended this earlier worki i
of Tanner (1962) by assuming that drivers had a different critical
gap when crossing different streams.  While this would seem to
be an added complication it could be necessary if drivers are
crossing some major streams  from the left before merging with
another stream from the right when making a left turn.  

Her equation for capacity is:

where q = q  + q + . . . . . + q1 2 n

8.5.1 The Benefit of Using a
Multi-Lane Stream Model

Troutbeck (1986) calculated the capacity of a minor stream to
cross two major streams which both have a Cowan (1975)
dichotomized headway distribution.  The distribution of
opposing headways is:

and

where

or after a little algebra,

and
�' = �  + � (8.89)1 2

As an example, if there were two identical streams then the
distribution of headways between vehicles in the two streams is
given by Equations 8.87 and 8.88.  This is also shown in figures
from Troutbeck (1991) and reported here as Figure 8.20.

Gap acceptance procedures only require that the longer
headways or gaps be accurately represented.  The shorter gaps
need only be noted.  

Consequently the headway distribution from two lanes can be
represented by a single Cowan M3 model with the following
properties:
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Figure 8.20
Modified 'Single Lane' Distribution of Headways (Troutbeck 1991).

and otherwise F(t) is zero.  This modified distribution is also
illustrated in Figure 8.20.  Values of �* and t  must be chosenm

*

to ensure the correct proportions and the correct mean headway
are obtained.  This will ensure that the number of headways
greater than t, 1–F(t), is identical from either the one lane or the
two lane equations when t is greater than t .m

*

Troutbeck (1991) gives the following equations for calculating
�* and t  which will allow the capacity to be calculated usingm

*

a modified single lane model which are identical to the estimate
from a multi-lane model.  

The equations

and

are best solved iteratively for t with  t  being the ith estimate.m m,i
The appropriate equation is

�* is then found from Equation 8.93.

Troutbeck (1991) also indicates that the error in calculating
Adams' delay when using the modified single lane model  instead
of the two lane model is small.  Adams' delay is the delay to the
minor stream vehicles when the minor stream flow is close to
zero.  This is shown in Figure 8.21.  Since the modified
distribution gives satisfactory estimates of Adams' delay, it will
also give satisfactory estimates of delay.

In summary, there is no practical reason to increase the
complexity of the calculations by using multi-lane models and a
single lane dichotomized headway model can be used to
represent the distribution of headways in either one or two lanes.
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Figure 8.21
Percentage Error in Estimating Adams' Delay Against the 

Major Stream Flow for a Modified Single Lane Model (Troutbeck 1991).

8.6  Interaction of More than Two Streams of Different Ranking

8.6.1 Hierarchy of Traffic Streams at a
Two Way Stop Controlled Intersection

At all unsignalized intersections except roundabouts, there is a
hierarchy of streams. Some streams have absolute priority
(Rank 1), while others have to yield to higher order streams.  In
some cases, streams have to yield to some streams which in turn
have to yield to others.  It is useful to consider the streams as
having different levels of priority or ranking.  These different
levels of priority are established by traffic rules.  For instance, 

Rank 1 stream has absolute priority and does not need to
yield right of way to another stream,

Rank 2 stream has to yield to a Rank 1 stream, 

Rank 3 stream has to yield to a Rank 2 stream and in turn to
a Rank 1 stream, and

Rank 4 stream has to yield to a Rank 3 stream and in turn to
Rank 2 and Rank 1 streams (left turners from
the minor street at a cross-intersection).

This is illustrated in Figure 8.22 produced for traffic on the right
side.  The figure illustrates that the left turners on the major road
have to yield to the through traffic on the major road.  The left
turning traffic from the minor road has to yield to all other
streams but is also affected by the queuing traffic in the Rank 2
stream.

8.6.2  Capacity for Streams of
    Rank 3 and Rank 4

No rigorous analytical solution is known for the derivation of the
capacity of Rank-3-movements like the left-turner from the
minor street at a T-junction (movement 7 in Figure 8.22, right
side).  Here, the gap acceptance theory uses the impedance
factors p  as an approximation.  p  for each movement is the0 0
probability that no vehicle is queuing at the entry.  This is given
with sufficient accuracy by Equation 8.50 or better with the two
service time Equation 8.52.  Only during the part p  of the0,rank-2
total time, vehicles of Rank 3 can enter the intersection due to
highway code regulations.
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Note: The numbers beside the arrows indicate the enumeration of streams given by the Highway Capacity Manual (1994,
Chapter 10).

Figure 8.22
Traffic Streams And Their Level Of Ranking.

Therefore, for Rank-3-movements, the basic value q for them

potential capacity must be reduced to p �  q  to get the real0 m

potential capacity q :e

q  =  p   q (8.94)e,rank-3 0,rank-2 m,rank-3
.

For a T-junction, this means

q  =  p   qe,7 0,4 m,7
.

For a cross-junction, this means

q  =  p   q (8.95)e,8 x m,8
.

q  =  p   q (8.96)e,11 x m,11
.

with

p   =  p   px 0,1 0,4
.

Here the index numbers refer to the index of the movements
according to Figure 8.22. Now the values of p  and p can be0,8 0,11
calculated according to Equation 8.50.

For Rank-4-movements (left turners at a cross-intersection), the
dependency between the p values in Rank-2 and Rank-3-0
movements must be empirical and can not be calculated from
analytical relations.  They have been evaluated by numerous
simulations by Grossmann (1991; cf. Brilon and Grossmann
1991).  Figure 8.23 shows the statistical dependence between
queues in streams of Ranks 2 and 3.

In order to calculate the maximum capacity for the Rank-4-
movements (numbers 7 and 10), the auxiliary factors, p  andz,8

p , should be calculated first:z,11

diminished to calculate the actual capacities, q .  Brilon (1988,e
cf. Figures 8.7 and 8.8) has discussed arguments which support
this double introduction.

 The reasons for this are as follows:
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Figure 8.23
Reduction Factor to Account for the Statistical Dependence 

Between Streams of Ranks 2 and 3.

� During times of queuing in Rank-2 streams (e.g. left � Even if no Rank-2 vehicle is queuing, these vehicles
turners from the major street), the Rank-3 vehicles (e.g. influence Rank-3 operations, since a Rank-2 vehicle
left turners from the minor street at a T-junction) cannot
enter the intersection due to traffic regulations and the
highway code. Since the portion of time provided for
Rank-3 vehicles is p , the basic capacity calculated from Grossmann (1991) has proven that among the possibilities0
Section 8.4.1 for Rank-3 streams has to be diminished by considered, the described approach is the easiest and quite 
the factor p for the corresponding Rank-2 streams0
(Equations 8.95 to 8.99).

approaching the intersection within a time of less than tc
prevents a Rank-3 vehicle from entering the intersection.

realistic in the range of traffic volumes which occur in practical
applications.

8.7  Shared Lane Formula

8.7.1  Shared Lanes on the Minor Street

If more than one minor street movement is operating on the same
lane, the so-called "shared lane equation" can be applied.  It
calculates the total capacity q of the shared lane, if the capacitiess
of the corresponding movements are known. (Derivation in
Harders, 1968 for example.)

q = capacity of the shared lane in veh/h,s

q = capacity of movement i, if it operates on am,i
separate lane in veh/h,
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b = proportion of volume of movement i of the totali
volume on the shared lane, those streams. The factors p * and p * indicate the probability

m = number of movements on the shared lane.

The formula is also used by the HCM (1994, Equation 10-9).

This equation is of general validity regardless of the formula for
the estimation of q  and regardless of the rank of priority of them
three traffic movements.  The formula can also be used if the
overall capacity of one traffic stream should be calculated, if this
stream is formed by several partial streams with different
capacities, e.g. by passenger cars and trucks with different
critical gaps.  Kyte at al (1996) found that this procedure for
accounting for a hierarchy of streams, provided most realistic i = 4, j = 5  and k = 6 (cf. Figure 8.22)
results.

8.7.2  Shared Lanes on the Major Street

In the case of a single lane on the major street shared by right-
turning and through movements (movements no. 2 and 3 or 5
and 6 in Figure 8.22), one can refer to Table 8.2.

If left turns from the major street (movements no. 1 and 4 in
Figure 8.22) have no separate turning lanes, vehicles in the
priority l movements no. 2 and 3, and no. 5 and 6 respectively 

in Figure 8.21 may also be obstructed by queuing vehicles in
0,1   0,4

that there will be no queue in the respective shared lane.  They
might serve for a rough estimate of the disturbance that can be
expected and can be approximated as follows (Harders 1968):

where: i = 1, j = 2  and k = 3 (cf. Figure 8.22)

or

q =  volume of stream j in veh/sec,j

q =  volume of stream k in veh/sec, and  k

     t  and t =  follow-up time required by a vehicle in stream jBj Bk

    or k (s).
(1.7 sec < t  < 2.5 sec, e.g. t   =  2 sec)B B

In order to account for the influence of the queues in the major
street approach lanes on the minor street streams no. 7, 8, 10,
and 11, the values p and p  ,  according to Equation 8.47 have0,1 0,4

to be replaced by the values p * and p * according to Equation0,1 0,4
8.101. This replacement is defined in Equations 8.95 to 8.97.

8.8 Two-Stage Gap Acceptance and Priority

At many unsignalized intersections there is a space in the center the basis of an adjustment factor �.   The resulting set of
of the major street available where several minor street vehicles equations for the capacity of a two-stage priority situation are:
can be stored between the traffic flows of the two directions of
the major street, especially in the case of multi-lane major traffic
(Figure 8.24).  This storage space within the intersection enables
the minor street driver to cross the major streams from each
direction at different behavior times.  This behavior can
contribute to an increased capacity. This situation is called two-
stage priority. The additional capacity being provided by these
wider intersections can not be evaluated by conventional
capacity calculation models.

Brilon et al. (1996) have developed an analytical theory for the
estimation of capacities under two-stage priority conditions. It is
based on an earlier approach by Harders (1968). In addition to
the analytical theory, simulations have been performed and were

for  y � 1

for y = 1
c = total capacity of the intersection for minor through trafficT

(movement 8)
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Table 8.2
Evaluation of Conflicting Traffic Volume qp
Note:  The indices refer to the traffic streams denoted in Figure 8.22.

Subject Movement No. Conflicting Traffic Volume qp

Left Turn from Major Road 1

7

q  + q5 6
3)

q  + q2 3
3)

Right Turn from Minor 6
Road

12

q  + 0.5 q2 3
2) 1)

q  + 0.5 q5 6
2) 1)

Through Movement from 5
Minor Road

11

q  + 0.5 q  + q  + q  + q  + q2 3 5 6 1 4
1) 3)

q  + q  + q  + 0.5 q ) + q  + q2 3 5 6 1 4
3) 1

Left Turn from Minor Road 4

10

q  + 0.5 q  + q  + q  + q  + q  + q2 3 5 1 4 12 11
1) 4)5)6) 5)

q  + 0.5 q  + q  + q  + q  + q  + q5 6 2 1 4 6 8
1) 4)5)6) 5)

Notes
1) If there is a right-turn lane, q  or q  should not be considered.3 6
2) If there is more than one lane on the major road, q and q are considered as traffic volumes on the right2 5

lane.
3) If right-turning traffic from the major road is separated by a triangular island and has to comply with a

YIELD- or STOP-Sign, q and q  need not be considered.6 3
4) If right-turning traffic from the minor road is separated by a triangular island and has to comply with a

YIELD- or STOP-sign, q  and q  need not be considered.9 12
5) If movements 11 and 12 are controlled by a STOP-sign, q  and q  should be halved in this equation.11 12

Similarly, if movements 8 and 9 are controlled by a STOP-sign, q and q  should be halved.8 9
6) It can also be justified to omit q  and q  or to halve their values if the minor approach area is wide.9 12

where

q  = volume of priority street left turning traffic at part I1

q   = volume of major street through traffic coming from the2

left at part I
q   = volume of the sum of all major street flows coming5

from the right at part II.

�  =  1 for k=0

for k > 0 (8.105)

Of course, here the volumes of all priority movements at part II
have to be included.  These are: major right (6, except if this
movement is guided along a triangular island separated from the
through traffic) , major through (5), major left (4); numbers of
movements according to Figure 8.22.
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Note: The theory is independent of the number of lanes in the major street.

Figure 8.24
Minor Street Through Traffic (Movement 8) Crossing the Major Street in Two Phases.

c(q q ) = capacity at part I 1 + 2

c(q ) = capacity at part II5

c(q +q +q ) = capacity at a cross intersection for1 2 5
minor through traffic with a major
street traffic volume of q +q +q1 2 5

(All of these capacity terms are to be calculated by any useful
capacity formula, e.g. the Siegloch-formula, Equation 8.33)

The same set of formulas applies in analogy for movement 7. If
both movements 7 and 8 are operated on one lane then the  total
capacity of this lane has to be evaluated from c and c  usingT7 T8
the shared lane formula (Equation 8.95).  Brilon et al. (1996)
provide also a set of graphs for an easier application of this
theory.

8.9 All-Way Stop Controlled Intersections

8.9.1  Richardson’s Model

Richardson (1987) developed a model for all-way stop
controlled intersections (AWSC) based on M/G/1 queuing
theory.  He assumed that a driver approaching will either have

a service time equal to the follow-up headway for vehicles in this
approach if there are no conflicting vehicles on the cross roads
(to the left and right).  The average service time is the time
between successive approach stream vehicles being able to
depart.  If there were conflicting vehicles then the conflicting
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vehicles at the head of their queues will depart before the
approach stream being analysed.  Consequently, Richardson
assumed that if there were conflicting vehicles then the average
service time is the sum of the clearance time, T , for conflictingc
vehicles and for the approach stream.

For simplicity, Richardson considered two streams; northbound
and westbound. Looking at the northbound drivers, the
probability that there will be a conflicting vehicle on the cross
road is given by queuing theory as � .  The average service timew
for northbound drivers is then

s   =  t  (1–� ) + T  � (8.106)n m w c w

A similar equation for the average service time for westbound
drivers is

s   =  t  (1–� ) + T  � (8.107)w m e c e
where,

�  is the utilization ratio and is q  s ,i i i

q  is the flow from approach i,i

s  is the service time for approach ii

t  is the minimum headway, andm

T  is the total clearance time.c

These equations can be manipulated to give a solution for s  asn

If there are four approaches then very similar equations are
obtained for the average service time involving the probability
there are no cars on either conflicting stream.  For instance,

s   =  t  (1–� ) + T  � (8.109)n m ew c ew

s   =  t  (1–� ) + T  � (8.110)s m ew c ew

s   =  t  (1–� ) + T  � (8.111)e m ns c ns

s   =  t  (1–� ) + T  � (8.112)w m ns c ns

The probability of no conflicting vehicles being 1–�  given byns

1–�   =  (1–� ) (1–� ) (8.113)ns s n

hence,

�   =  1 – (1–q  s ) (1–q  s ) (8.114)ns n n s s

and
�   =  1 – (1–q  s ) (1–q  s ) (8.115)ew e e w w

Given the flows, q , q , q , and q and using an estimate ofn s e w

service times, p  and p can be estimated using Equationsns ew
8.114 and 8.115.  The iterative process is continued with
Equations 8.109 to 8.112 providing a better estimate of the
service times, s , s , s , and s .n s e w

Richardson used Herbert’s (1963) results in which t  was foundm

to be 4 sec and T  was a function of the number of cross flowc
lanes to be crossed.  The equation was

and T  is the sum of the t  values for the conflicting and thec c
approach streams.

The steady-state average delay was calculated using the
Pollaczek-Khintchine formula with Little’s equation as:

or

This equation requires an estimate of the variance of the service
times.  Here Richardson has assumed that drivers either had a
service time of h  or T .  For the northbound traffic, there werem c

(1–� ) proportion of drivers with a service time of exactly tew m

and �  drivers with a service time of exactly T .  The varianceew c
is then



Var(s)n � t 2
m(1��ew)�T 2

c ��s 2
n

� �

sn�tm

Tc�tm

Var(s)n � t 2
m

Tc�sn

Tc�tm
� T 2

c
sn�tm

Tc�tm
� s 2

n
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(8.117)

(8.118)

(8.119)

and

This then gives

for the northbound traffic.  Similar equations can be obtained for
the other approaches.  An example of this technique applied to

 a four way stop with single lane approaches is given in Figure
8.25.  Here the southbound traffic has been set to 300 veh/h.
The east-west traffic varies but with equal flows in both
directions.  In accordance with the comments above, t  was 4 secm

and T  was 2*t  or 7.6 sec. c c

Richardson's approach is satisfactory for heavy flows where most
drivers have to queue before departing.  His approach has been
extended by Horowitz (1993), who extended the number of
maneuver types and then consequently the number of service
time values.  Horowitz  has also related his model to Kyte’s
(1989) approach and found that his modified Richardson model
compared well with Kyte’s empirical data.

Figure 8.25 from Richardson's research, gives the performance
as the traffic in one set approaches (north-south or east-
west)increases.  Typically, as traffic flow in one direction
increases so does the traffic in the other directions.  This will
usually result in the level of delays increasing at a more rapid
rate than the depicted in this figure.

Figure 8.25
Average Delay For Vehicles on the Northbound Approach.
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8.10  Empirical Methods

Empirical models often use regression techniques to quantify an or even other characteristic values of the intersection layout by
element of the performance of the intersection. These models, by another  set of linear regression analysis (see e.g. Kimber and
their very nature, will provide good predictions. However, at Coombe 1980).
times they are not able to provide a cause and effect The advantages of the empirical regression technique compared
relationships. to gap acceptance theory are:

Kimber and Coombe (1980), of the United Kingdom, have � there is no need to establish a theoretical model.
evaluated the capacity of the simple 2-stream problem using � reported empirical capacities are used.
empirical methods.  The fundamental idea of this solution is as � influence of geometrical design can be taken into account.
follows: Again, we look at the simple intersection (Figure 8.7) � effects of priority reversal and forced priority are taken into
with one priority traffic stream and one non-priority traffic account automatically.
stream during times of a steady queue (i.e. at least one vehicle is � there is no need to describe driver behavior in detail.
queuing on the minor street).  During these times, the volume of
traffic departing from the stop line is the capacity.  This capacity The disadvantages are:
should depend on the priority traffic volume q  during the samep
time period.  To derive this relationship, observations of traffic
operations of the intersection have to be made during periods of
oversaturation of the intersection.  The total time of observation
then is divided into periods of constant duration, e.g. 1 minute.
During these 1-minute intervals, the number of vehicles in both
the priority flow and the entering minor street traffic are counted.
Normally, these data points are scattered over a wide range and
are represented by a linear regression line. On average, half of
the variation of data points results from the use of one-minute
counting intervals.  In practice, evaluation intervals of more than
1-minute (e.g. 5-minutes) cannot be used, since this normally
leads to only few observations.

As a result, the method would produce linear relations for q :m

q =  b - c  q (8.120)m p
.

Instead of a linear function, also other types of regression could
be used as well, e.g.

q =  A  e . (8.121)m
. -Bx    

Here, the regression parameters A and B could be evaluated out
of the data points by adequate regression techniques.  This type
of equation is of the same form as Siegloch's capacity formula
(Equation 8.33).  This analogy shows that A=3600/t .f

In addition to the influence of priority stream traffic volumes on
the minor street capacity, the influence of geometric layout of the
intersection can be investigated.  To do this, the constant values
b and c or  A and  B can be related to road widths or visibility

� transferability to other countries or other times (driver
behavior might change over time) is quite limited: For
application under different conditions, a very big sample
size must always be evaluated.

� no real understanding of traffic operations at the intersection
is achieved by the user.

� the equations for four-legged intersections with 12
movements are too complicated.

� the derivations are based on driver behavior under
oversaturated conditions.

� each situation to be described with the capacity formulae
must be observed in reality.  On one hand, this requires a
large effort for data collection. On the other hand, many of
the desired situations are found infrequently, since
congested intersections have been often already signalized.

8.10.1  Kyte's Method

Kyte (1989) and Kyte et al. (1991) proposed another method for
the direct estimation of unsignalized intersection capacity for
both AWSC and TWSC intersections.  The idea is based on the
fact that the capacity of a single-channel queuing system is the
inverse of the average service time.  The service time, t , at theW
unsignalized intersection is the time which a vehicle spends in
the first position of the queue.  Therefore, only the average of
these times (t ) has to be evaluated by observations to get theW
capacity.

Under oversaturated conditions with a steady queue on the minor
street approach, each individual value of this time in the first
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position can easily be observed as the time between two
consecutive vehicles crossing the stop line.  In this case,
however, the observations and analyses are equivalent to the
empirical regression technique .

Assuming undersaturated conditions, however, the time each of
the minor street vehicles spends in the first position could be
measured as well.  Again, the inverse of the average of these
times is the capacity.  Examples of measured results are given by
Kyte et al. (1991).

From a theoretical point of view, this method is correct.  The
problems relate to the measurement techniques (e.g. by video
taping).  Here it is quite difficult to define the  beginning and the
end of the time spent in the first position in a consistent way.  If
this problem is solved, this method provides an easy procedure
for estimating the capacity for a movement from the minor street
even if this traffic stream is not operating at capacity.

Following a study of AWSC intersections, Kyte et al. (1996)
developed empirical equations for the departure headways from
an approach for different levels of conflict.

h =  h  + h  P  + h  P  + h  P (8.122)i b-i LT-adj LT RT-adj RT HV-adj HV
where:

h is the adjusted saturation headway for thei

degree of conflict case i;
h  is the base saturation headway for case i;b-i

hLT-adj

and h  are the headway adjustment factors for leftRT-adj
and right turners respectively;

P  and P  are the proportion of left and right turners;LT RT

h  is the adjustment factor for heavy vehicles; andHV-adj

P  is the proportion of heavy vehicles.HV

The average departure headway, , is first assumed to be four
seconds and the degree of saturation, x , is the product of the
flow rate, V and  . A second iterative value of   is given by
the equation:

where  P(C ) is the probability that conflict C  occurs.  Thesei i

values also depend on estimates of   and the h values.  Thei
service time is given by the departure headway minus the move-
up time.

Kyte et al. (1996) recognizes that capacity can be evaluated from
two points of view.  First, the capacity can be estimated
assuming all other flows remain the same.  This is the approach
that is typically used in Section 8.4.1.  Alternatively capacity can
be estimated assuming the ratio of flow rates for different
movements for all approaches remain constant.  All flows are
incrementally increased until one approach has a degree of
saturation equal to one.  

The further evaluation of these measurement results corresponds
to the methods of the empirical regression techniques.  Again,
regression techniques can be employed to relate the capacity
estimates to the traffic volumes in those movements with a
higher rank of priority. 

8.11 Conclusions

This chapter describes the theory of unsignalized intersections has been extended to predict delays in the simpler
which probably have the most complicated intersection control conditions.
mechanism.  The approaches used to evaluate unsignalized
intersections fall into three classes. (b) Queuing theory in which the service time attributes are

(a) Gap acceptance theory which assumes a mechanism for driver departure patterns.  The advantages of using
drivers departure.  This is generally achieved with the queuing theory is that measures of delay (and queue
notion of a critical gap and a follow on time.  This lengths) can be more easily defined for some of the more
attributes of the conflicting stream and the non priority complicated cases.
stream are also required.  This approach has been
successfully used to predict capacity (Kyte et al. 1996) and

described.  This is a more abstract method of describing
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(c) Simulation programs.  These are now becoming more Research in these three approaches will undoubtably continue.
popular.  However, as a word of caution, the output from New theoretical work highlights parameters or issues that should
these models is only as good as the algorithms used in be considered further.  At times, there will be a number of
the model, and some simpler models can give excellent counter balancing effects which will only be identified through
results.  Other times, there is a temptation to look at the theory.
output from models without relating the results to the
existing theory.  This chapter describes most of the The issues that are likely to be debated in the future include the
theories for unsignalised intersections and should assist extent that one stream affects another as discussed in Section
simulation modelers to indicate useful extension to 8.6; the similarities between signalized and unsignalized
theory. intersections; performance of oversaturated intersection and

variance associated with the performance measures.
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I �

variance of the number of arrivals per cycle
mean number of arrivals per cycle

B �

variance of number of departures during cycle
mean number of departures during cycle

Chapter 9 - Frequently used Symbols

I = cumulative lost time for phase i (sec)i
L = total lost time in cycle (sec)
q = A(t) =  cumulative number of arrivals from beginning of cycle starts until t,
B = index of dispersion for the departure process,

c = cycle length (sec)
C = capacity rate (veh/sec, or veh/cycle, or veh/h)
d = average delay (sec)
d = average uniform delay (sec)1
d = average overflow delay (sec)2
D(t) = number of departures after the cycle starts until time t (veh)
e = green extension time beyond the time to clear a queue (sec)g
g = effective green time (sec)
G = displayed green time (sec)
h = time headway (sec)
i = index of dispersion for the arrival process
q = arrival flow rate (veh/sec)
Q = expected overflow queue length (veh)0
Q(t) = queue length at time t (veh)
r = effective red time (sec)
R = displayed red time (sec)
S = departure (saturation) flow rate from queue during effective green (veh/sec)
t = time
T = duration of analysis period in time dependent delay models
U = actuated controller unit extension time (sec)
Var(.) = variance of (.)
W = total waiting time of all vehicles during some period of time ii
x = degree of saturation, x = (q/S) / (g/c), or x = q/C
y = flow ratio, y = q/S
Y = yellow (or clearance) time (sec)
� = minimum headway
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9.
TRAFFIC FLOW AT SIGNALIZED INTERSECTIONS

9.1 Introduction

The theory of traffic signals focuses on the estimation of delays have received greater attention since the pioneering work by
and queue lengths that result from the adoption of a signal Webster  (1958) and have been incorporated in many
control strategy at individual intersections, as well as on a intersection control and analysis tools throughout the world.  
sequence of intersections.  Traffic delays and queues are
principal  performance measures that enter into the This chapter traces the evolution of  delay and queue length
determination of intersection level of service (LOS),  in the models for traffic signals.  Chronologically speaking, early
evaluation of the adequacy of lane lengths, and in the estimation modeling efforts  in this area focused on the adaptation of steady-
of  fuel consumption and emissions. The following material state queuing theory to estimate the random component of delays
emphasizes the theory of descriptive models of traffic flow, as
opposed to  prescriptive (i.e. signal timing)  models. The
rationale for concentrating  on descriptive models is that a better
understanding of the interaction between  demand (i.e. arrival
pattern) and supply (i.e. signal indications and types)  at traffic
signals is a prerequisite to the formulation of optimal signal
control strategies.  Performance estimation is based on
assumptions regarding the characterization of the traffic arrival
and service processes.  In general, currently used delay models
at intersections are described  in terms of a deterministic and
stochastic component to reflect both the fluid and random
properties of traffic flow. 

The deterministic component of traffic is founded on the fluid
theory of traffic in which demand and service are treated as
continuous variables described by flow rates which vary over the
time and space domain.  A complete treatment of the  fluid
theory application to traffic signals has been presented in
Chapter 5 of the monograph. 

The stochastic component of delays is founded on steady-state
queuing theory which defines the traffic arrival and service time
distributions.  Appropriate queuing models are then used to
express the resulting distribution of the performance measures.
The theory of unsignalized intersections, discussed in Chapter 8
of this monograph, is representative of a purely stochastic
approach to determining traffic performance.  

Models which incorporate both deterministic (often called
uniform) and stochastic (random or overflow) components of
traffic performance  are very appealing in the area of traffic
signals since they can be applied to a wide range of traffic
intensities, as well as to various types of signal control.  They are
approximations of the more theoretically rigorous models, in
which delay terms that are numerically inconsequential to the
final result have been dropped.  Because of their simplicity,  they

and queues at intersections.  This approach was valid so long as
the average flow rate did not exceed the average capacity rate.
In this case, stochastic equilibrium  is achieved and expectations
of queues and delays are finite and therefore can be estimated by
the theory.  Depending on the assumptions regarding the
distribution of traffic arrivals and departures, a plethora of
steady-state queuing models were developed in the literature.
These are described in Section 9.3 of this chapter. 

As traffic flow rate approaches or exceeds the capacity rate, at
least for a finite period of time, the steady-state models
assumptions are violated since a state of stochastic equilibrium
cannot be achieved.  In response to the need for improved
estimation of traffic performance in both under and oversaturated
conditions, and the lack of a theoretically rigorous approach to
the problem, other methods were pursued.  A prime example is
the  time-dependent approach originally conceived by Whiting
(unpublished)  and further developed by Kimber and Hollis
(1979). The time-dependent approach has been adopted in many
capacity guides in the U.S., Europe and Australia.  Because it is
currently in wide use, it is discussed in some detail in Section 9.4
of this chapter.  

Another limitation of the steady-state queuing approach is the
assumption of certain types of arrival processes (e.g Binomial,
Poisson, Compound Poisson) at the signal. While valid in  the
case of an isolated signal, this assumption does not reflect the
impact of adjacent signals and control which may alter the
pattern and number of arrivals at a downstream signal. Therefore
performance in a system of signals will differ  considerably from
that at an isolated signal.  For example, signal coordination will
tend to reduce delays and stops since the arrival process will be
different in the red and green portions of the phase. The benefits
of coordination are somewhat subdued due to the dispersion of
platoons between signals. Further, critical signals in a system
could  have a metering effect on traffic which proceeds
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downstream. This metering reflects the finite capacity of the  without reference to their impact on signal performance.  The
critical intersection which tends to truncate the arrival manner in which these controls affect performance is quite
distribution at the next signal. Obviously, this phenomenon has diverse and therefore difficult to model in a generalized
profound implications on signal performance as well, fashion. In this chapter, basic methodological approaches  and
particularly if the critical signal is oversaturated.  The impact of concepts are introduced and discussed in Section 9.6.   A
upstream  signals  is   treated   in   Section 9.5  of   this  chapter. complete survey of adaptive signal theory is beyond the scope of

With the proliferation of traffic-responsive signal control
technology, a treatise on signal theory would not be complete

this document. 

9.2  Basic Concepts of Delay Models at Isolated Signals

As stated earlier, delay models contain both deterministic and  time is that portion of green where flows are sustained at the
stochastic components of traffic performance.  The deterministic saturation flow rate level.  It is typically calculated at the
component is estimated according to the following assumptions: displayed  green time minus an initial start-up lost time (2-3
a) a zero initial queue at the start of the green phase, b) a seconds) plus an end gain during the clearance interval (2-4
uniform arrival pattern at the arrival flow rate (q) throughout the
cycle c) a uniform departure pattern at the saturation flow rate
(S) while a queue is present, and at the arrival rate when the
queue vanishes, and d) arrivals do not exceed the signal capacity,
defined as the product of the approach saturation flow rate (S)
and its effective green to cycle ratio (g/c).  The effective green

seconds depending on the length of the clearance phase).   

A simple diagram describing the delay process in shown in
Figure 9.1.  The queue profile resulting from this application is
shown  in  Figure  9.2.   The area under the queue profile
diagram represents the total (deterministic) cyclic delay.  Several

Figure 9.1  
Deterministic Component of Delay Models.
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Figure 9.2
Queuing Process During One Signal Cycle 

(Adapted from McNeil 1968).

performance measures can be derive including the average delay Interestingly, at extremely congested conditions, the stochastic
per vehicle (total delay divided by total cyclic arrivals) the queuing effect are minimal in comparison with the size of
number of vehicle stopped (Q  ), the maximum number ofs

vehicles in the queue (Q ) , and the average queue lengthmax

(Q ).   Performance models  of this type are applicable to  lowavg
flow  to capacity ratios (up to about 0.50), since the assumption
of zero initial and end queues is not violated in most cases.   

As traffic intensity increases, however, there is a increased
likelihood of “cycle failures”. That is, some cycles will begin to
experience an overflow queue of vehicles that could not
discharge from a previous cycle. This  phenomenon occurs at
random, depending on which cycle happens to experience
higher-than-capacity flow rates.  The presence of an initial queue
(Q ) causes an additional delay which must be considered in theo
estimation of traffic performance.  Delay models  based on queue
theory (e.g. M/D/n/FIFO) have  been applied to account for this
effect.  

oversaturation queues. Therefore, a fluid theory approach may
be appropriate to  use for highly oversaturated intersections.
This leaves a gap in delay models  that are applicable to  the
range of  traffic flows  that are numerically close to the signal
capacity. Considering that most real-world signals are timed to
operate within that domain, the value of time-dependent models
are of particular relevance for this range of conditions.

In the case of vehicle actuated control, neither the cycle length
nor green times are known in advance.  Rather, the length of the
green is determined partly by controller-coded  parameters such
as minimum and maximum green times, and partly by the pattern
of traffic arrivals. In the simplest case of a basic actuated
controller, the green time is extended beyond its minimum so
long as  a) the time headway between vehicle arrivals does not
exceed the controller�s unit extension (U), and b) the maximum
green has not been reached.   Actuated control models are
discussed further  in Section 9.6.
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(9.1)

(9.10)

(9.3)

(9.4)

(9.5)

(9.6)

9.3  Steady-State Delay Models

9.3.1  Exact Expressions

This category of models attempts to characterize traffic delays
based on statistical distributions of the arrival and departure
processes.  Because of the purely theoretical foundation of the
models, they require very strong assumptions to be considered
valid.  The following section describes how delays are estimated
for this class of models, including the necessary data
requirements. 

The expected delay at fixed-time signals was first derived by
Beckman (1956) with the assumption of the binomial arrival
process and deterministic service:

where,

c   = signal cycle,
g   = effective green signal time,
q   = traffic arrival flow rate,
S   = departure flow rate from queue during green,
Q  = expected overflow queue from previous cycles.o

The expected overflow queue used in the formula and the
restrictive assumption of the binomial arrival process reduce the
practical usefulness of Equation 9.1.  Little (1961) analyzed the
expected delay at or near traffic signals to a turning vehicle
crossing a Poisson traffic stream.  The analysis, however, did not
include the effect of turners on delay to other vehicles.  Darroch
(1964a) studied a single stream of vehicles arriving at a
fixed-time signal.  The arrival process is the generalized Poisson
process with the Index of Dispersion:

where,
var(.)= variance of ( . )
q = arrival flow rate,
h = interval length,
A = number of arrivals during interval h = qh.

The departure process is described by a flexible service mecha-
nism and may include the effect of an opposing stream by defin-
ing an additional queue length distribution caused by this factor.
Although this approach leads to expressions for the expected
queue length and expected delay, the resulting models are
complex and they include elements requiring further modeling
such as the overflow queue or the additional queue component
mentioned earlier.  From this perspective, the formula is not of
practical importance.   McNeil (1968) derived a formula for the
expected signal delay with the assumption of a general arrival
process, and constant departure time.  Following his work, we
express the total vehicle delay during one signal cycle as a sum
of two components 

where
W  =  total delay experienced in the red phase and1
W  = total delay experienced in the green phase.2

and

where,
Q(t) = vehicle queue at time t,
A(t) = cumulative arrivals at t,

Taking expectations in Equation 9.4 it is found that:

Let us define a random variable Z  as the total vehicle delay2
experienced during green when the signal cycle is infinite.  The
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(9.7)

(9.8)

(9.9)

(9.10)

(9.11)

(9.12)

(9.13)

(9.14)

(9.15)

(9.16)

variable Z  is considered as the total waiting time in a busy2

period for a queuing process Q(t) with compound Poisson
arrivals of intensity q, constant service time 1/S and an initial
system state Q(t=t ).  McNeil showed that provided q/S<1:0

Now W  can be expressed using the variable Z :2 2

and

The queue is in statistical equilibrium, only if the degree of
saturation x is below 1,

For the above condition, the average number of arrivals per cycle
can discharge in a  single  green  period.   In  this  case E[ Q(0)
]  =  E [ Q(c) ] and E [ Q (0) ]  =  E [Q (c)  ].  Also Q (c-g)  = 2  2

Q(0)  +  A(c), so that:

and

Equations 9.9, 9.11, and 9.12 yield:

and using Equations 9.3, 9.4 and 9.13, the following is obtained:

The average vehicle delay d is obtained by dividing E(W) by the
average number of vehicles in the cycle (qc):

which is in essence the formula obtained by Darroch when the
departure process is deterministic.  For a binomial arrival
process I=1-q/S, and Equation 9.15 becomes identical to that
obtained by Beckmann (1956) for binomial arrivals.  McNeil
and Weiss (in Gazis 1974) considered the case of the compound
Poisson arrival process and general departure process obtaining
the following model:

An examination of the above equation indicates that in the case
of no overflow (Q = 0), and no randomness in the traffic processo

(I=0), the resultant delay becomes the uniform delay component.
This component can be derived from a simple input-output
model of uniform arrivals throughout the cycle and departures as
described in Section 9.2.  The more general case in Equation
9.16 requires knowledge of the size of the average overflow
queue (or queue at the beginning of green), a major limitation on
the practical usefulness of the derived formulae, since these are
usually unknown. 
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(9.17)

(9.18)

(9.19)

(9.20)

(9.21)

A substantial research effort followed to obtain a closed-form signal performance, since vehicles are served only during the
analytical estimate of the overflow queue.  For example, Haight effective green, obviously at a higher rate than the capacity rate.
(1959) specified the conditional probability of the overflow The third term, calibrated based on simulation experiments, is a
queue at the end of the cycle when the queue at the beginning of corrective term to the estimate, typically in the range of 10
the cycle is known, assuming a homogeneous Poisson arrival percent of the first two terms in Equation 9.17.  
process at fixed traffic signals.  The obtained results were then
modified to the case of semi-actuated signals.  Shortly thereafter, Delays were also estimated indirectly, through the estimation of
Newell (1960) utilized a bulk service queuing model with an
underlying binomial arrival process and constant departure time,
using generating function technique.  Explicit expressions for
overflow queues were given for special cases of the signal split.

Other related work can be found in Darroch (1964a) who used
a more general arrival distribution but did not produce a closed
form expression of queue length, and Kleinecke (1964), whose
work included a set of exact but complicated series expansion
for Q , for the case of constant service time and Poisson arrivalo
process.

9.3.2  Approximate Expressions

The difficulty in obtaining exact expressions for delay which are
reasonably simple and can cover a variety of real world condi-
tions, gave impetus to a broad effort for signal delay estimation
using approximate models and bounds.  The first, widely used
approximate delay formula was developed by Webster (1961,
reprint of 1958 work with minor amendments) from a
combination of theoretical and numerical simulation approaches:

where,
d = average delay per vehicle (sec),
c = cycle length (sec),
g = effective green time (sec),
x = degree of saturation (flow to capacity ratio),
q = arrival rate (veh/sec).

The first term in Equation 9.17 represents delay when traffic can
be considered arriving at a uniform rate, while the second term
makes some allowance for the random nature of the arrivals.
This is known as the "random delay",  assuming a Poisson arrival
process and departures at constant rate which corresponds to the
signal capacity.  The latter assumption does not reflect actual

Q , the average overflow queue.  Miller (1963) for example ob-o

tained a approximate formulae for Q  that are applicable to anyo
arrival and departure distributions.  He started with the general
equality true for any general arrival and departure processes:

where,
Q(c) = vehicle queue at the end of cycle,
Q(0) = vehicle queue at the beginning of cycle,
A = number of arrivals during cycle,
C = maximum possible number of departures

during green,
�C = reserve capacity in cycle equal to 

(C-Q(0)-A) if Q(0)+A < C , zero otherwise.

Taking expectation of both sides of Equation 9.18, Miller
obtained:

since in equilibrium Q(0) = Q(c).

Now Equation 9.18 can be rewritten as:

Squaring both sides, taking expectations, the following is
obtained:
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(9.22)

(9.23)

(9.24)

(9.25)

(9.26)

(9.27)

(9.28)

(9.29)

For equilibrium conditions, Equation 9.21 can be rearranged as which can now be substituted in Equation 9.15.  Further
follows: approximations of Equation 9.15 were aimed at simplifying it for

where,

  C  = maximum possible number of departures in
one cycle,

A  = number of arrivals in one cycle,
�C = reserve capacity in one cycle.

The component Var(�C) is positive and approaches 0 when
E(C) approaches E(A).  Thus an upper bound on the expected
overflow queue is obtained by deleting that term.  Thus:

For example, using Darroch's arrival process (i.e. E(A)=qc,
Var(A)=Iqc) and constant departure time during green
(E(C)=Sg, Var(C)=0) the upper bound is shown to be:

where x=(qc)/(Sg).

Miller also considered an approximation of the excluded term
Var(�C).  He postulates that:

and thus, an approximation of the overflow queue is

practical purposes by neglecting the third and fourth terms which
are typically of much lower order of magnitude than the first two
terms.   This approach is exemplified by Miller (1968a) who
proposed the approximate formula:

which can be obtained by deleting the second and third terms in
McNeil's formula 9.15. Miller also gave an expression for the
overflow queue formula under Poisson arrivals and fixed service
time during the green: 

Equations 9.15, 9.16, 9.17, 9.27, and 9.28 are limited to specific
arrival and departure processes.  Newell (1965) aimed at devel-
oping delay formulae for general arrival and departure distribu-
tions.  First, he concluded from a heuristic graphical argument
that for most reasonable arrival and departure processes, the
total delay per cycle differs from that calculated with the
assumption of uniform arrivals and fixed service times (Clayton,
1941), by a negligible amount if the traffic intensity is sufficient-
ly small.  Then, by assuming a queue discipline LIFO (Last In
First Out) which does not effect the average delay estimate, he
concluded that the expected delay when the traffic is sufficiently
heavy can be approximated:

This formula gives identical results to formula (Equation 9.15)
if one neglects components of 1/S order in (Equation 9.15) and
when 1-q/S=1-g/c.  The last condition, however, is never met if
equilibrium conditions apply.  To estimate the overflow queue,
Newell (1965) defines F  as the cumulative distribution of theQ

overflow queue length, F as the cumulative distribution of theA-D

overflow in the cycle, where the indices A and D represent
cumulative arrivals and departures, respectively.  He showed that
under equilibrium conditions:
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(9.32)

(9.33)

(9.34)

The integral in Equation 9.30 can be solved only under the
restrictive assumption that the overflow in a cycle is normally
distributed.  The resultant Newell formula is as follows:

A more convenient expression has been proposed by Newell in
the form:

where,

The function H(μ) has been provided in a graphical form.

Moreover, Newell compared the results given by expressions
(Equation 9.29) and (Equation 9.31) with Webster's formula and
added additional correction terms to improve the results for
medium traffic intensity conditions.  Newell's final formula is:

Table 9.1
Maximum Relative Discrepancy between the Approximate Expressions
and Ohno's Algorithm (Ohno 1978).

Range of y = 0.0 �� 0.5 Range of g/c = 0.4 �� 1.0

Approximate Expressions s = 0.5 v/s s = 1.5 v/s s = 0.5 v/s s = 1.5 v/s
 (Equation #, Q  computed according    0

to Equation #)

c = 90 s c = 30 s c = 90 s c = 30 s c = 30 s c = 90 s

g = 46 s g = 16 s g = 45.33 s g = 15.33 s q = 0.2 s q = 0.6 s

Modified Miller's expression (9.15, 0.22 2.60 -0.53 0.22 2.24 0.26
9.28)

Modified Newell's expression (9.15, 0.82 2.53 0.25 0.82 2.83 0.25-
9.31)

McNeil's expression (9.15, Miller 1969) 0.49 1.79 0.12 0.49 1.51 0.08

Webster's full expression (9.17) -8.04 -21.47 3.49 -7.75 119.24 1381.10

Newell's expression (9.34, 9.31) -4.16 10.89 -1.45 -4.16 -15.37 -27.27



H(μ) � exp[�μ�(μ2/2)]

μ�(1�x) (Sg)1/2.

A(t)��
t

0
q(�)d�

D(t) � �
t

0
S(�)d�
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(9.37)
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More recently, Cronje (1983b) proposed an analytical overflow queue calculated with the method described by
approximation of the function H(μ):

where,

He also proposed that the correction (third) component in Equa-
tion 9.34 could be neglected.  

Earlier evaluations of delay models by Allsop (1972) and
Hutchinson (1972) were based on the Webster model form.
Later on, Ohno (1978) carried out a comparison of the existing categorized by the g/c ratio.   Further efforts to improve on their
delay formulae for a Poisson arrival process and constant estimates will not give any appreciable reduction in the errors.
departure time during green.  He developed a computational The modified Miller expression was recommended by Ohno
procedure to provide the basis for evaluating the selected because of its simpler form compared to McNeil's and Newell's.
models, namely McNeil's expression, Equation 9.15 (with

Miller 1969), McNeil's formula with overflow queue according
to Miller (Equation 9.28) (modified Miller's expression),
McNeil's formula with overflow queue according to Newell
(Equation 9.31) (modified Newell's expression), Webster
expression (Equation 9.17) and the original Newell expression
(Equation 9.34).  Comparative results are depicted in Table 9.1
and Figures 9.3 and 9.4.  Newell's expression appear to be more
accurate than Webster, a conclusion shared by Hutchinson
(1972) in his evaluation of three simplified models (Newell,
Miller, and Webster).   Figure 9.3 represents the percentage
relative errors of the approximate delay models measured against
Ohno’s algorithm (Ohno 1978) for a range of flow ratios.  The
modified Miller's and Newell's expressions give almost exact
average delay values, but they are not superior to the original
McNeil formula.  Figure 9.4 shows the same type of errors,

9.4 Time-Dependent Delay Models

The stochastic equilibrium assumed in steady-state models parabolic, or triangular functions) and calculates the correspond-
requires an infinite time period of stable traffic conditions ing delay. In May and Keller (1967) delay and queues are calcu-
(arrival, service and control processes) to be achieved.  At low lated for an unsignalized bottleneck.  Their work is nevertheless
flow to capacity ratios equilibrium is reached in a reasonable representative of the deterministic modeling approach and can
period of time, thus the equilibrium models are an acceptable be easily modified for signalized intersections.  The general
approximation of the real-world process.  When traffic flow ap- assumption in their research is that the random queue
proaches signal capacity, the time to reach statistical equilibrium fluctuations can be neglected in delay calculations.  The model
usually exceeds the period over which demand is sustained. defines a cumulative number of arrivals A(t):
Further, in many cases the traffic flow exceeds capacity, a
situation where steady-state models break down.  Finally, traffic
flows during the peak hours are seldom stationary, thus violating
an important assumption of steady-state models.  There has
been many attempts at circumventing the limiting assumption
of steady-state conditions.  The first and simplest way is to deal
with arrival and departure rates as a function of time in a
deterministic fashion.  Another view is to model traffic at signals,
assuming stationary arrival and departure processes but not
necessarily under stochastic equilibrium conditions, in order to
estimate the average delay and queues over the modeled period
of time.  The latter approach approximates the time-dependent
arrival profile by some mathematical function (step-function,

and departures D(t) under continuous presence of vehicle
queue over the period [0,t]:
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Figure 9.3
Percentage Relative Errors for Approximate Delay 

Models by Flow Ratios (Ohno 1978).

Figure 9.4
Relative Errors for Approximate Delay Models 

by Green to Cycle Ratios (Ohno 1978).
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(9.39)

(9.40)

(9.41)
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The current number of vehicles in the system (queue) is

and the average delay of vehicles queuing during the time period
[0,T] is

The above models have been applied by May and Keller to a
trapezoidal-shaped arrival profile and constant departure rate.
One can readily apply the above models to a signal with known
signal states over the analysis period by substituting C(�) for
S(�) in Equation 9.38:

C(�) = 0 if signal is red,
= S(�)  if signal is green and Q(�) > 0,
= q(�)  if signal is green and Q(�) = 0.

Deterministic models of a single term like Equation 9.39 yield
acceptable accuracy only when x<<1 or x>>1.  Otherwise, they version of the Pollaczek-Khintchine equation (Taha 1982), he
tend to underestimate queues and delays since the extra queues illustrated the calculation of average queue and delay for each
causes by random fluctuations in q and C are neglected. 

According to Catling (1977), the now popular coordinate
transformation technique was first proposed by Whiting, who did
not publish it.  The technique when applied to a steady-state
curve derived from standard queuing theory, produces a time-
dependent formula for delays.  Delay estimates from the new
models when flow approaches capacity are far more realistic
than those obtained from the steady-state model.  The following
observations led to the development of this technique.  

� At low degree of saturation (x<<1) delay is almost equal
to that occurring when the traffic intensity is uniform
(constant over time).  

� At high degrees of saturation (x>>1) delay can be
satisfactory described by the following deterministic model
with a reasonable degree of accuracy:

where d  is the delay experienced at very low traffic1

intensity, (uniform delay) T = analysis period over which
flows are sustained.

� steady-state delay models are asymptotic to the y-axis (i.e
generate infinite delays) at unit traffic intensity (x=1).  The
coordinate transformation method shifts the original
steady-state curve to become asymptotic to the
deterministic oversaturation delay line--i.e.-- the second
term in Equation 9.41--see Figure 9.5.  The horizontal
distance between the proposed delay curve and its
asymptote is the same as that between the steady-state
curve and the vertical line x=1.  

There are two restrictions regarding the application of the
formula:  (1) no initial queue exists at the beginning of the
interval [0,T], (2) traffic intensity is constant over the interval
[0,T].  The time-dependent model behaves reasonably within the
period [0,T] as indicated from simulation experiments.  Thus,
this technique is very useful in practice.  Its principal drawback,
in addition to the above stated restrictions (1) and (2) is the lack
of a theoretical foundation.  Catling overcame the latter diffi-
culties by approximating the actual traffic intensity profile with
a step-function.  Using an example of the  time-dependent

time interval starting from an initial, non-zero queue. 

Kimber and Hollis (1979) presented a computational algorithm
to calculate the expected queue length for a system with random
arrivals, general service times and single channel service
(M/G/1).  The initial queue can be defined through its
distribution.  To speed up computation, the average initial queue
is used unless it is substantially different from the queue at
equilibrium.  In this case, the full computational algorithm
should be applied. The non-stationary arrival process is approxi-
mated with a step-function.  The total delay in a time period is
calculated by integrating the queue size over time.  The
coordinate transformation method is described next in some
detail.

Suppose, at time T=0 there are Q(0) waiting vehicles in queue
and that the degree of saturation changes rapidly to x.  In a deter-
ministic model the vehicle queue changes as follows:



Q� x �

Bx 2

1�x

B � 0.5 1 �

�
2

μ2

1 � x � xd � xT

x � xT � (xd�1)

9. TRAFFIC FLOW AT SIGNALIZED INTERSECTIONS

9 - 12

(9.43)

(9.44)
(9.45)
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Figure 9.5
The Coordinate Transformation Method.

The steady-state expected queue length from the modified The following derivation considers the case of exponential
Pollaczek-Khintczine formula is:

where B is a constant depending on the arrival and departure
processes and is expressed by the following equation.

where �  and μ are the variance and mean of the service time2

distribution, respectively.

service times, for which �  = μ , B =1.  Let x be the degree of2 2
d

saturation in the deterministic model (Equation 9.42), x refers to
the steady-state conditions in model (Equation 9.44), while xT

refers to the time-dependent model such that Q(x,T)=Q(x ,T).T
To meet the postulate of equal distances between the curves and
the appropriate asymptotes, the following is true from Figure
9.5:

and hence
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(9.48)

(9.49)

(9.50)

(9.51)

(9.52)

(9.53)

(9.54)

(9.55)

(9.56)

(9.57)

(9.58)

(9.59)

and from Equation 9.42:

the transformation is equivalent to setting: The equation for the average delay for vehicles arriving during

From Figure 9.5, it is evident that the queue length at time T,
Q(T) is the same at x, x , and x .  By substituting for Q(T) inT d
Equation 9.44, and rewriting Equation 9.48 gives: and the steady-state delay d ,

By eliminating the index T in x  and solving the second degreeT

polynomial in Equation 9.49 for Q(T), it can be shown that:

where

and

If the more general steady state Equation 9.43 is used, the result
for Equation 9.51 and 9.52 is:

and

the period of analysis is also derived starting from the average
delay per arriving vehicle d over the period [0,T],d

s

The transformed time dependent equation is

with the corresponding parameters:

and

The derivation of the coordinate transformation technique has
been presented. The steady-state formula (Equation 9.43) does
not appear to adequately reflect traffic signal performance, since
a) the first term (queue for uniform traffic) needs further
elaboration and b) the constant B must be calibrated for cases
that do not exactly fit the assumptions of the theoretical queuing
models. 
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(9.61)

(9.62)

(9.63)

(9.64)

(9.65)

(9.66)

(9.67)

Akçelik (1980) utilized the coordinate transformation technique
to obtain a time-dependent formula which is intended to be more
applicable to signalized intersection performance than Kimber-
Hollis's.  In order to facilitate the derivation of a time-dependent
function for the average overflow queue Q , Akçelik used the Cronje (1983a), and Miller (1968a); Olszewski (1990) usedo
following expression for undersaturated signals as a simple non-homogeneous Markov chain techniques to calculate the
approximation to Miller's second formula for steady-state queue
length (Equation 9.28):

where

Akçelik's time-dependent function for the average overflow
queue is

The formula for the average uniform delay during the interval
[0,T] for vehicles which arrive in that interval is

Generalizations of Equations 9.60 and 9.61 were discussed by
Akçelik (1988) and Akçelik and Rouphail (1994).  It should be
noted that the average overflow queue, Q  is an approximation0
of the McNeil (Equation 9.15) and Miller (Equation 9.28)
formulae applied to the time-dependent conditions, and differs
from Newell's approximations Equation 9.29 and Equation 9.34
of the steady-state conditions.  According to Akçelik (1980), this

approximation is relevant to high degrees of saturation x and its
effect is negligible for most practical purposes. 

Following certain aspects of earlier works by Haight (1963),

stochastic queue distribution using the arrival distribution P(t,A)
and capacity distribution P(C).  Probabilities of transition from
a queue of i to j vehicles during one cycle are expressed by the
following equation:

and 

and 

The probabilities of queue states transitions at time t form the
transition matrix P(t).  The system state at time t is defined with
the overflow queue distribution in the form of a row vector P (t).Q

The initial system state variable distribution at time t =0 is
assumed to be known:  P (0)=[P (0), P (0),...P (0)], where P (0)Q 1 2 m i

is the probability of queue of length i at time zero.  The vector of
state probabilities in any cycle t can now be found by matrix
multiplication:

Equation 9.67, when applied sequentially, allows for the calcula-
tion of queue probability evolution from any initial state.

In their recent work, Brilon and Wu (1990) used a similar
computational technique to Olszewski's (1990a) in order to
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evaluate existing time-dependent formulae by Catling (1977), which incorporate the impact of the arrival profile shape (e.g. the
Kimber-Hollis (1979), and Akçelik (1980).  A comparison of peaking intensity) on delay.  In this examination of delay models
the models results is given in Figures 9.6 and 9.7 for a parabolic in the time dependent mode, delay is defined according to the
arrival rate profile in the analysis period T . They found that theo
Catling method gives the best approximation of the average
delay.  The underestimation of delays observed in the Akçelik's vehicle, even if this time occurs beyond the analysis period T.
model is interpreted as a consequence of the authors' using an The path trace method will tend to generate delays that are
average arrival rate over the analyzed time period instead of the typically longer than the queue sampling method, in which
step function, as in the Catling's method.  When the peak flow stopped vehicles are sampled every 15-20 seconds for the
rate derived from a step function approximation of the parabolic duration of the analysis period.  In oversaturated conditions, the
profile is used in Akçelik's formula, the results were virtually measurement of delay may yield vastly different results as
indistinguishable from Brilon and Wu's (Akçelik and Rouphail vehicles may discharge 15 or 30 minutes beyond the analysis
1993).  period.  Thus it is important to maintain consistency between

Using numeric results obtained from the Markov Chains discussion of the delay measurement methods and their impact
approach, Brilon and Wu developed analytical approximate (and on oversaturation delay estimation, the reader is referred to
rather complicated) delay formulae of a form similar to Akçelik's Rouphail and Akçelik (1992a).

Figure 9.6
Comparison of Delay Models Evaluated by Brilon
and Wu (1990) with Moderate Peaking (z=0.50).   

path trace method of measurement (Rouphail and Akçelik
1992a).  This method keeps track of the departure time of each

delay measurements and estimation methods.  For a detailed

Figure 9.7
Comparison of Delay Models Evaluated by Brilon

and Wu (1990) with High Peaking (z=0.70).  



f(�) � D
�

2
� 2�

exp �
( D
�

�

D
�

)2

2�2

q2(t2)dt2 � �t1
q1(t1) f(t2�t1) dt1 dt2

q2(j) � �i q1(i)g(j�i)

q2(j) �
1

1�a�
q1(j) � (1� 1

1�a�
) q2(j�1)

�

9. TRAFFIC FLOW AT SIGNALIZED INTERSECTIONS

9 - 16

(9.68)

(9.69)
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9.5  Effect of Upstream Signals

The arrival process observed at a point located downstream of
some traffic signal is expected to differ from that observed
upstream  of the same signal.  Two principal observations are
made:  a) vehicles pass the signal in "bunches" that are separated
by a time equivalent to the red signal (platooning effect), and b)
the number of vehicles passing the signal during one cycle does
not exceed some maximum value corresponding to the signal
throughput (filtering effect).

9.5.1  Platooning Effect On Signal 
     Performance

The effect of vehicle bunching weakens as the platoon moves
downstream, since vehicles in it travel at various speeds,
spreading over the downstream road section.  This phenomenon,
known as platoon diffusion or dispersion, was modeled by Pacey
(1956). He derived the travel time distribution f(�) along a road
section assuming normally distributed speeds and unrestricted
overtaking:   

where,

D = distance from the signal to the point where arrivals
are observed,

� = individual vehicle travel time along distance D,
= mean travel time, and

� = standard deviation of speed.

The travel time distribution is then used to transform a traffic
flow profile along the road section of distance D:

where,

q (t )dt  = total number of vehicles passing some2 2 2
point downstream of the signal in the
interval (t, t+dt), 

q (t )dt = total number of vehicles passing the1 1 1

signal in the interval (t, t+dt), and
f(t -t ) = probability density of travel time (t  - t )2 1 2 1

according to Equation 9.68.

The discrete version of the diffusion model in Equation 9.69 is

where i and j are discrete intervals of the arrival histograms.

Platoon diffusion effects were observed by Hillier and Rothery
(1967) at several consecutive points located downstream of
signals (Figure 9.8).  They analyzed vehicle delays at pretimed
signals using the observed traffic profiles and drew the following
conclusions:  

� the deterministic delay (first term in approximate delay
formulae) strongly depends on the time lag between the
start of the upstream and downstream green signals
(offset effect);  

� the minimum delay, observed at the optimal offset,
increases substantially as the distance between signals
increases; and

� the signal offset does not appear to influence the
overflow delay component.

The TRANSYT model (Robertson 1969) is a well-known
example of a platoon diffusion model used in the estimation of
deterministic delays in a signalized network.  It incorporates the
Robertson's diffusion model, similar to the discrete version of the
Pacey's model in Equation 9.70, but derived with the assumption
of the binomial distribution of vehicle travel time:

where � is the average travel time and a is a parameter which
must be calibrated from field observations.  The Robertson
model of dispersion gives results which are satisfactory for the
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Figure 9.8
Observations of Platoon Diffusion

by Hillier and Rothery (1967).

 purpose of signal optimization and traffic performance analysis In the TRANSYT model, a flow histogram of traffic served
in signalized networks.  The main advantage of this model over (departure profile) at the stopline of the upstream signal is fir st
the former one is much lower computational demand which is a constructed, then transformed between two signals using model
critical issue in the traffic control optimization for a large size (Equation 9.71) in order to obtain the arrival patterns at the
network. stopline of the downstream signal.  Deterministic delays at 

the downstream signal are computed using the transformed
arrival and output histograms.
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To incorporate the upstream signal effect on vehicle delays, the The remainder of this section briefly summarizes recent work
Highway Capacity Manual (TRB 1985) uses a progression factor pertaining to the filtering effect of upstream signals, and the
(PF) applied to the delay computed assuming an isolated signal.
A PF is selected out of the several values based on a platoon
ratio f  .  The platoon ratio is estimated from field measurementp
and by applying the following formula:

where,

PVG = percentage of vehicles arriving during the
effective green,

g = effective green time,
c = cycle length.

Courage et al. (1988) compared progression factor values
obtained from Highway Capacity Manual (HCM) with those
estimated based on the results given by the TRANSYT model.
They indicated general agreement between the methods,
although the HCM method is less precise (Figure 9.9).  To avoid
field measurements for selecting a progression factor, they
suggested to compute the platoon ratio f  from the ratios ofp
bandwidths measured in the time-space diagram.  They showed
that the proposed method gives values of the progression factor
comparable to the original method.

Rouphail (1989) developed a set of analytical models for direct
estimation of the progression factor based on a time-space
diagram and traffic flow rates.  His method can be considered a
simplified version of TRANSYT, where the arrival histogram
consists of two uniform rates with in-platoon and out-of-platoon
traffic intensities.  In his method, platoon dispersion is also based
on a simplified TRANSYT-like model.  The model is thus
sensitive to both the size and flow rate of platoons.  More
recently, empirical work by Fambro et al. (1991) and theoretical
analyses by Olszewski (1990b) have independently confirmed
the fact that signal progression does not influence overflow
queues and delays.  This finding is also reflected in the most
recent update of the Signalized Intersections chapter of the
Highway Capacity Manual (1994).  More recently, Akçelik
(1995a) applied the HCM progression factor concept to queue
length, queue clearance time, and proportion queued at signals.

resultant overflow delays and queues that can be anticipated at
downstream traffic signals.

9.5.2  Filtering Effect on Signal Performance

The most general steady-state delay models have been derived
by Darroch (1964a), Newell (1965), and McNeil (1968) for the
binomial and compound Poisson arrival processes.  Since these
efforts did not deal directly with upstream signals effect, the
question arises whether they are appropriate for estimating
overflow delays in such conditions.  Van As (1991) addressed
this problem using the Markov chain technique to model delays
and arrivals at two closely spaced signals.  He concluded that the
Miller's model (Equation 9.27) improves random delay estima-
tion in comparison to the Webster model (Equation 9.17).
Further, he developed an approximate formula to transform the
dispersion index of arrivals, I , at some traffic signal into the
dispersion index of departures, B,  from that signal:

with the factor F given by

This model (Equation 9.73) can be used for closely spaced
signals, if one assumes the same value of the ratio I along a road
section between signals.

Tarko et al. (1993) investigated the impact of an upstream signal
on random delay using cycle-by-cycle macrosimulation.  They
found that in some cases the ratio I does not properly represent
the non-Poisson arrival process, generally  resulting in delay
overestimation (Figure 9.10).  

They proposed to replace the dispersion index I with an
adjustment factor f which is a function of the difference between
the maximum possible number of arrivals m observable duringc

one cycle, and signal capacity Sg:
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Figure 9.9
HCM Progression Adjustment Factor vs Platoon Ratio 

Derived from TRANSYT-7F (Courage et al. 1988).



f � 1�e a(mc�Sg)
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Figure 9.10
Analysis of  Random Delay with Respect to the Differential Capacity Factor (f) 

and Var/Mean Ratio of Arrivals (I)- Steady State Queuing Conditions (Tarko et al. 1993).

where a is a model parameter, a < 0.

A recent paper by Newell (1990) proposes an interesting
hypothesis.  The author questions the validity of using random
delay expressions derived for isolated intersections at internal
signals in an arterial system.  He goes on to suggest that the sum
of random delays at all intersections in an arterial system with no
turning movements is equivalent to the random delay at the
critical intersection, assuming that it is isolated.  Tarko et al.
(1993) tested the Newell hypothesis using a computational

 model which considers a bulk service queuing model and a set
of arrival distribution transformations. They concluded that
Newell's model estimates provide a close upper bound to the
results from their model.  The review of traffic delay models at
fixed-timed traffic signals indicate that the state of the art has
shifted over time from  a purely theoretical approach grounded
in queuing theory,  to heuristic models that have deterministic
and stochastic components in a time-dependent domain. This
move was motivated by the need to incorporate additional factors
such as non-stationarity of traffic demand, oversaturation, traffic
platooning and  filtering effect of upstream signals.  It  is
anticipated  that  further  work  in  that direction will continue,
with a view towards using the performance-based models for
signal design and route planning purposes.

9.6  Theory of Actuated and Adaptive Signals

The material presented in previous sections assumed fixed time traffic-adaptive systems requires new delay formulations that are
signal control, i.e. a fixed signal capacity. The introduction of sensitive to this process. In this section,  delay models for
traffic-responsive control, either in the form of actuated or actuated signal control are presented in some detail, which
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incorporate controller settings such as minimum and maximum and maximum greens, the phase will be extended for each
greens and unit extensions. A brief discussion of the state of the arriving vehicle, as long as its headway does not exceed the
art in adaptive signal control follows, but no models are value of unit extension.   An intersection with two one-way
presented. For additional details on this topic, the reader is streets was studied.  It was found that, associated with each
encouraged to consult the references listed at the end of the traffic flow condition, there is an optimal vehicle interval for
chapter. which the average delay per vehicle is minimized.  The value of

9.6.1 Theoretically-Based Expressions

As stated by Newell (1989), the theory on vehicle actuated
signals and related work on queues with alternating priorities is
very large, however, little of it has direct practical value.  For
example, "exact" models of queuing theory are too idealized to
be very realistic.  In fact the issue of performance modeling of
vehicle actuated signals is too complex to be described by a
comprehensive theory which is simple enough to be useful.
Actuated controllers are normally categorized into: fully-
actuated, semi-actuated, and volume-density control.  To date,
the majority of the theoretical work related to vehicle actuated
signals is limited to fully and semi-actuated controllers, but not
to the more sophisticated volume-density controllers with
features such as variable initial and extension intervals.  Two
types of detectors are used in practice: passage and presence.
Passage detectors, also called point or small-area detectors,
include a small loop and detect motion or passage when a
vehicle crosses the detector zone.  Presence detectors, also called
area detectors, have a larger loop and detect presence of vehicles
in the detector zone.  This discussion focuses on traffic actuated
intersection analysis with passage detectors only.

Delays at traffic actuated control intersections largely depend on
the controller setting parameters, which include the following
aspects: unit extension, minimum green, and maximum green.
Unit extension (also called vehicle interval, vehicle extension, or
gap time) is the extension green time for each vehicle as it
arrives at the detector.  Minimum green: summation of the initial
interval and one unit extension.  The initial interval is designed
to clear vehicles between the detector and the stop line.
Maximum green: the maximum green times allowed to a specific
phase, beyond which, even if there are continuous calls for the
current phase, green will be switched to the competing approach.

The relationship between delay and controller setting parameters
for a simple vehicle actuated type was originally studied by
Morris and Pak-Poy (1967).  In this type of control, minimum
and maximum greens are preset.  Within the range of minimum

the optimal vehicle interval decreases and becomes more critical,
as the traffic flow increases.  It was also found that by using the
constraints of minimum and maximum greens, the efficiency and
capacity of the signal are decreased.  Darroch (1964b) also
investigated a method to obtain optimal estimates of the unit
extension which minimizes total vehicle delays.

The behavior of vehicle-actuated signals at the intersection of
two one-way streets was investigated by Newell (1969).  The
arrival process was assumed to be stationary with a flow rate just
slightly below the saturation rate, i.e. any probability
distributions associated with the arrival pattern are time
invariant.  It is also assumed that the system is undersaturated
but that traffic flows are sufficiently heavy, so that the queue
lengths are considerably larger than one car.  No turning
movements were considered.  The minimum green is
disregarded since the study focused on moderate heavy traffic
and the maximum green is assumed to be arbitrarily large.  No
specific arrival process is assumed, except that it is stationary. 

Figure 9.11 shows the evolution of the queue length when the
queues are large.  Traffic arrives at a rate of q , on one approach,1

and q , on the other.  r , g , and Y  represent the effective red,2  j  j  j

green, and yellow times in cycle j.  Here the signal timings are
random variables, which may vary from cycle to cycle.  For any
specific cycle j, the total delay of all cars W  is the area of aij
triangular shaped curve and can be approximated by:
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Figure 9.11
Queue Development Over Time Under 

Fully-Actuated Intersection Control (Newell 1969).    

where

E{W }, E{W } = the total wait of all cars during1j 2j

cycle j for approach 1 and 2;
S , S  = saturation flow rate for approach 11 2

and 2;
E{r }, E{g } = expectation of the effective redj j

and green times;
Var(r ), Var(g ) = variance of the effective red andj j

green time;
I  , I  = variance to mean ratio of arrivals1 2

for approach 1 and 2; and
V  , V  = the constant part of the variance of1 2

departures for approach 1 and 2.

Since the arrival process is assumed to be stationary,

The first moments of r and g were also derived based on the
properties of the Markov process:

Variances of r and g were also derived, they are not listed here
for the sake of brevity.   Extensions to the multiple lane case
were investigated by Newell and Osuna (1969). 

A delay model with vehicle actuated control was derived by
Dunne (1967) by assuming that the arrival process follows a
binomial distribution.  The departure rates were assumed to be
constant and the control strategy was to switch the signal when
the queue vanishes.  A single intersection with two one-lane one-
way streets controlled by a two phase signal was considered.  

For each of the intervals (k�, k�+�), k=0,1,2... the probability of
one arrival in approach i = 1, 2 is denoted by q  and thei

probability of no arrival by p =1-q .  The time interval, �, isi i
taken as the time between vehicle departures.  Saturation flow
rate  was  assumed  to   be  equal  for  both approaches.   Denote
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W  as the total delay for approach 2 for a cycle having effective (2)
r

red time of length r, then it can be shown that:

where c is the cycle length, � , and �  are increases in delay at1 2
the beginning and at the end of the cycle, respectively, when one
vehicle arrives in the extra time unit at the beginning of the
phase and:  

Equation 9.83 means that if there is no arrivals in the extra time
unit at the beginning of the phase,  then W =W , otherwise (2)  (2)

r+1 r
W =W  + �  + c + � . (2)  (2)

r+1 r 1 2

Taking the expectation of Equation 9.83 and substituting for
E(� ), E(� ):1 2

Solving the above difference equation for the initial condition W
=0 gives,(2)

0

Finally, taking the expectation of Equation 9.86 with respect to
r gives 

Therefore, if the mean and variance of (r) are known, delay can
be obtained from the above formula.  E(W ) for approach 2 is (i)

obtained by interchanging the subscripts. 

Cowan (1978) studied an intersection with two single-lane one-
way approaches controlled by a two-phase signal.  The control
policy is that the green is switched to the other approach at the
earliest time, t, such that there is no departures  in  the  interval
[t-�  -1, t].  In general � � 0.  It was assumed that departurei  i
headways are 1 time unit, thus the arrival headways are at least
1 time unit.  The arrival process on approach j is assumed to
follow a bunched exponential distribution.  It comprises random-

sized bunches separated by inter-bunch headways.  All bunched
vehicles are assumed to have the same headway of 1 time unit.
All inter-bunch headways follow the exponential distribution.
Bunch size was assumed to have a general probability
distribution with mean, μ , and variance, � .  The cumulativej j

2

probability distribution of a headway less than t seconds, F(t), is

where,
� = minimum headway in the arrival stream, �=1

time unit;
� = proportion of free (unbunched) vehicles; and
� = a delay parameter.

Formulae for average signal timings (r and g) and average delays
for the cases of �  = 0 and �  > 0 are derived separately.  �  = 0j j j
means that the green ends as soon as the queues for the approach
clear while �  > 0 means that after queues clear there will be aj
post green time assigned to the approach.  By analyzing the
property of Markov process, the following formula are derived
for the case of �  = 0.j
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where, The saturated portion of green period can be estimated from the

E(g ), E(g ) = expected effective green for1 2
approach 1 and 2;

E(r ), E(r ) = expected effective red for approach 11 2
and 2;

L = lost time in cycle;
l , l  = lost time for phase 1 and 2; and1 2
q , q  = the stationary flow rate for1 2

approach 1 and 2.

The average delay for approach 1 is:

Akçelik (1994, 1995b) developed an analytical method for
estimating average green times and cycle time at a basic vehicle
actuated controller that uses a fixed unit extension setting by
assuming that the arrival headway follows the bunched where,
exponential distribution  proposed by Cowan (1978).  In his
model, the minimum headway in the arrival stream � is not
equal to one.  The delay parameter, �, is taken as �q /�, wheret

q  is the total arrival flow rate and �=1-�q .  In the model, the change after queue clearance; andt t
free (unbunched) vehicles are defined as those with headways
greater than the minimum headway �.  Further, all bunched
vehicles are assumed to have the same headway �.  Akçelik
(1994) proposed two different models to estimate the proportion
of free (unbunched) vehicles �.  The total time, g, allocated to a
movement can be estimated as where g  is the minimum greenmin

time and g , the green extension time.  This green time, g, ise
subject to the following constraint

where g  and g  are maximum green and extension timemax emax
settings separately.  If it is assumed that the unit extension is set
so that a gap change does not occur during the saturated portion
of green period, the green time can be estimated by:

where g  is the saturated portion of the green period and e  is thes g
extension time assuming that gap change occurs after the queue
clearance period.  This green time is subject to the boundaries:

following formula:

where,

f  = queue length calibration factor to allow forq
variations in queue clearance time;

S  = saturation flow;
r = red time; and
y  = q/S, ratio of arrival to saturation flow rate.

The average extension time beyond the saturated portion can be
estimated from:

n = average number of arrivals before a gapg
change after queue clearance;

h = average headway of arrivals before a gapg

e = terminating time at gap change (in most caset

it is equal to the unit extension U).

For the case when e  = U, Equation 9.98 becomest

9.6.2  Approximate Delay Expressions

Courage and Papapanou (1977) refined Webster's (1958) delay
model for pretimed control to estimate delay at vehicle-actuated
signals.  For clarity, Webster's simplified delay formula is
restated below.

Courage and Papapanou used two control strategies: (1) the
available green time is distributed in proportion to demand on
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the critical approaches; and (2) wasted time is minimized by
terminating each green interval as the queue has been properly
serviced.  They propose the use of the cycle lengths shown in
Table 9.2 for delay estimation under pretimed and actuated
signal control:  

Table 9.2  
Cycle Length Used For Delay Estimation for Fixed-
Time and Actuated Signals Using  Webster’s
Formula (Courage and Papapanou 1977).

Type of Signal in 1st Term in 2nd Term
Cycle Length Cycle Length

Pretimed Optimum Optimum The delay factor DF=0.85, reduces the queuing delay to account

Actuated Average Maximum

The optimal cycle length, c , is Webster's:0

where L is total cycle lost time and y  is the volume to saturationci

flow ratio of critical movement i.  The average cycle length, c  isa
defined as: 

and the maximum cycle length, c , is the controller maximummax
cycle setting.  Note that the optimal cycle length under pretimed
control will generally be longer than that under actuated control.
The model was tested by simulation and satisfactory results
obtained for a wide range of operations.

In the U. S. Highway Capacity Manual (1994), the average
approach delay per vehicle is estimated for fully-actuated
signalized lane groups according to the following:

where, d, d , d , g, and c are as defined earlier and1 2

DF = delay factor to account for signal coordination and
controller type;

x = q/C, ratio of arrival flow rate to capacity;
m = calibration parameter which depends on the arrival

pattern;
C = capacity in veh/hr; and
T = flow period in hours (T=0.25 in 1994 HCM).

for the more efficient operation with fully-actuated operation
when compared to isolated, pretimed control.  In an upcoming
revision to the signalized intersection chapter in the HCM, the
delay factor will continue to be applied to the uniform delay term
only.

As delay estimation requires knowledge of signal timings in the
average cycle, the HCM provides a simplified estimation
method.  The average signal cycle length is computed from:

where x  = critical q/C ratio under fully-actuated control (x =0.95c c

in HCM).   For the critical lane group i, the effective green:

This signal timing parameter estimation method has been the
subject of criticism in the literature.  Lin (1989), among others,
compared the predicted cycle length from Equation 9.106 with
field observations in New York state.  In all cases, the observed
cycle lengths were higher than predicted, while the observed xc
ratios were lower.

Lin and Mazdeysa(1983) proposed a general delay model of the
following form consistent with Webster's approximate delay
formula:
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where g, c, q, x are as defined earlier and K  and K  are two1 2
coefficients of sensitivity which reflect different sensitivities of
traffic actuated and pretimed delay to both g/c and x ratios.  In
this study, K  and K  are calibrated from the simulation model1  2
for semi-actuated and fully-actuated control separately.  More
importantly, the above delay model has to be used in conjunction
with the method for estimating effective green and cycle length.
In earlier work, Lin (1982a, 1982b) described a model to
estimate the average green duration for a two phase fully-
actuated signal control.  The model formulation is based on the
following assumption: (1) the detector in use is small area
passage detector; (2) right-turn-on-red is either prohibited or its
effect can be ignored; and (3) left turns are made only from
exclusive left turn lanes.  The arrival pattern for each lane was
assumed to follow a  Poisson distribution.  Thus, the headway
distribution follows a shifted negative exponential distribution.

Figure 9.12 shows the timing sequence for a two phase fully
actuated controller.  For phase i, beyond the initial green
interval, g , green extends for F  based on the control logic andmini i

the settings of the control parameters.  F  can be further dividedi

into two components: (1) e  — the additional green extended byni
n vehicles that form moving queues upstream of the detectors
after the initial interval G ;  (2) E  — the additional greenmini  ni

extended by n vehicles with headways of no more than one unit
extension, U, after G  or e .  Note that e  and E  are randommini ni ni ni
variables that vary from cycle to cycle.  Lin (1982a, 1982b)
developed the procedures to estimate e  and E , the expectedi i

value of e  and E , as follows.  A moving queue upstream of ani ni

detector may exist when G  is timed out in case the flow ratemini

of the critical lane q  is high.  If there are n vehicles arriving inc

the critical lane during time T , then the time required for the nthi

vehicle to reach the detector after G  is timed out can bemini
estimated by the following equation: 

where w is the average time required for each queuing vehicle to
start moving after the green phase starts,  L is the average
vehicle length,  a is the vehicle acceleration rate from a standing
position., and s is the detector setback.   If t �0, there is non

moving queue exists and thus e =0; otherwise the green will bei

extended by the moving queue.  Let s be the rate at
which the queuing vehicle move across the detector.
Considering that additional vehicles may join the queue during
the time interval t , if t >0 and s>0, then:n n

To account for the probability that no moving queues exist
upstream of the detector at the end of the initial interval, the
expected value of e , e is expressed as:ni i

where n is the minimum number of vehicles required to formmin
a moving queue.

To estimate E , let us suppose that after the initial G  andi mini

additional green e  have elapsed, there is a sequence of kni

consecutive headways that are shorter than U followed by a
headway longer than U.  In this case the green will be extended
k times and the resultant green extension time is kJ+U with
probability [F(h � U)]  F(h � U), where J is the average lengthk

of each extension and F(h) is the cumulative headway
distribution function. 

and therefore

where  � is the minimum headway in the traffic stream.
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Figure 9.12
Example of a Fully-Actuated Two-Phase Timing Sequence (Lin 1982a).

Referring to Figure 9.12, after the values of T  and T  are1 2

obtained, G  can be estimated as: i

subject to

where P(n/T ) is the probability of n arrivals in the critical lanei

of the ith phase during time interval T .  Since both T  and T  arei 1 2

unknown, an iterative procedure was used to determine G  and1
G .2

Li et al. (1994) proposed an approach for estimating overflow
delays  for a simple intersection with fully-actuated signal

control.  The proposed approach uses the delay format in the
1994 HCM (Equations 9.104 and 9.105) with some variations,
namely  a) the delay factor, DF, is taken out of the formulation
of delay model and b) the multiplier x  is omitted from the2

formulation of the overflow delay term to ensure convergence to
the deterministic oversaturated delay model.  Thus, the overflow
delay term is expressed as:

where the parameter (k) is derived from a numerical calibration
of the steady-state for of Equation 9.105 as shown below.
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This expression is based on a more general formula by Akçelik models would satisfy the requirement that both controls yield
(1988) and discussed by Akçelik and Rouphail (1994).  The identical performance under very light and very heavy traffic
calibration results for the parameter k along with the overall
statistical model evaluation criteria (standard error and R ) are2

depicted in Table 9.3.  The parameter k which corresponds to
pretimed control, calibrated by Tarko (1993) is also listed.  It is
noted that the pretimed steady-state model was also calibrated
using the same approach, but with fixed signal settings.  The first
and most obvious observation is that the pretimed model
produced the highest k (delay) value compared to the actuated
models.  Secondly, the parameter was found to increase with the
size of the controller's unit extension (U). 

Procedures for estimating the average cycle length and green
intervals for semi-actuated signal operations have been
developed by Lin (1982b, 1990) and Akçelik (1993b). Recently,
Lin (1992) proposed a model for estimating average cycle length
and green intervals under semi-actuated signal control operations
with exclusive pedestrian-actuated phase.  Luh (1991) studied
the probability distribution of and delay estimation for semi-
actuated signal controllers.

In summary, delay models for vehicle-actuated controllers are
derived from assumptions related to the traffic arrival process,
and are constrained by the actuated controller parameters. The
distribution of vehicle headways directly impact the amount of
green time allocated to an actuated phase, while controller
parameters bound the green times within specified minimums
and maximums. In contrast to fixed-time models,  performance
models for actuated have the additional  requirement of
estimating  the expected signal phase lengths. Further research
is needed to incorporate additional aspects of actuated operations
such as phase skipping, gap reduction and variable maximum
greens. Further, there is a need to develop generalized models
that are applicable to both fixed time and actuated control.  Such

demands.  Recent work along these lines has been reported by
Akçelik and Chung (1994, 1995).

9.6.3  Adaptive Signal Control

Only a very brief discussion of the topic is presented here.
Adaptive signal control systems are generally considered
superior to actuated control because of their true demand
responsiveness.  With recent advances in microprocessor
technology, the gap-based strategies discussed in the previous
section are becoming increasingly outmoded and demonstrably
inefficient.  In the past decade, control algorithms that rely on
explicit intersection/network delay minimization in a time-
variant environment, have emerged and been successfully tested.
While the algorithms have matured both in Europe and the U.S.,
evident by the development of the MOVA controller in the U.K.
(Vincent et al. 1988), PRODYN in France (Henry et al. 1983),
and OPAC in the U.S. (Gartner et al. 1982-1983), theoretical
work on traffic performance estimation under adaptive control
is somewhat limited.  An example of such efforts is the work by
Brookes and Bell (1991), who investigated the use of Markov
Chains and three heuristic approaches in an attempt to calculate
the expected delays and stops for discrete time adaptive signal
control. Delays are computed by tracing the queue evolution
process over time using a `rolling horizon' approach.  The main
problem lies in the estimation (or prediction) of the initial queue
in the current interval.  While the Markov Chain approach yields
theoretically correct answers, it is of limited value in practice due
to its extensive computational and storage requirements.
Heuristics that were investigated include the use of the mean
queue length, in the last interval as the starting queue in this
interval; the `two-spike' approach, in which the queue length 

Table 9.3
Calibration Results of the Steady-State Overflow Delay Parameter (k) (Li et al. 1994). 

Control Pretimed  U=2.5 U=3.5 U=4.0 U=5.0
k (m=8k) 0.427 0.084 0.119 0.125 0.231
s.e. NA 0.003 0.002 0.002 0.006
R2 0.903 0.834 0.909 0.993 0.861
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distribution has non-zero probabilities at zero and at an integer Overall, the latter method was recommended because it not only
value closest to the mean; and finally a technique that propagates produces estimates that are sufficiently close to the theoretical
the first and second moment of the queue length distribution estimate, but more importantly it is independent of the traffic
from period to period.  arrival distribution.  

9.7 Concluding Remarks

In this chapter, a summary and evolution of traffic theory arrival  process  at  the  intersection,  and  of  traffic  metering
pertaining to the performance of intersections controlled by which may causes a truncation in the departure distribution from
traffic signals has been presented.  The focus of the discussion a highly saturated intersection.  Next,  an overview of delay
was on the development of stochastic delay models. models which are applicable to intersections operating under

Early models focused on the performance of a single intersection
experiencing random arrivals and deterministic service times
emulating fixed-time control.  The thrust of these models has
been to produce point estimates--i.e. expectations of-- delay and
queue length that can be used for timing design and quality of
service evaluation.  The model form typically include a
deterministic component to account for the red-time delay and a
stochastic component to account for queue delays.  The latter
term is derived from a queue theory approach.

While theoretically appealing, the steady-state queue theory
approach breaks down at high degrees of saturation.  The
problem lies in the steady-state assumption of sustained arrival
flows needed to reach stochastic equilibrium (i.e the probability
of observing a queue length of size Q is time-independent) .  In further attention and require additional research.  To begin with,
reality, flows are seldom sustained for long periods of time and the assumption of uncorrelated arrivals found in most models is
therefore, stochastic equilibrium is not achieved in the field at not appropriate to describe platooned flow--where arrivals are
high degrees of saturation. highly correlated.  Secondly, the estimation of the initial

 A compromise approach, using the coordinate transformation and documented. There is also a need to develop queuing/delay
method was presented which overcomes some of these models that are constrained by the physical space available for
difficulties. While not theoretically rigorous, it provides a means queuing.  Michalopoulos (1988) presented such an application
for traffic performance estimation across all degrees of saturation using a continuous flow model approach.  Finally, models that
which is also dependent on the time interval in which arrival describe the interaction between downstream queue lengths and
flows are sustained.  upstream departures are needed. Initial efforts in this direction

Further extensions of the models were presented to take into Rouphail and Akçelik (1992b). 
account  the  impact  of  platooning,  which  obviously  alter  the

vehicle actuated control was presented. They include stochastic
models which characterize the randomness in the arrival and
departure process-- capacity itself is a random variable which
can vary from cycle to cycle, and fixed-time equivalent models
which treat actuated control as equivalent pretimed models
operating at the average cycle and average splits. 

Finally, there is a short discussion of concepts related to adaptive
signal control schemes such as the MOVA systems in the United
Kingdom and OPAC in the U.S.  Because these approaches
focus primarily on optimal signal control rather
than performance modeling, they are somewhat beyond the
scope of this document. 

There are many areas in traffic signal performance that deserve

overflow queue at a signal is an area that is not well understood

have been documented by Prosser and Dunne (1994) and
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CHAPTER 10 - Frequently used Symbols

a = acceleration response of follower vehicle to some stimulusf
v = instantaneous speed of lead vehicle
v = instantaneous speed of follower vehiclef
d = projected maximum deceleration rate of lead vehicle
d = projected maximum deceleration rate of follower vehiclef
R = reaction time lag of driver in follower vehiclef
I  = ith replicate of specified seed, Si      0
R = ith random number I
h = headway separating vehicles (sec)
H = mean headway (sec)
h = minimum headway (sec)min
R = random number
X = ith observation (sample) of an MOE I
μ = mean of samplex

= variance
= estimate of variance

t , = upper 1-�/2 critical point of the t distribution with n-1 degrees of freedom n-1 1- � /2

= mean of  m observation of  jth batch
= grand sample mean across batches

N = number of replications of the ith strategyi
var(X ) = variance of statistic, X
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10.
TRAFFIC SIMULATION

10.1  Introduction

Simulation modeling is an increasingly popular and effective tool for this purpose as an integral element of the ATMS research
for analyzing a wide variety of dynamical problems which are and development activity.
not amenable to study by other means.  These problems are
usually associated with complex processes which can not readily
be described in analytical terms.  Usually, these processes are
characterized by the interaction of many system components or
entities.  Often, the behavior of each entity and the interaction of different geometric designs before the commitment of
a limited number of entities, may be well understood and can be resources to construction.
reliably represented logically and mathematically with
acceptable confidence.  However, the complex, simultaneous
interactions of many system components cannot, in general, be
adequately described in mathematical or logical forms.

Simulation models are designed to "mimic" the behavior of such
systems.    Properly designed models integrate these separate statistics provided can form the basis for identifying design
entity behaviors and interactions to produce a detailed, flaws and limitations.  These statistics augmented with
quantitative description  of system  performance.  Specifically, animation displays can provide invaluable insights guiding
simulation models are mathematical/logical representations (or the engineer to improve the design and continue the process.
abstractions) of real-world systems, which take the form of
software executed on a digital computer in an experimental 4. Embed in other tools
fashion.

The user of traffic simulation software specifies  a “scenario”
(e.g., highway network configuration, traffic demand) as model
inputs.  The simulation model results describe system
operations in two formats:  (1) statistical and (2) graphical.  The
numerical results provide the analyst with detailed quantitative
descriptions of what is likely to happen.  The graphical and CORSIM model within the Traffic Research Laboratory
animated representations of the system functions can provide (TreL) developed for FHWA; and (5) the simulation module
insights so that the trained observer can gain an understanding of the EVIPAS actuated signal optimization program.
of why  the system is behaving this way.  However, it is the
responsibility of the analyst to properly interpret the wealth of 5. Training personnel
information provided by the model to gain an understanding of Simulation can be used in the context of a real-time
cause-and-effect relationships. laboratory to train operators of Traffic Management Centers.

Traffic simulation models can satisfy a wide range of time traffic control computer, acts as a surrogate for the real-
requirements: world surveillance, communication and traffic environments.

1. Evaluation of alternative treatments 6. Safety Analysis
With simulation, the engineer can control the experimental Simulation models to “recreate” accident scenarios have
environment and the range of conditions to be explored. proven to be indispensable tools in the search to build safer
Historically, traffic simulation models were used initially to vehicles and roadways.  An example is the CRASH program
evaluate signal control strategies, and are currently applied used extensively by NHTSA.

2. Testing new designs
Transportation facilities are costly investments.  Simulation
can be applied to quantify traffic performance responding to

3. As an element of the design process
The classical iterative design paradigm of conceptual design
followed by the recursive process of evaluation and design
refinement, can benefit from the use of simulation.  Here, the
simulation model can be used for evaluation; the detailed

In addition to its use as a stand-alone tool, simulation sub-
models can be integrated within software tools designed to
perform other functions.  Examples include:  (1) the flow
model within the TRANSYT-7F signal optimization; (2) the
DYNASMART simulation model within a dynamic traffic
assignment; (3) the simulation component of the
INTEGRATION assignment/control model; (4) the

Here, the simulation model, which is integrated with a real-
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This compilation of applications indicates the variety and scope potential.  Unlike the other chapters of this monograph, we will
of traffic simulation models and is by no means exhaustive. not focus exclusively on theoretical developments -- although
Simulation models can also be supportive of analytical models
such as PASSER, and of computational procedures such as the
HCS.  While these and many other computerized tools do not
include simulation sub-models, users of these tools can enhance
their value by applying simulation to evaluate their performance.

This chapter is intended for transportation professionals,
researchers, students and technical personnel who either
currently  use  simulation models  or  who wish  to  explore their

fundamental simulation building blocks will be discussed.
Instead, we will describe the properties, types and classes of
traffic simulation models, their strengths and pitfalls, user
caveats, and model-building fundamentals.  We will emphasize
how the user can derive the greatest benefits from simulation
through proper interpretation of the results, with emphasis on the
need to adequately calibrate the model and to apply rigorous
statistical analysis of the results.

10.2 When Should the Use of Simulation Models be Considered?

Since simulation models describe a dynamical process in in order to explain why the resulting statistics were
statistical and pictorial formats., they can be used to analyze a produced.
wide range of applications wherever...

� Mathematical treatment of a problem is infeasible or
inadequate due to its temporal or spatial scale, and/or It must be emphasized that traffic simulation, by itself, cannot be
the complexity of the traffic flow process.

� The assumptions underlying a mathematical
formulation (e.g., a linear program) or an heuristic
procedure (e.g., those in the Highway Capacity
Manual) cast some doubt on the accuracy or
applicability of the results.

� The mathematical formulation represents the dynamic
traffic/control environment as a simpler quasi steady-
state system.

� There is a need to view vehicle animation displays to
gain an understanding of how the system is behaving

� Congested conditions persist over a significant time.

used in place of optimization models, capacity estimation
procedures, demand modeling activities and design practices.
Simulation can be used to support such undertakings, either as
embedded submodels or as an auxiliary tool to evaluate and
extend the results provided by other procedures.  Some
representative statistics (called Measures of Effectiveness,
MOE) provided by traffic simulation models are listed in Table
10.1.

Such statistics can be presented for each specified highway
section (network link) and for each specified time period, to
yield a level of detail that is both spatially and temporally
disaggregated.  Aggregations of these data, by subnetwork and
network-wide, and over specified time periods, may also be
provided.

10.3 Examples of Traffic Simulation Applications

Given the great diversity of applications that are suitable for the
use of traffic simulation models, the following limited number of
examples provides only a limited representation of past
experience.

10.3.1 Evaluation of Signal Control
Strategies

This study (Gartner and Hou, 1992) evaluated and compared the
performance of two arterial traffic control strategies,
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Table 10.1 
Simulation Output Statistics: Measures of Effectiveness

Measure for Each Link and for Entire Network

  Travel:  Vehicle-Miles Bus Travel Time

  Travel Time:  Vehicle-minutes Bus Moving Time

  Moving Time:  Vehicle-minutes Bus Delay

  Delay Time:  Vehicle-minutes Bus Efficiency:  Moving Time
        persons-minutes   Total Travel Time

  Efficiency:  Moving Time Bus Speed
     Total Travel Time

  Mean Travel Time per Vehicle-Mile Bus Stops

  Mean Delay per Vehicle-Mile Time bus station capacity exceeded

  Mean Travel Time per vehicle Time bus station is empty

  Mean Time in Queue Fuel consumed

  Mean Stopped Time CO Emissions

  Mean Speed HC Emissions

  Vehicle Stops NOX Emissions

  Link Volumes Occupancy

  Mean Link Storage Area Consumed

  Number of Signal Phase Failures

  Average Queue Length

Maximum Queue Length

  Lane Changes

  Bus Trips

  Bus Person Trips
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MULTIBAND and MAXBAND, employing the TRAF-  system optimal (SO) equilibrium calculations for a specified
NETSIM simulation model.  The paper describes the statistical network, over a range of traffic loading conditions from
analysis procedures, the number of simulation replications unsaturated to oversaturated.  This is an example of traffic
executed and the resulting 95 percent confidence intervals, and simulation used as a component of a larger model to perform a
the results of the analysis. complex analysis of an ITS initiative.

Figure 10.1 is taken from this paper and illustrates how Figure 10.2 which is taken from the cited paper illustrates how
simulation can provide objective, accurate data sufficient to simulation can produce internally consistent results for large
distinguish between the performance of alternative analytical scale projects, of sufficient resolution to distinguish between two
models, within the framework of a controlled experiment. comparable equilibrium assignment approaches.

10.3.2 Analysis of Equilibrium Dynamic
Assignments (Mahmassani and
Peeta, 1993)

This large-scale study used the DYNASMART simulation-
assignment model to perform both user equilibrium (UE) and

10.3.3 Analysis of Corridor Design
Alternatives (Korve Engineers
1996)

This analysis employed the WATSim simulation model to
evaluate alternative scenarios for increasing capacity and
improving traffic flow on a freeway connection, SR242, in 

Figure 10.1  
Average Delay Comparison, Canal Street, 

MULTIBAND & MAXBAND  (KLD-242).
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Figure 10.2
Comparison of average trip times (minutes) of SO & UE...(KLD-243).

California and ensuring a balanced design relative to freeway could mitigate the extent and duration of congestion within the
SR4 on the north and I680 to the south.  Design alternatives area, thereby improving performance and productivity.  Here, a
considered for three future periods (years 2000, 2010, 2020) new control concept was tested on a real-world test-bed: a
included geometric changes, widening, HOV lanes and ramp section of Manhattan.  This example illustrates the value in
metering.  Given the scale of this 20-mile corridor and the strong testing new “high risk” ideas with simulation without exposing
interactions of projected design changes for the three highways, the public to possible adverse consequences, and prior to
the use of simulation provided a statistical basis for quantifying expending resources to implement these concepts.
the operational performance of the corridor sections for each
alternative. These examples certainly do not represent the full range of traffic

This example illustrates the use of simulation as an element of of traffic simulation in the areas of (1) traffic control; (2)
the design process with the capability of analyzing candidate transportation planning; (3) design; and (4) research.
designs of large-scale highway systems in a manner that lies
beyond the capabilities of a straight-forward HCM analysis.

10.3.4 Testing New Concepts

The TRAF-NETSIM simulation model was used by Rathi and
Lieberman (1989) to determine whether the application of
metering control along the periphery of a congested urban area

simulation applications.  Yet, they demonstrate the application

10.4 Classification of Simulation
Models

Almost all traffic simulation models describe dynamical systems
-- time is always the basic independent variable.  Continuous
simulation models describe how the elements of a system change
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state continuously over time in response to continuous stimuli.
Discrete simulation models represent real-world systems (that
are either continuous or discrete) by asserting that their states
change abruptly  at points in time.  There are generally two types
of discrete models:

� Discrete time
� Discrete event

The first, segments time into a succession of known time
intervals.  Within each such interval, the simulation model
computes the activities which change the states of selected
system elements.  This approach is analogous to representing an
initial-value differential equation in the form of a finite-
difference expression with the independent variable, �t.

Some systems are characterized by entities that are "idle" much
of the time.  For example, the state of a traffic signal indication
(say, green) remains constant for many seconds until its state
changes instantaneously to yellow.  This abrupt change in state
is called an event.  Since it is possible to accurately describe the
operation of the signal by recording its changes in state as a
succession of [known or computed] timed events, considerable
savings in computer time can be realized by only executing these
events rather than computing the state of the signal second-by-
second.  For systems of limited size or those representing entities
whose states change infrequently, discrete event simulations are
more appropriate than are discrete time simulation models, and
are far more economical in execution time.  However, for
systems where most entities experience a continuous change in
state (e.g., a traffic environment) and where the model objectives
require very detailed descriptions, the discrete time model is
likely to be the better choice.

Simulation models may also be classified according to the level
of detail with which they represent the system to be studied:

� Microscopic (high fidelity)
� Mesoscopic (mixed fidelity)
� Macroscopic (low fidelity)

A microscopic model describes both the system entities and their
interactions at a high level of detail.  For example, a lane-change
maneuver at this level could invoke the car-following law for the
subject vehicle with respect to its current leader, then with
respect to its putative leader and its putative follower in the
target lane, as well as representing other detailed driver decision

processes.  The duration of the lane-change maneuver can also
be calculated.

A mesoscopic model generally represents most entities at a high
level of detail but describes their activities and interactions at a
much lower level of detail than would a microscopic model.  For
example, the lane-change maneuver could be represented for
individual vehicles as an instantaneous event with the decision
based, say, on relative lane densities, rather than detailed vehicle
interactions.

A macroscopic model describes entities and their activities and
interactions at a low level of detail.  For example, the traffic
stream may be represented in some aggregate manner such as a
statistical histogram or by scalar values of flow rate, density and
speed.  Lane change maneuvers would probably not be
represented at all; the model may assert that the traffic stream is
properly allocated to lanes or employ an approximation to this
end.

High-fidelity microscopic models, and the resulting software, are
costly to develop, execute and to maintain, relative to the lower
fidelity models.  While these detailed models possess the
potential to be more accurate than their less detailed
counterparts, this potential may not always be realized due to the
complexity of their logic and the larger number of parameters
that need to be calibrated.

Lower-fidelity models are easier and less costly to develop,
execute and to maintain.  They carry a risk that their
representation of the real-world system may be less accurate,
less valid or perhaps, inadequate.  Use of lower-fidelity
simulations is appropriate if:

� The results are not sensitive to microscopic details.
� The scale of the application cannot accommodate the

higher execution time of the microscopic model.
� The available model development time and resources

are limited.

Within each level of detail, the developer has wide latitude in
designing the simulation model.  The developer must identify the
sensitivity of  the model's performance to the underlying features
of the real-world process.  For example, if the model is to be
used to analyze weaving sections, then a detailed treatment of
lane-change interactions would be required, implying the need
for a micro- or mesoscopic model.  On the other hand, if the
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model is designed for freeways characterized by limited merging Traffic simulation models have taken many forms depending on
and no weaving, describing the lane-change interactions in great their anticipated uses.  Table 10.2 lists the TRAF family of
detail is of lesser importance, and a macroscopic model may be models developed for the Federal Highway Administration
the suitable choice. (FHWA), along with other prominent models, and indicates their

Another classification addresses the processes represented by the Some traffic simulation models consider a single facility
model:  (1)  Deterministic; and (2)  Stochastic.  Deterministic
models have no random variables; all entity interactions are
defined by exact relationships (mathematical, statistical or
logical).  Stochastic models have processes which include
probability functions.  For example, a car-following model can
be formulated either as a deterministic or stochastic relationship
by defining the driver's reaction time as a constant value or as a
random variable, respectively.

respective classifications.  This listing is necessarily limited.

(NETSIM, NETFLO 1 and 2: surface streets; FRESIM,
FREFLO: freeways; ROADSIM: two-lane rural roads;
(CORSIM) integrates two other simulation models, FRESIM
and NETSIM; INTEGRATION, DYNASMART, TRANSIMS
are components of larger systems which include demand models
and control policies; while CARSIM is a stand-alone simulation
of a car-following model.  It is seen that traffic simulation models
take many forms, each of which satisfies a specific area of
application.

Table 10.2
Representative Traffic Simulation Models

Name Discrete Discrete Micro Mesoscopic Macro Deterministic Stochastic  
Time Event

  NETSIM X X X

  NETFLO 1 X X X

  NETFLO 2 X X X

  FREFLO X X X

  ROADSIM X X X

  FRESIM X X X

  CORSIM X X X  

  INTEGRATION X X X

  DYNASMART X X X

  CARSIM X X X

  TRANSIMS X X X
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10.5 Building Traffic Simulation Models

The development of a traffic simulation model involves the 4) Calibrate the Model
following activities: - Collect/acquire data to calibrate the model.

1) Define the Problem and the Model Objectives
- State the purpose for which the model is being 5) Model Verification

developed. - Establish that the software executes in accord with
- Define the information that the model must the design specification.

provide. - Perform verification at the model component level.

2) Define the System to be Studied 6) Model Validation
- Disaggregate the system to identify its major - Collect, reduce, organize data for purposes of

components. validation.
- Define the major interactions of these - Establish that the model describes the real system
components. at an acceptable level of accuracy over its entire
- Identify the information needed as inputs. domain of operation; apply rigorous statistical
- Bound the domain of the system to be modeled. testing methods.

3) Develop the Model 7) Documentation
- Identify the level of complexity needed to satisfy the - Executive Summary

stated objectives. - Users Manual
- Classify the model and define its inputs and - Model documentation:  algorithms and software

outputs.
- Define the flow of data within the model. The development of a traffic simulation model is not a “single-
- Define the functions and processes of the model pass” process.  At each step in the above sequence, the analyst

components. must review the activities completed earlier to determine
- Determine the calibration requirements and form: whether a revision/extension is required before proceeding

scalars, statistical distributions, further.  For example, in step 5 the analyst may verify that the
parametric dependencies. software is replicating a model component properly as designed,

- Develop abstractions (i.e., mathematical-logical-
statistical algorithms) of each
major system component, their activities and
interactions.

- Create a logical structure for integrating these
model components to support the flow of data
among them.

- Select the software development paradigm,
programming language(s), user interface, pointless to proceed with validation (step 6) if it is known that
presentation formats of model results. the verification activity is incomplete.

- Design the software: simulation, structured or
object-oriented programming language; database, Step 3 may be viewed as the most creative activity of the
relational/object oriented. development process.  The simulation logic must represent all

- Document the logic and all computational relevant interactions by suitably exploring the universe of
procedures. possibilities and representing the likely outcome.  These

- Develop the software code and debug.

- Introduce this data into the model.

but that its performance is at a variance with theoretical
expectations or with empirical observations.  The analyst must
then determine whether the calibration is adequate and accurate
(step 4); whether the model’s logical/mathematical design is
correct and complete (step 3); whether all interactions with other
model components are properly accounted for and that the
specified inputs are adequate in number and accuracy (step 2).
This continual feedback is essential; clearly, it would be

combinations of interactions are called processes which
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represent specified functions and utilize component models. A
small sample of these is presented below.

10.5.1 Car-Following

One fundamental interaction present in all microscopic traffic
simulation models is that between a leader-follower pair of
vehicles traveling in the same lane.  This interaction takes the
form of a stimulus-response mechanism:

(10.1)

where a , the acceleration (response) of the follower vehicle, isf
dependent on a number of (stimulus) factors including:

v , v = Speeds of leader, follower vehicles,l f
respectively.

s = Separation distance.
d , d = Projected deceleration rates of thel f

leader, follower vehicles, respectively.
R = Reaction time of the driver in thef

following vehicle.
P = Other parameters specific to the car-i

following model.
F(�) = A mathematical and logical formulation

relating the response parameter to the
stimulus factors.

This behavioral model can be referenced (i.e., executed) to
support other behavioral models such as lane-changing,
merging, etc.

10.5.2 Random Number Generation

All stochastic models must have the ability to generate random
numbers.  Generation of random numbers has historically been
an area of interest for researchers and practitioners.  Before
computers were invented, people relied on mechanical devices
and their observations to generate random numbers. While
numerous methods in terms of computer programs have been
devised to generate random numbers, these numbers only
“appear” to be random.  This is the reason why some call them
pseudo-random numbers.

The most popular approach for random number generation is the
“linear congruential method” which employs a recursive
equation to produce a sequence of random integers S as:

where the integers chosen are defined as,
c is the modulus, such that c > 0,
a is the multiplier such that 0 < a < c,
b is the increment such that 0 < b < m, and
S  is the starting value or the Seed of the random numbero

generator, such that 0 < S  < c.o

The ith random number denoted by R  is then generated asi

These random number generations are typically used to generate
random numbers between 0 and 1.  That is, a Uniform (0,1)
random number is generated.  Random variates are usually
referred to as the sample generated from a distribution other than
the Uniform (0,1).  More often than not, these random variates
are generated from the Uniform (0,1) random number.  A
simulation usually needs random variates during its execution.
Based on the distribution specified, there are various analytical
methods employed by the simulation models to generate the
random variates.  The reader is referred to Law and Kelton
(1991) or Roberts (1983) for a detailed treatment on this topic.
As an example, random variates in traffic simulation are used to
generate a stream of vehicles.

10.5.3 Vehicle Generation

At the outset of a simulation run, the system is “empty”.
Vehicles are generated at origin points, usually at the periphery
of the analysis network, according  to some headway distribution
based on specified volumes.  For example, the shifted negative
exponential distribution will yield the following expression:
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where Driver: Aggressiveness; responsiveness to stimuli;
h = Headway (sec) separating vehicle emissions
H = Mean headway = 3600/V, where V is the

specified volume, vph
h = Specified minimum headwaymin

(e.g., 1.2 sec/veh)
R = Random number in the range (0 to 1.0),

obtained from a pseudo-random number
generator.

Suppose the specified volume, V (vph), applies for a 15-minute
period.  If the user elects to guarantee  that V is explicitly
satisfied by the simulation model, it is necessary to generate N
values of h using the above formula repeatedly, generating a new
random number each time.  Here, N = V/4 is the expected
number of vehicles to be emitted in 15 minutes.  The model
could then calculate the factor, K:

(10.2) 

The model would then multiply each of the N values of h , by K,i

so that the resulting sum of (the revised) h  will be exactly 15i
minutes, ensuring that the user’s specification of demand volume
are satisfied.  However, if K � 1.0, then the resulting distribution
of generated vehicles is altered and one element of stochasticity
(i.e., the actual number of generated vehicles) is removed.  The
model developer must either include this treatment (i.e.,
eq.10.2), exclude it; or offer it as a user option with appropriate
documentation.

10.5.4 A Representative Model
Component

Consider two elements of every traffic environment:  (1) a
vehicle and (2) its driver.  Each element can be defined in terms
of its relevant attributes:

Vehicle: Length; width; acceleration limits; deceleration
limit; maximum speed; type (auto, bus, truck, ...);
maximum turn radius, etc.

destination (route); other behavioral and decision
processes.

Each attribute must be represented by the analyst, some by
scalars (e.g., vehicle length); some by a functional relationship
(e.g., maximum vehicle acceleration as a function of its current
speed); some by a probability distribution (e.g., driver gap
acceptance behavior).  All must be calibrated.

The driver-vehicle combination forms a model component, or
entity.  This component is defined in terms of its own elemental
attributes and its functionality is defined in terms of the
interactions between these elements.  For example, the driver's
decision to accelerate at a certain rate may be constrained by the
vehicle's operational limitations.  In addition, this system
component interacts with other model entities representing the
environment under study, including:

� roadway geometrics
� intersection configurations
� nearby driver-vehicle entities
� control devices
� lane channelization
� conflicting vehicle movements

As an example, the driver-vehicle entity’s interaction with a
control device depends on the type and current state of the device
(e.g., a signal with a red indication), the vehicle’s speed, its
distance from stop-bar, the driver’s aggressiveness, etc.  It is the
developer’s responsibility to design the model components and
their interactions in a manner that satisfies the model objectives
and is consistent with its fidelity.

10.5.5 Programming Considerations

Programming languages, in the context of this chapter, may be
classified as simulation and general-purpose languages.
Simulation languages such as SIMSCRIPT and GPSS/H greatly
ease the task of developing simulation software by incorporating
many features which compile statistics and perform queuing and
other functions common to discrete simulation modeling.
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General-purpose languages may be classified as procedural
(e.g., FORTRAN, PASCAL, C, BASIC), or object-oriented
(e.g., SMALLTALK, C++, JAVA).  Object-oriented languages
are gaining prominence since they support the concept of
reusable software defining objects which communicate with one
another to solve a programming task.  Unlike procedural
languages, where the functions are separated from, and operate
upon, the data base, objects encapsulate both data describing its
state, as well as operations (or “methods”) which can change its
state and interact with other objects.

While object-oriented languages can produce more reliable
software, they require a higher level of programming skill than
do procedural languages.  The developer should select a
language which is hardware independent, is supported by the
major operating systems and is expected to have a long life,
given the rapid changes in the world of software engineering.
Other factors which can influence the language selection process
include: (1) the expected life of the simulation model; (2) the
skills of the user community; (3) available budget (time and
resources) to develop and maintain the software; and (4) a
realistic assessment of available software development skills.

10.6 An Illustration of Simulation Model Building

Given the confines of this chapter, we will illustrate the model
development process by presenting the highlights of a sample
problem, but avoiding exhaustive detail.

1) Define the Problem and Model Objectives - An existing logical design.  Note also that the problem is bounded -- no
microscopic stochastic simulation model of freeway traffic grades or horizontal curves are to be considered at this time.
does not consider lane-change operations.  It has been See Figure 10.3 for the form of these distributions.
determined that this model’s results are unreliable as a result.   
The purpose of this project is to introduce additional logic
into the model to represent lane-changing operations.  This
addition should provide improved accuracy in estimating
speed and delay; in addition it will compute estimates of lane
changes by lane, by vehicle type and by direction (to the left
and to the right).

 2) Define the System -

a) A freeway of up to six lanes -- level tangent
b) Three vehicle types:  passenger car; single-unit truck;

tractor-trailer truck
c) Required inputs:  traffic volume (varies with time);

distributions of free-speed, of acceptable risk (expressed
in terms of deceleration rates if lead vehicle brakes), of
motivation to change lanes, all disaggregated by vehicle
type

d) Drivers are randomly assigned an “aggressiveness index”
ranging from 1 (very aggressive) to 10 (very cautious)
drawn from a uniform distribution to represent the range
of human behavior.

It must be emphasized that model development is an iterative
process.  For example, the need for the indicated input
distributions may not have been recognized during this
definition phase, but may have emerged later during the

3) Develop the Model - Since this lane-change model is to be
introduced into an existing microscopic stochastic model,
using a procedural language,  it will be designed to utilize the
existing software.  The model logic moves each vehicle, each
time-step, �t, starting with the farthest downstream vehicle,
then moving the closest upstream vehicle regardless of lane
position, etc.  At time, t , the vehicle states are shown ino
Figure 10.4(a).

In developing the model, it is essential to identify the
independent functions that need to be performed and to
segregate each function into a separate software module, or
routine.  Figure 10.5 depicts the structure -- not the flow --
of the software.  This structure shows which routines are
logically connected, with data flowing between them.  Some
routines reference others more than once, demonstrating the
benefits of disaggregating the software into functionally
independent modules.

As indicated in Table 10.3 which presents the algorithm for
the Lane Change Executive Routine in both “Structured
English”  or   “pseudo-code”   and  as  a  flow  chart,  traffic
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Figure 10.3  
Several Statistical Distributions.
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Figure 10.4
Vehicle Positions during Lane-Change Maneuver
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Figure 10.5
Structure Chart of Simulation Modules

Table 10.3
Executive Routine

For each vehicle, I:
CALL routine MOTIV to determine whether this driver is “motivated” to change lanes, now
IF so, THEN

CALL routine CANLN to identify which of neighboring lanes (if either) are
acceptable as potential target lanes

IF the lane to the right is acceptable, THEN
CALL routine CHKLC to determine whether a lane-change is feasible, now. 

Set flag if so.
ENDIF
IF the lane to the left is acceptable, THEN

CALL routine CHKLC to determine whether a lane-change is feasible, now.
Set flag, if so.

ENDIF
IF both lane-change flags are set (lane-change is feasible in either direction), THEN

CALL routine SCORE to determine more favorable target lane
ELSE IF one lane-change flag is set, THEN

Identify that lane
ENDIF
IF a [favored] target lane exists, THEN

CALL routine LCHNG to execute the lane-change
Update lane-change statistics

ELSE
CALL routine CRFLW to move vehicle within this lane
Set vehicle’s process code (to indicate vehicle has been moved this time-step)

ENDIF
ELSE (no lane-change desired)

CALL routine CRFLW to move vehicle within its current lane
Set vehicle’s process code

ENDIF
continue...
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Figure 10.6
Flow Diagram.



��� �������������	�
�

�� � ��

simulation models are primarily logical, rather than
computational in context.  This property reflects the fact that
traffic operations are largely the outcome of driver decisions
which themselves are [hopefully!] logical in context.  As the
vehicles are processed by the model logic, they transition from
one state to the next.  The reader should reference Table 10.3
and Figures 10.3, 10.4, 10.5 and 10.6 to follow the discussion
given below for each routine.  The “subject vehicle” is shown as
number 19 in Figure 10.4.

Executive: Controls the flow of processing, activating
(through CALLs) routines to perform the
necessary functions.  Also updates lane-change
statistics.

MOTIV: Determines whether a lane-change is required to
position the subject vehicle for a downstream
maneuver or is desired to improve the vehicle’s
operation (increase its speed).

CANLN: Determines whether either or both adjoining lanes (1
and 3) are suitable for servicing the subject vehicle.

CHKLC: Identifies vehicles 22 and 4 as the leader and
follower, respectively, in target Lane 1; and vehicles
16 and 14, respectively, in target Lane 3.  The car-
following dynamics between the pairs of vehicles, 19
and 22, then 4 and 19 are quantified to assess the
prospects for a lane-change to Lane 1.  Subsequently,
the process is repeated between the pairs of vehicles,
19 and 16; then 14 and 19; for a lane-change to Lane
3.  If the gap is inadequate in Lane 1, causing an
excessive, and possibly impossible deceleration by
either the subject vehicle, 19, or the target follower,
4, to avoid a collision, then Lane 3, would be
identified as the only feasible target lane.  In any case,
CHKLC would identify either Lane 1 or Lane 3, or
both, or neither, as acceptable target lanes at this
time, depending on safety considerations.

SCORE: If both adjoining target lanes are acceptable, then this
heuristic algorithm emulates driver reasoning to
select the preferable target lane.  It is reasonable to
expect that the target lane with a higher-speed leader
and fewer vehicles -- especially trucks and buses --
would be more attractive.  Such reasonableness
algorithms (which are expressed as “rules” in expert

systems), are also common in models which simulate
human decisions.

LCHNG: After executing the subject vehicle’s lane-change
activity, the logic performs  some needed
bookkeeping:

At time, t  + �t, vehicle 19 acts as the leader for botho
vehicles 14 and 31, who must “follow” (and are
constrained by) its presence.

At time, t  +2�t, the logic asserts that the lane changero
(no. 19) has committed to the lane-change and no longer
influences its former follower, vehicle no. 31.  Of course,
vehicle 14 now follows the lane-change vehicle, 19.

4) Calibrate the Model - Figures 10.3(b) and (c) are
distributions which represent the outcome of a calibration
activity.  The distribution of free-flow speed is site-specific
and can be quantified by direct observation (using paired
loop detectors or radar) when traffic conditions are light --
LOS A.

The distribution of acceptable decelerations would be very
difficult to quantify by direct observation -- if not infeasible.
Therefore, alternative approaches should be considered.  For
example...

� Gather video data (speeds, distance headway) of
lane-change maneuvers.  Then apply the car-
following model with these data to “back-out” the
implied acceptable decelerations.  From a sample
of adequate size, develop the distribution.

� On a more macro level, gather statistics of lane-
changes for a section of highway.  Execute the
simulation model and adjust this distribution of
acceptable deceleration rates until agreement is
attained between the lane-changes executed by the
model, and those observed in the real world.  This
is tenuous since it is confounded by the other
model features, but may be the best viable
approach.

It is seen that calibration -- the process of quantifying
model parameters using real-world data -- is often a
difficult and costly undertaking.  Nevertheless, it is a
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necessary undertaking that must be pursued with
some creativity and tenacity.

5) Model Verification - Following de-bugging,
verification is a structured regimen to provide
assurance that the software performs as intended
(Note:  verification does not address the question, “Are
the model components and their interactions
correct?”).  Since simulation models are primarily
logical constructs, rather than computational ones, the
analyst must perform detailed logical path analyses.

Verification is performed at two levels and generally in
the sequence given below:

� Each software routine (bottom-up testing)
� Integration of “trees” (top-down testing)...

When completed, the model developer should be
convinced that the model is performing in accord with
expectations over its entire domain of application.

6) Model Validation - Validation establishes that the
model behavior accurately and reliably represents the
real-world system being simulated, over the range of
conditions anticipated (i.e., the model's "domain").
Model validation involves the following activities:

� Acquiring real-world data which, to the extent
possible, extends over the model's domain.

� Reducing and structuring these empirical data so these models.  Consequently, it is essential that the
that they are in the same format as the data model be documented for...
generated by the model.

� Establishing validation criteria, stating the ease the burden of model application.
underlying hypotheses and selecting the statistical � Software maintenance personnel.
tests to be applied. � Supervisory personnel who must assess the

� Developing the experimental design of the
validation study, including a variety of "scenarios"
to be examined.

� Performing the validation study:
- Executing the model using input data and

calibration data representing the real-world
conditions.

- Performing the hypothesis testing.

� Identifying the causes for any failure to satisfy the
validation tests and repairing the model
accordingly.

� Validation should be performed at the component
system level as well as for the model as a whole.
For example, Figure 10.7 compares the results
produced by a car-following model, with field data
collected with aerial photographs.  Such face
validation offers strong assurance that the model
is valid.  This validation activity is iterative -- as
differences between the model results and the
real-world data emerge, the developer must
“repair” the model, then revalidate.  Considerable
skill (and persistence) are needed to successfully
validate a traffic simulation model.

7) Documentation - Traffic simulation models, as is the
case for virtually all transportation models, are data
intensive.  This implies that users must invest effort in
data acquisition and input preparation to make use of

� The end user, to provide a “friendly” interface to

potential benefits of using the model.

10.7 Applying Traffic Simulation Models

Considerable skill and attention to detail must be exercised by simulation-based analysis.  The following procedure is
the user in order to derive accurate and reliable results from a recommended:
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Figure 10.7
Comparison of Trajectories of Vehicles from Simulation Versus Field Data for Platoon 123.

Identify the Problem Domain

What highway facilities are involved? - Consider expected accuracy and reliability.
- Surface streets (grid, arterial, both), freeways, - Consider available budget for data acquisition.

rural roads, toll plaza.
What is the traffic environment?

- Autos, trucks, buses, LRT, HOV...
- Unsaturated, oversaturated conditions.

What is the control environment?
- Signals (fixed time, actuated, computer-

controlled), signs
- Route guidance

What is the size of the network and duration of the analysis
period?

Define the Purpose of the Study

What information is needed from the simulation model?
- Statistical: MOE sought, level of detail.

- Pictorial: static graphics, animation.
What information is available as input and calibration data?

Are results needed on a relative or absolute basis?

What other functions and tools are involved?
- Capacity analysis
- Design
- Demand modeling
- Signal optimization

Is the application real-time or off-line?

Investigate Candidate Traffic Simulation Models

Identify strengths and limitations of each.
- Underlying assumptions
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- Computing requirements - Signal timing plans, actuated controller settings.
- Availability, clarity, completeness of documentation - Traffic volume and patterns; traffic composition.
- Availability, reliability, timeliness of software - Transit schedules

support - Other, as required.

Estimate extent and cost of data collection for calibration and Confirm the accuracy of these data through field observation.
input preparation.

Determine whether model features match problem needs. required.

Assess level of skill needed to properly apply model. Identify need for accurate operational traffic data: based on

Determine compatibility with other tools/procedures needed for
the analysis. - Select representative locations to acquire these field

Assess the Need to Use a Traffic Simulation Model

Is traffic simulation necessary to perform the analysis of the flow speeds; acceptable gaps for permitted left-turns,
problem? etc.

- Are other tools adequate but less costly? - Accept model default values or other data from the
- Are your skills adequate to properly apply literature with great care if data collection is

simulation? infeasible or limited by cost considerations.
- Can the data needed by traffic simulation be

acquired?

Is traffic simulation highly beneficial even though not Calibration is the activity of specifying data describing traffic
necessary? operations and other features that are site-specific.  These data

- Simulation results can confirm results obtained by may take the form of scalar elemets and of statistical
other tools. distributions that are referenced by the logic of stochastic

- Animation displays needed as a presentation simulation models.  While traffic simulation models generally
medium. provide default value which represent average conditions for

If it is determined that traffic simulation is needed/advisable, analyst to quantify these data with field observations to the extent
continue. practicable rather than to accept these default values.

Select Traffic Simulation Model Model Execution

Relate relevant model attributes to problem needs. The application of a simulation model should be viewed as

Determine which model satisfies problem needs to the greatest
extent.  Consider technical, and cost, time, available skills and
support, and risks factors.

Data Acquisition

Obtain reliable records of required information.
- Design drawings for geometrics.

Undertake field data collection for input and for calibration, as

model’s sensitivity site-specific features; accuracy requirements.

data.
- Collect data using video or other methods as

required: saturation flow rates at intersections; free-

Model Calibration

these calibration data elements, it is the responsibility of the

performing a rigorous statistical experiment.  The model must
first be executed to initialize its database so that the data
properly represents the initial state of the traffic environment.
This requirement can reliably be realized if the environment is
initially at equilibrium.

Thus, to perform an analysis of congested conditions, the analyst
should design the experiment so that the initial state of the traffic
environment is undersaturated, and then specify the changing
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conditions which, over time, censors the congested state which � Anomolous results (e.g., the creation and growth of
is of interest.  Similarly, the final state of the traffic environment queues when conditions are believed to be
should likewise be undersaturated, if feasible. undersaturated) can be examined and traced to valid,

It is also essential that the analyst properly specify the dynamic model deficiencies.
(i.e., changing) input conditions which describe the traffic
environment.  For example, if one-hour of traffic is to be
simulated, the analyst should always specify the variation in
demand volumes -- and in other variables -- over that hour at an
appropriate level of detail rather than specifying average,
constant values of volume.

Finally, if animation displays are provided by the model, this
option should always be exercised, as discussed below.

Interpretation of Simulation Results

Quite possibly, this activity may be the most critical.  It is the
analyst who must determine whether the model results constitute
a reasonable and valid representation of the traffic environment
under study, and who is responsible for any inferences drawn
from these results.  Given the complex processes taking place in
the real-world traffic environment, the analyst must be alert to
the possibility that (1) the model’s features may be deficient in
adequately representing some important process; (2) the input
data and/or calibration specified is inaccurate or inadequate; (3)
the results provided are of insufficient detail to meet the project
objectives; (4) the statistical analysis of the results are flawed (as
discussed in the following section); or (5) the model has “bugs”
or some of its algorithms are incorrect.  Animation displays of extracting the sought information and insights from the mass of
the traffic environment (if available) are a most powerful tool for
analyzing simulation results.  A careful and thorough review of
this animation can be crucial to the analyst in identifying: Proper output analysis is one of the most important aspects of

� Cause-and-effect relationships.  Specifically the origins
of congested conditions in the form of growing queues
can be observed and related to the factors that caused it.

incongested behavior; to errant input specifications; or to

If the selected traffic simulation lacks an animation feature or if
questions remain after viewing the animation, then the following
procedures may be applied:

� Execute the model to replicate existing real-world
conditions and compare its results with observed
behavior.  This “face validation”, which is recommended
regardless of the model selected, can identify model or
implementation deficiencies.

� Perform “sensitivity” tests on the study network by
varying key variables and observing model responses in
a carefully designed succession of model executions. 

� Plot these results.  A review will probably uncover the
perceived anomalies.

Table 10.1 lists representative data elements provided by traffic
simulation models.  Figure 10.8 shows typical graph displays
while Figure 10.9 displays a "snapshot" of an animation screen.

Note that all the graphical displays can be accessed interactively
by the user, thus affording the user an efficient means for

data compiled by the simulation model.

any simulation study.  A variety of techniques are used,
particularly for stochastic model output, to arrive at inferences
that are supportable by the output.  A brief exposition to output
analysis of simulation data is paresented next.

10.8 Statistical Analysis of Simulation Data

In most efforts on simulation studies, more often than not a large a heuristic model, which is then programmed on the computer,
amount of time and money is spent on model development and
coding, but little on analyzing the output data.  Simulation
practitioners therefore have more confidence in their results than
is justified.  Unfortunately, many simulation studies begin with

and conclude with a single run of the program to yield an
answer.  This is a result of overlooking the fact that a simulation
is a sampling experiment implemented on a computer and
therefore needs appropriate statistical techniques for its design,
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Figure 10.8
Graphical Displays.
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Figure 10.9
Animation Snapshot.

analysis, and implementation.  Also, more often than not, output Typical goals of analyzing output data from simulation
data from simulation experiments are auto correlated and experiments are to present point estimates of the measures of
nonstationary.  This precludes its analysis using classical effectiveness (MOE) and form confidence intervals around these
statistical techniques which are based on independent and estimates for one particular system design, or to establish which
identically distributed (IID) observations. simulated system is the best among different alternate
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configurations with respect to some specified MOE.  Point system using independent random number streams across
estimates and confidence intervals for the MOEs can be obtained replications.
either from one simulation run or a set of replications of the

10.9  Looking to the Future
With the traffic simulation models now mounted on high- - Combining simulation with Artificial Intelligence
performance PCS, and with new graphical user interfaces (GUI) (AI) software.  The simulation can provide the
becoming available to ease the burden of input preparation, it is knowledge base in real-time or generate it in
reasonable to expect that usage of these models will continue to advance as an off-line activity.
increase significantly over the coming years. - Integrating traffic simulation models with other tools

In addition, technology-driven advances in computers, combined optimization models, GIS, office suites, etc.
with the expanding needs of the Intelligent Transportation - Providing Internet access.
Systems (ITS) program, suggest that the new applications of
traffic simulation can contribute importantly to this program. � Real-time simulators which replicate the performance of
Specifically: TMC operations.  These simulators must rely upon

� Simulation support systems of Advanced Traffic stimuli to ITS real-time software being tested.  Such
Management Systems (ATMS) in the form of: simulators are invaluable for:

- Off-line emulation to test, refine, evaluate, new real- - Testing new ATMS concepts prior to deployment.
time control policies. - Testing interfaces among neighboring TMCs.

- On-line support to evaluate candidate ad-hoc - Training TMC operating personnel.
responses to unscheduled events and to advise the - Evaluating different ATMS architectures.
operators at the Traffic Management Center (TMC) - Educating practitioners and student.
as to the “best” response. -Real- - Demonstrating the benefits of ITS programs to state
time component of an advanced control/guidance and municipal officials and to the public through
strategy.  That is, the simulation model would be a animated graphical displays and virtual reality.
component of the on-line strategy software.

such as: transportation demand models, signal

simulation models as “drivers” to provide the real-world
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11 Kinetic Theories 

Criticisms and accomplishments of the Prigogine-Herman 

kinetic theory are reviewed.  Two of the latter are identified as 

possible benchmarks, against which to measure proposed 

novel kinetic theories of vehicular traffic.  Various kinetic 

theories that have been proposed in order to eliminate defi-

ciencies of the Prigogine-Herman theory are assessed in this 

light.  None are found to have yet been shown to meet both of 

these benchmarks. 

 Possible objectives and applications for kinetic theo-

ries of vehicular traffic are considered.  One of these is the 

traditional application to the development of continuum mod-

els, with the resulting microscopically based coefficients.  

However, modern computing power makes it possible to con-

sider computational solution of kinetic equations per se, and 

therefore direct applications of the kinetic theory (e.g., the 

kinetic distribution function).  It is concluded that the primary 

applications are likely to be found among situations in which 

variability between instances is an important consideration 

(e.g., travel times, or driving cycles).  

11.1 Introduction
On page 20 of their well-known monograph on the kinetic 
theory of vehicular traffic, Prigogine and Herman (1971) 
summarize possible alternate forms of the relaxation term in 
their kinetic equation of vehicular traffic.  They conclude this 
discussion by issuing the invitation that “the reader may, if he 
is so inclined, work out the theory using other forms of the 
relaxation law.”  This invitation to explore alternate kinetic 
models of vehicular traffic has subsequently been accepted by 
a number of workers, most notably by Paveri-Fontana (1975) 
and by Phillips (1979, 1977), and more recently by Nelson 
(1995a), and by Klar and Wegener (1999).  The existence of 
this variety of kinetic models of vehicular traffic raises the 
issue of how one chooses between them in any particular ap-
plication; more generally there arises the issue of the types of 
applications for which any kinetic model has a role.  In these 
lights, the primary objective of this chapter is to address ques-
tions related to what might reasonably be expected from a 
good kinetic theory of vehicular traffic.       

The approach presented here is substantially influ-
enced by the work of Nagel (1996), who gave an excellent 
review of a variety of types of models of vehicular traffic, 
including continuum (“hydrodynamic”), car-following and 
particle hopping (cellular automata) models.  In particular, he 
has emphasized that: i) any model necessarily represents some 
compromise in terms of its fidelity in describing the reality it is 
intended to represent; ii) different types of models represent 
engineering judgements as to the relative importance of reso-
lution, fidelity and scale for the particular application at hand.  
To some extent, this chapter is intended to address similar 

issues for kinetic models of vehicular traffic.  The status of 
various kinetic models will also be reviewed, in terms of 
achieving two objectives that seem appropriate to designate as 
benchmarks, primarily on the basis that the seminal kinetic 
model of Prigogine and Herman (1971) has been shown to 
meet those objectives.

It seems appropriate to view kinetic models as occu-
pying a point on the model spectrum that is intermediate be-
tween continuum (e.g., hydrodynamic) models and micro-
scopic (e.g., car-following or cellular automata) models.1  One 
of the primary applications of kinetic models is to obtain con-
tinuum models in a consistent manner from an underlying 
microscopic model of driver behavior.  (See Nelson (1995b) 
for further thoughts on the role of kinetic models of vehicular 
traffic as a bridge from microscopic models to macroscopic 
models.)  However, computing power now has advanced to 
the point that it is practical to consider computational solution 
of kinetic equations per se.  This opens the door to the realistic 
possibility of applying kinetic models directly to the simula-
tion of traffic flow.  This is a qualitatively different situation 
from that prevailing in the 1960’s, when kinetic models of 
vehicular traffic were initially proposed by Prigogine, Herman 
and co-workers.  (See Prigogine and Herman, 1971, and works 
cited therein.) 

The specific further contents of this chapter are as 
follows.  In Section 2 below, the status of the Prigogine-

                                                          
1 The word mesoscopic has come into recent vogue to describe mod-
els that are, in some sense, intermediate between macroscopic and 
microscopic models.   
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Herman (1971) kinetic model of vehicular traffic is reviewed.  
The intent of this review is to provide an evenhanded discus-
sion of both the deficiencies and signal accomplishments of 
this seminal kinetic theory of vehicular traffic.  Two of these 
accomplishments are suggested as benchmarks that should 
minimally be met by any proposed novel kinetic model of 
vehicular traffic.  In Section 3 alternate kinetic models that 
have been proposed in the literature are assessed against these 
benchmarks, and none are found that yet have been shown to 
meet both of them.  Both of these benchmarks relate to the 
equilibrium solutions of the Prigogine-Herman kinetic equa-
tion, and one of them relates to the recent result of Nelson and 
Sopasakis (1998) to the effect that under certain circumstances 
– particularly for sufficiently congested traffic – the Prigog-
ine-Herman model admits a two-parameter family of equilib-
rium solutions, as opposed to the one-parameter (density) fam-
ily that would be expected classically. 

In Section 4, the role of kinetic equations as a bridge 
from microscopic to continuum models is considered.  Section 
5 is devoted to consideration of the potential applications of 
the solution of kinetic equations per se. 

11.2 Status of the Prigogine-Herman Ki-
netic Model 

The kinetic model of Prigogine and Herman (1971) is summa-
rized in Subsection 2.1.  A number of published criticisms of 
this model, along with alternative models that have been sug-
gested to overcome some of these criticisms, are reviewed in 
Subsection 2.2.  In Subsection 2.3 two significant accom-
plishments of the Prigogine-Herman theory are described, and 
suggested as benchmarks against which novel kinetic theories 
of vehicular traffic should be measured.  

11.2.1 The Prigogine-Herman Model 
The kinetic equation of Prigogine and Herman is 
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(1) 

Here the various symbols have the following meanings: 

a) the zero order moment of f(x,v,t), 

 is vehicular density. 
b) the ratio of the first and zero order moments, 

is mean vehicular speed; 
c) P is passing probability; 
d) T is the relaxation time; 
e) f0 is the corresponding density function for the desired 

speed of vehicles; 
f) f is the density function for the distribution of vehicles in 

phase space, so that  

is the expected number of vehicles at time t that have po-
sition between 1x  and 2x  and speed between 1v  and 

2v ( 21 xx �  and 21 vv � ).
The second term on the left-hand side of Eq. (1), the 

streaming term, represents the rate of change of the density 
function due to motion of the traffic stream, absent any 
changes of velocity by vehicles.  The first term on the right-
hand side, which is often called the relaxation term, is the 
contribution to this rate of change that stems from changes of 
vehicular speed associated with passing or other causes of 
acceleration.   The second term on the right-hand side, the 
slowing-down term, stems from deceleration of vehicles that 
overtake slower-moving vehicles.  The relaxation term is phe-
nomenological in nature, in that it is based on the underlying 
assumption that increases in vehicular speed cause the actual 
density to “relax” toward the desired density with some char-
acteristic time T. By contrast, the slowing-down term can be 
obtained from basic physical arguments, albeit with idealized 
assumptions such as instantaneous deceleration, treatment of 
vehicles as point particles (i.e., neglect of the positive length 
of vehicles), and the validity of what Paveri-Fontana (1975) 
terms vehicular chaos.  The validity of both of these particular 
forms of the rates of change due to changes of speed has been 
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questioned, as will be briefly discussed in the following sub-
section. 

A kinetic equation generally is an equation that in 
principle, subject to appropriate initial and boundary condi-
tions, can be solved for the density function f, as defined 
above.  Some kinetic equations that are alternatives to that of 
Prigogine and Herman are discussed in Section 3 following 

11.2.2 Criticisms of the Prigogine-Herman 
Model.

The first published serious critique of the Prigogine-Herman 
kinetic equation seems to be the work of Munjal and Pahl 
(1969).  These workers raise a number of questions,2 but the 
most fundamental of these fall into one of the following two 
categories:
1. The validity of the slowing-down term (denoted the “in-

teraction term” by these authors) is doubtful in the pres-
ence of  “queues” (or “platoons”) of vehicles.  This stems 
from the fact that the correlation inherent in platoons in-
validates the assumption of vehicular chaos (Paveri-
Fontana, 1975), which assumption underpins the particu-
lar form of the slowing-down term in the Prigogine-
Herman kinetic equation. 

2. The absence of a derivation of the relaxation term from 
first principles raises general questions regarding its va-
lidity.  The validity of the specific expression (in terms of 
c) used by Prigogine et al. for the relaxation time T has
therefore “not been proven.” Further, it is therefore also 
difficult to “conceive the meaning of the relaxation time” 
and therefore “define a method for its experimental de-
termination.” 

In addition to noting the first of these concerns, Paveri-
Fontana (1975) argues forcefully that it is fundamentally in-
correct to treat the desired speed as a parameter, as in done in 
the Prigogine-Herman kinetic equation.  Rather, he suggests 
the desired speed must be taken as an additional independent 

                                                          
2 Other concerns relate to: i) The necessity to include time depend-
ence in the desired speed distribution, owing to the normalization 

 �
max

0
0 ),(),,(

v

txcdvtvxf ; and ii) the interpretation and func-

tional dependence of the passing probability, P.

variable, on the same footing as the actual speed, and he pro-
vides a modification of the Prigogine-Herman equation that 
accomplishes precisely that. 

Prigogine and Herman (1971, Section 3.4, and 1970) 
dispute the claim of Munjal and Pahl (1969) to the effect that 
“the validity of the interaction term (i.e., the Prigogine-
Herman slowing-down term) is limited to traffic situations 
where no vehicles are queuing” (parenthetical clarification 
added).  Current opinion seems inclined to agree with Paveri-
Fontana (1975) that on balance Munjal and Pahl have the bet-
ter of this particular discussion.  However, traffic on arterial 
roads, for which signalized intersections necessarily enforce 
the formation of platoons, is the only situation that seems thus 
to be definitely excluded from the domain of the Prigogine-
Herman kinetic equation.  In particular, it is not a priori clear
that the same objection is valid for the stop-and-go traffic that 
seems to characterize congested traffic on freeways.  Nelson 
(1995a) has noted that a correlation model is generally needed 
to obtain a kinetic equation, and vehicular chaos is simply one 
instance of a correlation model.  Other correlation models, 
which would lead to a kinetic equation other than that of 
Prigogine and Herman, conceivably could better treat pla-
toons, at least under restricted circumstances.  Approaches 
(e.g., Prigogine and Andrews, 1960; Beylich, 1979), in which 
multiple-vehicle density functions appear as the unknowns to 
be determined, also offer the potential ability to treat queues 
within the spirit of the kinetic theory. 

Nelson (1995a) introduced the concepts of a mechani-
cal model and a correlation model as the fundamental ingredi-
ents of any kinetic equation.  This work was motivated pre-
cisely by the desire to obtain forms of the speeding-up term 
that are based upon at least the same level of first principles as 
the classical derivations of the Prigogine-Herman slowing-
down term.  Klar and Wegener (1999) used this approach to 
obtain a kinetic equation for traffic flow that accounts for the 
spatial extent of vehicles.  The treatment of vehicles as 
“points” of zero length is an idealization underlying the 
Prigogine-Herman kinetic equation that seems not to have 
been extensively discussed in the earlier literature on traffic 
flow.  Klar and Wegener (1999) show that including the length 
of vehicles has a significant quantitative effect upon the value 
of some coefficients in associated continuum models.  The 
observational measurements of the relaxation time by Edie, 
Herman and Lam (1980) also bear mentioning. 

The arguments of Paveri-Fontana (1975) that the de-
sired speed must appear as an independent variable in any 
kinetic equation, so that the density function depends upon the
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desired speed, as well as position, actual speed and time, seem 
to be quite convincing.  In order to avoid this complexity, 
some workers (e.g., Nelson, 1995a) choose to focus upon 
models in which all drivers have the same desired speed.  
Paveri-Fontana (1975) represents his modification of the 
Prigogine-Herman equation, to include desired speed as an 
independent variable, as valid only for dilute traffic.  How-
ever, as suggested above, it is not completely clear that this 
restriction is required, unless the dense traffic also includes a 
significant fraction of the vehicles in platoons.   

11.2.3 Accomplishments of the Prigogine-
Herman Model 

In view of the deficiencies chronicled in the preceding subsec-
tion, why would anyone deem the Prigogine-Herman kinetic 
equation to be of any interest?  That question is answered in 
this subsection, by describing two significant results that stem 
from the Prigogine-Herman model. 

First, Prigogine and Herman (1971, Chap. 4) demon-
strated, under the somewhat restrictive assumption that there 
exist drivers desiring arbitrarily small speeds, that one can 
obtain traffic stream models (fundamental diagrams, 
speed/density relations), say q=Q(c), from the equilibrium 
solutions (i.e., the solutions that are independent of space and 
time) of their kinetic equation.  (Here q is vehicular flow, and 
c is, as above, vehicular density.) The procedure is precisely 
analogous to that giving rise to the Maxwellian distribution 
and the ideal gas law, when applied to the Boltzmann equation 
of the kinetic theory of gases.  Further, at high concentrations 
the equilibrium solution is bimodal; that is, it displays two 
(local) maxima in speed, in qualitative agreement with the 
observations of Phillips (1977, 1979).  (See the following sec-
tion for more details of these works.)  One of these modes 
corresponds to a modification of the distribution of desired 
speeds, and the other (under the assumptions of Prigogine and 
Herman) to platoon flow in the rather extreme case of stopped 
traffic (i.e., zero speed).  This “multiphase” aspect of con-
gested traffic flow has subsequently been rediscovered by a 
number of workers.  Note that this approach gives rise to a 
traffic stream model from an underlying microscopic model, 
via the equilibrium solution of a corresponding kinetic equa-
tion.  Such a theoretical development contrasts with statements 
sometimes encountered to the effect that traffic stream models 
must be based upon observational data. 

More recently, Nelson and Sopasakis (1998) showed 
that if one relaxes the assumption of Prigogine and Herman 
that there exist drivers having arbitrarily small desired speeds, 
then at sufficiently high densities the equilibrium solution is a 
two-parameter family.  This contrasts with the one-parameter 
(typically taken as density) family that occurs at low densities, 
even at all densities under the restrictive assumption of 
Prigogine and Herman (1971).3

The consequence of the equilibrium solutions of Nel-
son and Sopasakis (1998) for the attendant traffic stream 
model will now be briefly described.  Let 

where w- and w+ are respectively the lower and upper bound 
on the desired speeds.  Then there exists a positive critical 
density, denoted ccrit, and defined as the unique root (in c) of 
the equation F(0;c) = cT(1-P), such that the dependence of  
mean speed upon density is as follows.  Let !*=!*(c) be the 
unique root (in ! ) of F(!;c) = cT(1-P).  If 0� c�ccrit , then 
!*�0, and the mean speed is given by 

However, if c>ccrit , then !*>0, and the mean speed is given by  

where now !  can take on any value such that 0 � ! �
min{!*,w-}.  The parameter !  is the speed of the embedded 
collective flow, and the preceding equation for the mean speed 
shows that the overall mean speed increases with increasing 
speed of the embedded collective flow.  Figure 11.1 shows a 
three-dimensional graphical representation of the resulting 
“traffic stream model,” for a particular hypothetical desired 

                                                          
3 In some of their work, Prigogine and Herman (1971, Section 
4.4, esp. Fig. 4.8 and the related discussion) did permit posi-
tive lower bounds for the set of desired speeds, but for reasons 
that seem unclear at this point their attendant analysis did not 
identify the full two-parameter range of equilibrium solutions 
at higher densities. 
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Figure 11-1 Dependence of the mean speed upon density normalized to jam density, "=c/cP, for jam density cP = 200 vpm, P=1-
", T=�"/(1-"), with �=0.003 hours, and a uniform desired speed distribution from 40 to 80 mph.

speed distribution.  See Nelson and Sopasakis (1998) for more 
details. 

The significance of this three-dimensional presenta-
tion of a traffic stream model lies in the fact that it is consis-
tent with the well-known tendency (e.g., Drake, Schofer and 
May, 1967) for traffic flow data to be widely scattered at high 
densities.  The effort to explain this tendency has spawned a 
number of theories (e.g., Ceder, 1976; Hall, 1987; Disbro and 
Frame, 1989).  The explanation in terms of an embedded col-
lective flow seems possibly preferable to these, in that it de-
rives from the kinetic theory, which is a well-known branch of 
traffic flow theory, as opposed to requiring some novel ad hoc 
theory. 

Thus, the Prigogine-Herman kinetic equation has 
equilibrium solutions that both reproduce the observed bi-
modal distribution of speeds at high densities, and provide 
traffic stream models that reproduce qualitatively the well-
known result that at sufficiently high densities mean speeds 
and flows do not depend exclusively upon vehicular density.    

One certainly can envision more ambitious objectives for a 
kinetic theory of vehicular traffic than these two.  Some possi-
ble such objectives are discussed further in Sections 4 and 5 
below.  However, given that the seminal Prigogine-Herman 
kinetic equation of vehicular traffic does accomplish at least 
these objectives, it seems appropriate to suggest them as 
minimal benchmarks that should be met by any alternative 
kinetic equations that might be proposed.  In the following 
section some of the alternative kinetic equations that have 
been proposed, as described in the preceding subsection, are 
assessed against these benchmarks. 

11.3 Other Kinetic Models 
Both benchmarks suggested in the preceding subsection have 
to do with the equilibrium solutions of the kinetic equation of 
interest.  The equilibrium solutions of the Paveri-Fontana 
(1975) generalization of the Prigogine-Herman kinetic equa-
tion, as described in Subsection 2.2, do not seem to have been 
definitively ascertained.  Indeed, Helbing (1996), who has 
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extensively applied the Paveri-Fontana kinetic model in his 
recent works on the kinetic theory of vehicular traffic, states, 
in regard to these equilibrium solutions, that “unfortunately it 
seems impossible to find an analytical expression ….”  He 
then indicates that “empirical data and microsimulations” sug-
gest these equilibrium solutions are “approximately a Gaus-
sian.”  Note that Gaussians are not bimodal.  Thus, the Paveri-
Fontana model does not seem to have been shown to satisfy 
either of the benchmarks suggested in the preceding subsec-
tion. 

Phillips (1977, 1979) develops yet another kinetic 
equation that is an alternative to the original Prigogine-
Herman kinetic model.   However, this development seems 
predicated on a form of the corresponding equilibrium solu-
tion that ignores the considerations that led Prigogine and 
Herman to the “lower mode” of their bimodal equilibrium 
solution; cf. Eq. (4) of Phillips, 1979.  Phillips compared 
(sketchily in Phillips, 1979, but exhaustively in Phillips, 1977) 
the equilibrium solution of his kinetic model against measured 
speed distributions.  With one possibly important exception, 
the agreement seems reasonable.  One therefore expects good 
agreement between the traffic stream model obtained theoreti-
cally from the equilibrium solution and that obtained observa-
tionally, although Phillips does not explicitly effect such com-
parisons.  The exception is that a large amount of the data in-
dicates a bimodal equilibrium solution; cf. Figs. 3 and 4 of 
Phillips, 1979, and numerous figures in Phillips, 1977.  Thus, 
although the bimodal nature of an equilibrium solution is 
missed by the theoretical analysis, it is supported by the asso-
ciated observations.  In summary, it seems likely that the ki-
netic equation of Phillips (1979, 1977) meets the first bench-
mark suggested in the preceding section, and possible that a 
mathematical reassessment of its equilibrium solutions will 
reveal that it meets the second of these benchmarks.  How-
ever, neither of these conclusions has yet been conclusively 
established.

Nelson (1995a) obtained a specific kinetic equation 
for purposes of providing a concrete illustration of his pro-
posed general methodology for obtaining speeding-up (and 
slowing-down) terms based on first principles (i.e., appropri-
ate mechanical and correlation models).  In subsequent work 
(Nelson, Bui and Sopasakis, 1997) it was shown that this ki-
netic equation provides a theoretical traffic stream model that 
agrees well with classical traffic stream models, except near 
jam density.  It has further been shown (Bui, Nelson and So-
pasakis, 1996) that a simple modification of the underlying 
correlation model removes the incorrect behavior near jam 
density.  Thus, this kinetic equation has been shown to meet 

the first of the benchmarks suggested in the preceding section.  
However, the equilibrium solutions of the kinetic equation of 
Nelson (1995a) are such that it clearly does not meet the sec-
ond benchmark (i.e., does not predict scattered flow data un-
der congestion).  It is possible that the underlying mechanical 
model could be modified to attain this objective, but that has 
not been demonstrated. 

Klar and Wegener (1999) use numerical techniques 
to obtain equilibrium solutions of their kinetic equations.  
They do not explicitly present corresponding traffic stream 
models.  Their numerical equilibrium solutions do not display 
two modes.  It might be difficult to obtain the lower mode, 
which typically appears as a delta function, by a strictly nu-
merical approach. 

Table I summarizes the status of the various kinetic 
models mentioned here, as regards their ability to meet the two 
benchmarks delineated in Subsection 2.3. 

Table 11-I  Status of various kinetic models with respect to 
the benchmarks of Subsection 11.2.3  

           Benchmark  
Kinetic Model 

Bimodal equilib-
rium solutions? 

Equilibrium with 
scattered flows at 
high densities? 

Prigogine-Herman 
(1971) yes yes
Paveri-Fontana (1975) ? ? 
Phillips (1977, 1979) no no 
Nelson (1995a) yes no
Klar-Wegener (1999) no? no 

11.4 Continuum Models from Kinetic Equa-
tions

Continuum models historically have played an important role 
in traffic flow theory.  They have been obtained either by sim-
ply writing them as analogs of some corresponding fluid dy-
namical system (e.g., Kerner and Konhäuser, 1993), or by 
rational developments from some presumably more basic mi-
croscopic (e.g., car-following) model of traffic flow.  In the 
latter case the continuum equations can be developed either 
directly from the underlying microscopic model that serves as 
the starting point, or a kinetic model can play an intermediary 
role between the microscopic and continuum models.  For 
early examples of the former approach, through the steady-
state solutions of car-following models, see numerous refer-
ences cited in Nelson, 1995b.  Nagel (1998) presents a more 
modern approach, through appropriate formal (“fluid-
dynamical”) limits of particle-hopping models. 
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Here the primary interest is, of course, in approaches 
to continuum models that use a kinetic intermediary to the 
underlying microscopic model.  Such approaches often (e.g., 
Helbing, 1995) follow the route of first taking the first few 
(one or two) low-order polynomial moments of the kinetic 
equation, then achieving closure via ad hoc approximations.  
An alternate approach, via certain formal asymptotic expan-
sions (e.g., Hilbert or Chapman-Enskog expansions) is often 
used in the kinetic theory of gases (e.g., Grad, 1958).  In this 
approach, the number of polynomial moments of the kinetic 
equation that are taken tend to be determined by the number of 
invariants that are defined by the dynamics of the microscopic 
model of the interaction between the constituent “particles” 
(vehicles, for traffic flow) of the system.  This approach leads 
to a hierarchy of continuum models (e.g., the Euler/Navier-
Stokes/Burnett/super-Burnett equations of fluid dynamics), as 
opposed to the single continuum equation that tends to result 
from formal limits of microscopic models.  At all levels of this 
hierarchy the parameters of the resulting continuum model are 
expressed in terms of those of the underlying microscopic 
model. 

Nelson and Sopasakis (1999) applied the Chapman-
Enskog expansion to the Prigogine-Herman (1971) kinetic 
equation.  In the region below the critical density described in 
Subsection 11.2 the lowest (zero) order expansion was found 
to be a Lighthill-Whitham (1955) continuum model, with as-
sociated traffic stream model corresponding to the one-
parameter family of equilibrium solutions. The next highest 
(first-order) solution was found to be a diffusively corrected 
Lighthill-Whitham model, 

           (11.2) 

where now both the flow function Q(c) and the diffusion coef-
ficient D(c) are known in terms of the density c and the pa-
rameters of the Prigogine-Herman kinetic model.  This result 
is perhaps somewhat surprising, as one might reasonably have 
expected rather a continuum higher-order model of the type 
suggested by Payne (1971).  Figure 11.2 illustrates how an 
initial discontinuity between an upstream higher-density re-
gion and a downstream lower-density region will tend to dis-
sipate according to the diffusively corrected Lighthill-
Whitham model, as opposed to the shock wave predicted by 
ordinary Lighthill-Whitham theory, which is given by Eq. 
(11.2) with D � 0.  See Nelson (2000) for more details of the 
example underlying this figure.  Sopasakis (2000) has also 

developed the zero-order (again Lighthill-Whitham) and first-
order Hilbert expansions, and the second-order Chapman-
Enskog expansion, for the Prigogine-Herman kinetic model. 

Interest in continuum models of traffic flow seems 
likely to continue, as applications exist within the space of 
resolution/fidelity/scale requirements for which continuum 
models are deemed most suitable.  Along with this, interest in 
the use of kinetic models of vehicular traffic as a basis for 
continuum models seems likely to continue.  For example, the 
venerable Lighthill-Whitham (1955) model is widely viewed 
as the most basic continuum model of traffic flow.  But a suit-
able traffic stream model is an essential ingredient of the 
Lighthill-Whitham model.  Thus, traffic stream models are an 
important part of continuum models, as well as being of inter-
est in their own right.  Therefore, both of the benchmarks de-
marcated in the preceding section can be viewed as related to 
the issue of how well a particular kinetic model performs in 
terms of providing a particularly low-order continuum model, 
specifically the Lighthill-Whitham model. 

11.5 Direct Solution of Kinetic Equations 
Along with the traditional application of kinetic models of 
vehicular traffic to rational development of continuum models 
from microscopic models, as described in the preceding sec-
tion, modern computers permit consideration of the utility of 
kinetic models in their own right, rather than merely as tools 
that can be used to construct continuum models.  In this re-
spect, there are two substantive issues: 
i) How can one solve kinetic equations, to obtain the distri-

bution function (f)? 
ii) Given this distribution function, what applications of it 

can usefully be made? 
As regards the first issue, Hoogendoorn and Bovy (to appear) 
have employed Monte Carlo (i.e., simulation-based) tech-
niques for the computational solution of a kinetic equation of 
vehicular traffic that builds upon the earlier work of Paveri-
Fontana (1975).  By contrast, in the kinetic theory of gases 
there exists a significant body of knowledge (e.g., Neunzert 
and Struckmeier, 1995, and other works cited therein) relative 
to the deterministic computational solution of kinetic equa-
tions.  This knowledge base undoubtedly could be invaluable 
in attempting to develop similar capabilities for vehicular traf-
fic, but the equations are sufficiently different from those aris-
ing in the kinetic theory of gases so that considerable further 
development is likely to be necessary.  This  
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Figure 11-2 Evolution of the flow, according to a diffusively corrected Lighthill-Whitham model, from initial conditions con-
sisting of  190 vpm downstream of x=0 and 30 vpm upstream.  See Nelson (2000) for details of the traffic stream model (flow 
function) and diffusion coefficient. 

development is unlikely to occur in the absence of a relatively 
clear vision as to the uses that would be made of it.  Therefore, 
the focus here primarily will be on the second of these issues. 

Any consideration of applications of the distribution 
function of a kinetic theory requires a consideration of its in-
terpretation.  It is a statistical distribution function.  The tradi-
tional interpretation of such a distribution function is that it 
describes the frequency with which certain properties occur 
among samples drawn from some sample space.  In the kinetic 
theory of vehicular traffic, the samples are vehicles, and the 
properties of interest are the positions and speeds of the vehi-
cles; however, there are two fundamentally different possible 
interpretations of the underlying sample space: 

1. Single-instance sampling:  The sample space consists of 
all vehicles present on a specified road network at a spe-
cific designated time. 

2. Ensemble sampling:  The sample space consists of all 
vehicles present, at a designated time, on one of an en-
semble of identical road networks. 

For example, the Houston freeway network at 5:00 p.m. on 
Wednesday, July 15, 1998 would be a reasonable sample 
space for single-instance sampling.  On the other hand, the 
Houston freeway network at 5:00 p.m. on all midweek work-
days during 1998 for which dry weather conditions prevailed 
would be a reasonable approximation of a sample space suit-
able for ensemble sampling. 

The difference between these two interpretations is 
subtle, but it has profound consequences.  Traffic theorists 
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normally tend to think in terms that are most consistent with 
single-instance sampling.  But any attempt to apply the kinetic 
theory within that interpretation implies the intention to pre-
dict, at some level of approximation, the evolution of traffic 
for that specific instance, given suitable initial and boundary 
conditions for the distribution function.  It seems somewhat 
questionable that this is attainable over any significant dura-
tion.  (The ``rolling horizon’’ approach often applied to pre-
diction of traffic flow is a tacit admission of the significance 
of this issue.)  On the other hand, the ensemble sampling in-
terpretation implies only the intent to predict the likelihood 
with which various outcomes will occur.  This intuitively 
seems much more achievable (cf. p. 10 of Asimov, 1988).  
Thus the more subtle ensemble sampling interpretation leads 
to an apparently more achievable objective than does the more 
obvious single-instance interpretation.  For that reason, the 
ensemble sampling interpretation seems more likely to lead to 
potential direct applications of the kinetic theory. 

The fundamental advantage of kinetic models over 
continuum models is that the kinetic distribution function pro-
vides an estimate of the variability (over various instances of 
the ensemble, under the ensemble-sampling interpretation) of 
densities and speed at specific times and locations, whereas 
continuum models provide estimates of only the mean (pre-
sumably over the ensemble) of these quantities.  If the quantity 
(function of position and time) of interest in a particular appli-
cation is not highly variable between instances within the en-
semble, or if that variability is not of interest, then presumably 
one should choose a continuum model, or perhaps an even 
more highly aggregated model.  On the other hand, if this 
variability is both of significant magnitude and important to 
the issue under study, then kinetic models might be a useful 
alternative to the computationally more expensive possibility 
of running a sufficiently large number of microscopic simula-
tions so as to capture the nature of the variation between in-
stances.

Some specific instances of quantities for which vari-
ability might be of significant interest are travel times and 
driving cycles.  The latter require knowledge about the statis-
tical distribution of accelerations, as well as velocities and 
densities, but such acceleration information is inherent in the 
distribution function, along with the mechanical and correla-
tion models that underlie any kinetic model.  In fact, kinetic 
models seem to be the natural connecting link between contin-
uum models, which provide the  “cross sectional” view of 
traffic that most transportation planning is based on, and the 
“longitudinal” view that underlies the standard driving cycle 

approach to estimation of fuel emissions (cf. Carson and Aus-
tin, 1997). 

The crucial question underlying any potential appli-
cation of kinetic models is whether a kinetic model can be 
found that has sufficient fidelity and resolution for the particu-
lar application, and that can be solved on the necessary scale 
using available computational resources.  The answer to that 
clearly depends upon the specific details of the particular ap-
plication, and any such proposed application of a specific ki-
netic model must be validated against actual observations.  
However, data of sufficiently high quality to permit such vali-
dations are both rare and expensive to obtain.  Under these 
circumstances, it seems appropriate to use microscopic models 
(e.g., cellular automata) as a framework within which initially 
to vet proposed kinetic models. 

Specifically, it seems worthwhile to employ micro-
scopic models to study the following: 
HYPOTHESIS: The multiparameter family of equilibrium solu-
tions of the Prigogine-Herman kinetic model found by Nelson 
and Sopasakis (1998), with its attendant traffic stream surface 
(rather than the classical curve), reflects the fact that actual 
traffic has a number of spatially homogeneous equilibrium 
states (with different average speeds) corresponding to the 
same density. 
If this hypothesis is true, then presumably different initial con-
figurations of a traffic stream have the possibility to approach 
different states in the long-time limit, even though their densi-
ties are the same on the macroscopic scale.  Results reported 
by Nagel (1996, esp. Sec. V) tend to confirm this hypothesis. 
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network-wide average speed, 6-8 platooning effect on signal performance, 9-15
nighttime static visual acuity, 3-11 pollutant dispersion, 7-16
nitrogen dioxide, 7-13
non-instantaneous adaption, 5-23
non-linear models, 4-15
normal or gaussian distribution, 3-5
normalized concentration, 4-15
normalized flow, 4-15
number of lanes per street, 6-20
number of stops, 6-23, 7-8
numerical solution, 5-9, 5-11, 5-12, 5-29, 5-31-5-33, 

5-49

O

object detection, 3-15
obstacle and hazard detection, 3-15
obstacle and hazard recognition, 3-15
obstacle and hazard identification , 3-15
occupancy, 1-4, 2-1, 2-9, 2-11, 2-21, 2-22, 

2-25-2-26, 2-28, 2-32, 2-34, 2-36
off-peak conditions, 6-6
Ohno's algorithm, 9-8
oil viscosity, 7-8
oncoming collision, 3-13
open-loop, 3-8
open-loop braking performance, 3-20
oscillatory solutions, 5-15
outer zone, 6-10
overtaking and passing in the traffic stream, 3-24
overtaking and passing vehicles, 3-24
overtaking and passing vehicles (Opposing Traffic), 

3-25
oxygenated fuels/reformulated gasoline, 7-15
ozone, 7-13

P

partial differential equation, 5-4, 5-30
particulate matter, 7-13
pavement roughness, 7-8
pavement type, 7-8
peak conditions, 6-6
perception-response time, 3-3
peripheral vs. central processes, 3-17
perception, 4-2

Positive Guidance, 3-28
positive kinetic energy, 7-11
pupil, 3-16

Q

quality of service, 6-20, 6-25
quality of traffic service, 6-12, 6-16
queue, 5-4, 5-7, 5-50
queue discharge flow, 2-12, 2-13, 2-15
queue length, 5-6, 5-9
queue length stability, 5-8

R

radial motion, 3-13
random numbers, 10-2-10-2, 10-22, 10-26
reaction time, 3-3, 3-3, 3-4, 3-7, 3-8, 3-16, 3-17
real-time driver information input, 3-28
refueling emissions controls, 7-15
relaxation term, 5-23
resolving power, 3-11
response distances and times to traffic control 

devices, 3-9
response time, 3-4, 3-7, 3-15, 3-16, 3-20
response to other vehicle dynamics, 3-13
road density, 6-15
roadway gradient, 7-8
rolling friction, 7-9
rolling resistance, 7-12
running (moving) time, 6-17
running speed, 6-10, 6-10, 6-11

S

saturation flow, 6-10
scatter in the optic train, 3-17
scattering effect of, 3-17
senile myosis, 3-16
sensitivity coefficient , 4-15, 5-12, 5-12
shock waves, 5-1, 5-1, 5-3-5-4, 5-6, 5-29, 5-30, 5-50
signalized intersection, 5-6, 5-6, 5-7
signalized links and platoon behavior, 5-9
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short-term events, 6-22 stimulus-response equation, 4-3
signals, stochastic process, 10-17

actuated, 9-23 stochastic simulation, 10-5
adaptive, 9-19 stop time, 6-17, 6-17

signal control,adaptive,  9-27 stopped time, 6-10
signal densities, 6-10 stopped delay, 7-11
signal density, 6-20 stopping maneuvers, 3-15
signals per intersection, 6-22 stopping sight distance, 3-26
sign visibility and legibility, 3-11 stop-start waves, 5-15-5-15, 5-17, 5-24, 5-26, 5-36, 
signage or delineation, 3-17 5-39
simulation models,building 10-5 street network, 6-20
site types, 7-15 structure chart, 10-8
smog, 7-13 substantial acceleration, 5-20, 5-20
Snellen eye chart, 3-11 sulfur dioxide, 7-13
sound velocity, 5-22 summer exodus to holiday resorts, 5-17
source emissions, 7-14 surface conditions, 7-8
space headway, 2-1, 2-5 suspended particulate , 7-13
space mean speed, 2-6-2-7, 2-9-2-10, 6-15, 7-11
spacing, 2-1, 2-1, 2-26, 4-8, 5-2, 5-17, 5-29, 5-34
specific maneuvers at the guidance level, 3-24
speed, 2-3, 2-6, 2-8, 2-11, 2-14, 2-16, 2-18, 2-22, 

2-24, 2-28, 2-31, 2-33, 4-1, 4-15
speed (miles/hour) versus vehicle concentration 

(vehicles/mi), 4-17
speed and acceleration performance, 3-24
speed-concentration relation, 4-13
speed-density models, 2-19
speed-density relation, 5-15-5-15, 5-20, 5-22-5-23,

5-27, 5-34
speed-flow models,2-13, 2-1,9 6-8
speed-flow relation, 6-6
speeds from flow and occupancy, 2-8, 2-9
speed limit changes, 3-28
speed noise, 7-8, 7-12
speed of the shock wave, 5-4
speed-spacing, 4-15
speed-spacing relation, 4-1
spillbacks, 5-9
stability analysis, 5-8, 5-25, 5-28-5-29, 5-43
standard deviation of the vehicular speed distribution, 

5-22, 5-39
state equations, 5-9, 5-9
State Implementation Plans (SIPs), 7-15
stationary sources, 7-13
statistical distributions, 10-5, 10-6
steady-state, 7-11
steady-state delay models, 9-3
steady-state expected deceleration, percentile estimates
of , 3-21
steady-state flow, 4-15
steady-state traffic speed control, 3-24
steering response times, 3-9, 3-9

T

tail end, 5-6-5-8
temperature, 7-15
time-dependent delay models, 9-10
time headway, 2-1
time mean speed, 2-6-2-7
tire pressure, 7-8
tire type, 7-8
total delay, 6-23
total trip time, 6-17
TRAF-NETSIM , 6-22, 6-23
traffic breakdowns, 5-15, 5-42
traffic conditions, 7-9
traffic control devices (TCD), 3-9
traffic control system, 6-1
traffic data, 7-15
traffic dynamic pressure, 5-23
traffic intensity , 6-2, 6-15
traffic network, 6-1
traffic performance, 6-1
traffic signal change, 3-9
traffic simulation, 10-1-10-2, 10-4, 10-7, 10-15-

10-17, 10-20, 10-22 
traffic stream, 4-1 
trajectories of vehicles, 5-4
trajectory, 5-4, 5-7-5-9
transients, 5-15-5-15, 5-17, 5-20
transmission type, 7-8
travel demand levels, 6-1
travel time , 6-1, 6-10
trip time per unit distance, 7-9
two-fluid model , 6-1, 6-17, 6-22-6-23, 6-25
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two-fluid parameters, 6-18, 6-18, 6-20, 6-23, 6-25 vehicle miles traveled, 6-11
two-fluid studies, 6-20 vehicle shape, 7-8
two-fluid theory, 6-12, 6-16, 6-24 vehicles stopped ,average fraction of the,  6-17
turning lanes, 5-9, 5-9 viscosity, 5-22, 5-24, 5-29, 5-34

U

undersaturation, 5-8
effect of upstream signals, 9-15
UMTA, 7-15
UMTA Model, 7-15
urban driving cycle, 7-11
urban roadway section, 7-11
uncongested flows, 2-12

V

variability among people, 3-16
vehicle ahead, 3-13
vehicle alongside, 3-14
vehicle characteristics, 7-8
vehicle emissions, 7-14
vehicle fleet, 7-8
vehicle mass, 7-8, 7-9, 7-12

visual acuity, 3-11
visual angle, 3-11-3-13, 3-15, 3-16
visual performance, 3-11
volatile organic compounds, 7-13

W

Wardrop, 2-4, 2-4, 2-6-2-7
Wardrop and Charlesworth, 2-4, 2-4
Weber fraction, 3-13, 3-13
wheel alignment, 7-8
wind, 7-8
wind conditions, 7-8
wind speed, 7-15
work zone traffic control devices, 3-17

Y

yield control for secondary roadway, 3-27
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