TABLE OF CONTENTS

	DUCTION	
1.1	References	1-4
	710 OTDE AM OUAD A OTEDIOTIOS	
	TIC STREAM CHARACTERISTICS	
2.1	Definitions and Terms	
	2.1.1 The Time-Space Diagram	
	2.1.2 Definitions of Some Traffic Stream Properties	
	2.1.3 Time-Mean and Space-Mean Properties	
	2.1.4 Generalized Definitions of Traffic Stream Properties	
	2.1.5 The Relation Between Density and Occupancy	
	2.1.6 Three-Dimensional Representation of Vehicle Streams	
2.2	Measurement Issues	2-9
	2.2.1 Measurement Procedures	
	2.2.2 Error Caused by the Mismatch Between Definitions and Usual Measurements	2-12
	2.2.3 Importance of Location to the Nature of the Data	2-13
	2.2.4 Selecting intervals from which to extract data	2-14
2.3	Bivariate Models	2-15
	2.3.1 Speed-Flow Models	2-16
	2.3.2 Speed-Concentration Models	2-21
	2.3.3 Flow-Concentration Models	
2.4	Three-Dimensional Models	2-29
2.5	Summary and Llinks to Other Chapters	2-3
3 HUM	AN FACTORS	3-
	Introduction	
0.11	3.1.1 The Driving Task	
3.2	Discrete Driver Performance	
0.2	3.2.1 Perception-Response Time	
3 3	Control Movement Time	
0.0	3.3.1 Braking Inputs	
	3.3.2 Steering Response Times	
3.4	Response Distances and Times to Traffic Control Devices	
3.4	3.4.1 Traffic Signal Change	
	3.4.2 Sign Visibility and Legibility	
	3.4.3 Real-Time Displays and Signs	
	3.4.4 Reading Time Allowance	
2.5		
3.3	Response to Other Vehicle Dynamics	
2.0	3.5.2 The Vehicle Alongside	
3.6	Obstacle and Hazard Detection, Recognition, and Identification	
	3.6.1 Obstacle and Hazard Detection	
	3.6.2 Obstacle and Hazard Recognition and Identification	
3.7	Individual Differences in Driver Performance	
	3.7.1 Gender	
	3.7.2 Age	
	3.7.3 Driver Impairment	3-17

	3.8 Continuous Driver Performance	
	3.8.1 Steering Performance	
	3.8.1.1 Human Transfer Function for Steering	3-18
	3.8.1.2 Performance Characteristics Based on Models	
	3.9 Braking Performance	3-20
	3.9.1 Open-Loop Braking Performance	3-20
	3.9.2 Closed-Loop Braking Performance	3-21
	3.9.3 Less-Than-Maximum Braking Performance	3-21
	3.10 Speed and Acceleration Performance	
	3.10.1 Steady-State Traffic Speed Control	3-23
	3.10.2 Acceleration Control	
	3.11 Specific Maneuvers at the Guidance Level	3-23
	3.11.1 Overtaking and Passing in the Traffic Stream	3-23
	3.11.1.1 Overtaking and Passing Vehicles (4-Lane or 1-Way)	3-23
	3.11.1.2 Overtaking and Passing Vehicles (Opposing Traffic)	
	3.12 Gap Acceptance and Merging	3-24
	3.12.1 Gap Acceptance	
	3.12.2 Merging	3-24
	3.13 Stopping Sight Distance	
	3.14 Intersection Sight Distance	3-26
	3.14.1 Case I: No Traffic Control	
	3.14.2 Case II: Yield Control for Secondary Roadway	3-26
	3.14.3 Case III: Stop Control on Secondary Roadway	
	3.15 Other Driver Performance Characteristics	
	3.15.1 Speed Limit Changes	
	3.15.2 Distractors On/Near Roadway	
	3.15.3 Real-Time Driver Information Input	
	References	3-28
4.	CAR FOLLOWING MODELS	
	4.1 Model Development	
	4.2 Stability Analysis	
	4.2.1 Local Stability	
	4.2.2 Asymptotic Stability	
	4.2.1.1 Numerical Examples	
	4.2.1.2 Next-Nearest Vehicle Coupling	4-13
	4.3 Steady-State Flow	
	4.4 Experiments And Observations	
	4.4.1 Car Following Experiments	
	4.4.1.1 Analysis of Car Following Experiments	
	4.4.2 Macroscopic Observations: Single Lane Traffic	
	4.5 Automated Car Following	
	4.6 Summary and Conclusions	
	References	4-39
_		
5.	CONTINUUM FLOW MODELS	
	5.1 Conservation and Traffic Waves	
	5.2 The Kinematic Wave Model of LWR	
	5.2.1 The LWR Model and Characteristics	
	5.2.2 The Riemann Problem and Entropy Solutions	
	5.2.3 Applications	5-8

	5.2.4 Extensions to the LWR Model	5-9
	5.2.5 Limitations of the LWR Model	
	5.3 High Order Continuum Models	
	5.3.1 Propagation of Traffic Sound Waves in Higher-Order Models	
	5.3.2 Propagation of Shock and Expansion Waves	
	5.3.3 Traveling Waves, Instability and Roll Waves	
	5.3.4 Summary and Discussions	5-23 5-24
	5.4.1 Diffusive and Viscous Traffic Flow Models	
	5.4.2 Acceleration Noise and a Stochastic Flow Model	
	5.5 Numerical Approximations of Continuum Models	
	5.5.1 Finite Difference Methods for SOlving Inviscid Models	
	5.5.2 Finite Element Methods for Solving Viscous Models	
	5.5.3 Applications	
	5.5.3.1 Calibration of Model Parameters with Field Measurements	
	5.5.3.2 Multilane Traffic Flow Dynamics	
	5.5.3.3 Traffic Flow on a Ring Road With a Bottleneck	
	References	5-45
6.	MACROSCOPIC FLOW MODELS	
	6.1 Travel Time Models	
	6.1.1 General Traffic Characteristics as a Function of the Distance from the CBD	
	6.1.2 Average Speed as a Function of Distance from the CBD	
	6.2 General Network Models	
	6.2.1 Network Capacity	
	6.2.2 Speed and Flow Relations	
	6.2.4 Continuum Models	
	6.3 Two-Fluid Theory	
	6.3.1 Two-Fluid Parameters	
	6.3.2 Two-Fluid Parameters: Influence of Driver Behavior	
	6.3.3 Two-Fluid Parameters: Influence of Network Features (Field Studies)	
	6.3.4 Two-Fluid Parameters: Estimation by Computer Simulation	
	6.3.5 Two-Fluid Parameters: Influence of Network Features (Simulation Studies)	
	6.3.6 Two-Fluid Model: A Practical Application	
	6.4 Two-Fluid Model and Traffic Network Flow Models	
	6.5 Concluding Remarks	
	References	6-29
,	TRAFFIC IMPACT MODELS	7.4
٠.		
	7.1 Traffic and Safety	
	7.1.2 Flow and Safety	
	7.1.2 Flow and Salety	
	7.1.3 Eoglical Considerations	
	7.1.4.1 Kinds Of Study And Data	
	7.1.4.1 Minds of Study And Bata	
	7.1.4.3 Parameter Estimates	
	7.1.5 Closure	
		-

7.2	Fuel Consumption Models	7-8
	7.2.1 Factors Influencing Vehicular Fuel Consumption	
	7.2.2 Model Specifications	
	7.2.3 Urban Fuel Consumption Models	
	7.2.4 Highway Models	
	7.2.5 Discussion	
7.2		
7.3	Air Quality Models	
	7.3.1 Introduction	
	7.3.2 Air Quality Impacts of Transportation Control Measures	
	7.3.3 Tailpipe Control Measures	
	7.3.4 Highway Air Quality Models	
	7.3.4.1 UMTA Model	
	7.3.4.2 CALINE-4 Dispersion Model	7-15
	7.3.4.3 Mobile Source Emission Factor Model	7-16
	7.3.4.4 MICRO2	7-18
	7.3.4.5 The TRRL Model	
	7.3.5 Other Mobile Source Air Quality Models	
Refe	erences	
T(O)	5.011000	7 20
o lineic	NALIZED INTERSECTION THEORY	0.4
	NALIZED INTERSECTION THEORY	
8.1 I	Introduction	
	8.1.1 The Attributes of a Gap Acceptance Analysis Procedure	
	8.1.2 Interaction of Streams at Unsignalized Intersections	
	8.1.3 Chapter Outline	8-1
8.2	Gap Acceptance Theory	
	8.2.1 Usefulness of Gaps	
	8.2.2 Estimation of the Critical Gap Parameters	
	8.2.3 Distribution of Gap Sizes	
8.3	Headway Distributions Used in Gap Acceptance Calculations	
0.0	8.3.1 Exponential Headways	
	8.3.2 Displaced Exponential Distribution	9-7
	8.3.3 Dichotomized Headway Distributions	
0.4	8.3.4 Fitting the Different Headway Models to Data	
8.4	Interaction of Two Streams	
	8.4.1 Capacity	
	8.4.2 Quality of Traffic Operations	
	8.4.3 Queue Length	
	8.4.4 Stop Rate	
	8.4.5 Time Dependent Solution	8-23
	8.4.6 Reserve Capacity	
	8.4.7 Stochastic Simulation	8-27
8.5	Interaction of Two or More Streams in the Priority Road	
	8.5.1 The Benefit of Using a Multi-Lane Stream Model	
8.6	Interaction of More than Two Streams of Different Ranking	
0.0	8.6.1 Hierarchy of Traffic Streams at a Two Way Stop Controlled Intersection	
	8.6.2 Capacity for Streams of Rank 3 and Rank 4	
8.7	Shared Lane Formula	
0.7		
	8.7.1 Shared Lanes on the Minor Street	
2.2	8.7.2 Shared Lanes on the Major Street	
8.8	Two-Stage Gap Acceptance and Priority	
8.9	All-Way Stop Controlled Intersections	
	8.9.1 Richardson's Model	8-37

		pirical Methods	
		10.1 Kyte's Method	
		clusions	
	Reference	9\$	8-4′
9.	TRAFFIC F	LOW AT SIGNALIZED INTERSECTIONS	9-1
		duction	
		Concepts of Delay Models at Isolated Signals	
	9.3 Stead	dy-State Delay Models	9-3
	9.	3.1 Exact Models	9-3
	9.	3.2 Approximate Models	9-5
	9.4 Time	-Dependent Delay Models	9-10
	9.5 Effect	t of Upstream Signals	9-15
	9.	5.1 Platooning Effect On Signal Performance	9-15
		5.2 Filtering Effect on Signal Performance	
		ry of Actuated and Adaptive Signals	
		6.1 Theoretically-Based Models	
		6.2 Approximate Delay Models	
		6.3 Adaptive Signal Control	
		luding Remarks	
		98	
	11010101100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
10	TDAEEIC	SIMULATION	10.4
10.			
		oduction	
		Illustration	
		r-Following	
		ndom Number Generation	
		assification of Simulation Models	
		lding Simulation Models	
		stration	
		tistical Analysis of Simulation Data	
	10	0.8.1 Statistical Analysis for a Single System	
		10.8.1.1 Fixed Sample-Size Procedures	
		10.8.1.2 Sequential Procedures	
	10	0.8.2 Alternative System Configurations	10-22
	10	0.8.3 Variance Reduction Techniques	10-22
	10	0.8.4 Conclusions	10-23
	10.9 Des	scriptions of Some Available Models	10-23
	10.10 Loc	oking to the Future	10-24
	Reference	es	10-25
11. k	INETIC TH	IEORIES	11-1
		roduction	
		atus of the Prigogine-Herman Kinetic Model	
		I.2.1 The Prigogine-Herman Model	
		I.2.2 Criticisms of the Prigogine-Herman Model	
		.2.3 Accomplishments of the Prigogine-Herman Model	
		ther Kinetic Models	
		ontinuum Models from Kinetic Equations	11-6
		rect Solution of Kinetic Equations	
	Reference	es	
Inde	Y		12-1

LIST OF FIGURES

2. TRAFFIC STREAM CHARACTERISTICS

Figure 2.1	
Time-space Diagram	2-
Figure 2.2	
Trajectories in Time-space Region	2-
Figure 2.3	
Trajectories of Vehicle Fronts and Rears.	2-7
Figure 2.4	0.4
Three-dimensional representation	2-9
Figure 2.5 Effect of measurement location on nature of data (modified from Hall, Hurdle, Banks 1992,and N	10v 1000 - 2.1
Figure 2.6	lay 1990 2-1
Generalized shape of speed-flow curve proposed by Hall, Hurdle and Banks (1992)	2-17
Figure 2.7	
Generalized shape of speed-flow curve proposed by Hall, Hurdle and Banks (1992)	2-18
Figure 2.8	
Results from fitting polygon speed-flow curve to German data (Heidemann and Hotop)	2-18
Figure 2.9	
Data for 4-lane German Autobahns (2 lanes per direction), as reported by Stappert and Theis(1)	990) 2-20
Figure 2.10	
Greenshields' Speed-Flow Curve and Data	2-20
Figure 2.11	
Greenshields' Speed-Density Graph and Data	2-23
Figure 2.12	0.00
Speed-Concentration Data from Merritt Parkway and Fitted Curves	2-23
Figure 2.13 Three Parts of Edie's Hypothesis for the Speed-Density Function, Fitted to Chicago Data	2.25
Figure 2.14	2-25
Greenshields' Speed-Flow Function Fitted to Chicago Data	2-28
Figure 2.15	2 20
Four Days of Flow-Occupancy Data from Near Toronto	2-28
Figure 2.16	
The Three-Dimensional Surface for Traffic Operations	2-30
Figure 2.17	
One Perspective on Three-dimensional Relationship (Gilchrist and Hall)	2-30
Figure 2.18	
Second Perspective on Three-Dimensional Relationship (Gilchrist and Hall)	2-32
Figure 2.19	
Catastrophe Theory Surface Showing Sketch of a Possible Freeway Function	2-32

3. HUMAN FACTORS

Figure 3.1	
Generalized Block Diagram of the Car-Driver-Roadway System	3-2
Figure 3.2	
Lognormal Distribution of Perception-Reaction Time.	3-4
Figure 3.3	0.46
A Model of Traffic Control Device Information Processing.	3-10
Figure 3.4	0.44
Looming as a Function of Distance from Object.	3-14
Figure 3.5 Duravit Tracking Configuration	2.40
Pursuit Tracking Configuration	3-18
Figure 3.6 Typical Deceleration Profile for a Driver without Antiskid Braking System on a Dry Surface	3-25
Figure 3.7	5-22
Typical Deceleration Profile for a Driver without Antiskid Braking System on a Wet Surface	3-22
Typical Deceleration Frome for a Differ without Artificial Drawing Cystem on a Wet Cartace.	
4 CAR FOLLOWING MODELS	
4. CAR FOLLOWING MODELS	
Figure 4.4	
Figure 4.1 Schematic Diagram of Relative Speed Stimulus and a Weighing Function Versus Time	1-1
Figure 4.1a	4-4
Block Diagram of Car-Following	1- F
Figure 4.1b	
Block Diagram of the Linear Car-Following Model.	4-5
Figure 4.2	
Detailed Motion of Two Cars Showing the Effect of a Fluctuation in the Acceleration of the Lead Car	4-8
Figure 4.3	
Changes in Car Spacings from an Original Constant Spacing Between Two Cars	4-9
Figure 4.4	
Regions of Asymptotic Stability.	4-11
Figure 4.5	
Inter-Vehicle Spacings of a Platoon of Vehicles Versus Time for the Linear Car Following	4-11
Figure 4.6	
Asymptotic Instability of a Platoon of Nine Cars.	4-12
Figure 4.7	4.46
Envelope of Minimum Inter-Vehicle Spacing Versus Vehicle Position	4-13
Figure 4.8	1 1 1
Inter-Vehicle Spacings of an Eleven Vehicle Platoon.	4-14
Figure 4.9 Speed (miles/hour) Versus Vehicle Concentration (vehicles/mile)	4 17
Figure 4.10	4-17
Normalized Flow Versus Normalized Concentration	4-17
Figure 4.11	
Speed Versus Vehicle Concentration(Equation 4.39)	4-18
Figure 4.12	
Normalized Flow Versus Normalized Vehicle Concentration (Equation 4.40)	4-18
Figure 4.13	
Normalized Flow Versus Normalized Concentration (Equations 4.51 and 4.52)	4-21
, ,	

Figure 4.14	
Normalized Flow versus Normalized Concentration Corresponding to the Steady-State Solution of Equations 4.51 and 4.52 for m=1 and Various Values of ℓ	. 4-21
Figure 4.15 Sensitivity Coefficient Versus the Reciprocal of the Average Vehicle Spacing	. 4-24
Figure 4.16 Gain Factor, λ, Versus the Time Lag, T, for All of the Test Runs	
Figure 4.17	
Gain Factor, λ , Versus the Reciprocal of the Average Spacing for Holland Tunnel Tests	. 4-25
Figure 4.18 Gain Factor, λ ,Versus the Reciprocal of the Average Spacing for Lincoln Tunnel Tests	. 4-26
Figure 4.19 Sensitivity Coefficient, a _{no} , Versus the Time Lag, T	. 4-28
Figure 4.20 Sensitivity Coefficient Versus the Reciprocal of the Average Spacing	
Figure 4.21	
Sensitivity Coefficient Versus the Ratio of the Average Speed	. 4-29
Relative Speed Versus Spacing	. 4-31
Figure 4.23 Relative Speed Thresholds Versus Inter-Vehicle Spacing for Various Values of the Observation Time	. 4-32
Figure 4.24 Speed Versus Vehicle Concentration	. 4-34
Figure 4.25 Flow Versus Vehicle Concentration	
Figure 4.26	
Speed Versus Vehicle Concentration (Comparison of Three Models)	. 4-35
Flow Versus Concentration for the Lincoln and Holland Tunnels	. 4-36
Average Speed Versus Concentration for the Ten-Bus Platoon Steady-State Test Runs	. 4-37
5. CONTINUUM FLOW MODELS	
Figure 5.1	
Geometric Representation of Shocks, Sound Waves and Traffic Speeds in the k-q phase plane Figure 5.2	5-4
Field Representation of Shocks and Conservation of Flow	5-5
A Shock Solution	5-8
Figure 5.4 A Rarefaction Solution	. 5-8
Figure 5.5 Phase Transition Diagram in the Solution of Riemann Problems	5-20
Figure 5.6	
Roll Waves in the Moving Coordinate X	. 5-22
Traveling Waves and Shocks in the PW Modelic Models	. 5-22
Time-space Grid	. 5-26

6. MACROSCOPIC FLOW MODELS

Figure 6.1
Total Vehicle Distance Traveled Per Unit Area on Major Roads as a Function
of the Distance from the Town Center
Figure 6.2
Grouped Data for Nottingham Showing Fitted (a) Power Curve,
(b) Negative Exponential Curve, and (c) Lyman-Everall Curve
Complete Data Plot for Nottingham; Power Curve Fitted to the Grouped Data
Figure 6.4
Data from Individual Radial Routes in Nottingham, Best Fit Curve for Each Route is Shown 6-5
Figure 6.5
Theoretical Capacity of Urban Street Systems
Figure 6.6
Vehicles Entering the CBDs of Towns Compared with the Corresponding Theoretical Capacities of the Road Systems
Figure 6.7
Speeds and Flows in Central London, 1952-1966, Peak and Off-Peak
Figure 6.8
Speeds and Scaled Flows, 1952-1966
Figure 6.9
Estimated Speed-Flow Relations in Central London (Main Road Network)6-9
Figure 6.10
Speed-Flow Relations in Inner and Outer Zones of Central Area
Effect of Roadway Width on Relation Between Average (Journey) Speed and Flow in Typical Case 6-12
Figure 6.12
Effect of Number of Intersections Per Mile on Relation Between
Average (Journey) Speed and Flow in Typical Case6-12
Figure 6.13
Effect of Capacity of Intersections on Relation Between
Average (Journey) Speed and Flow in Typical Case
Figure 6.14 Relationship Between Average (Journey) Speed and Number of Vehicles on Town Center Network 6-13
Figure 6.15
Relationship Between Average (Journey) Speed of Vehicles and Total Vehicle Mileage on Network 6-14
Figure 6.16
The α -Relationship for the Arterial Networks of London and Pittsburgh, in Absolute Values 6-14
Figure 6.17
The α -Relationship for the Arterial Networks of London and Pittsburgh, in Relative Values 6-15
Figure 6.18 The α -Map for London, in Relative Values
Figure 6.19
Trip Time vs. Stop Time for the Non-Freeway Street Network of the Austin CBD 6-18
Figure 6.20
Trip Time vs. Stop Time Two-Fluid Model Trends6-19
Figure 6.21
Trip Time vs. Stop Time Two-Fluid Model Trends Comparison
Figure 6.22 Two-Fluid Trends for Aggressive, Normal, and Conservative Drivers
Two-filling Treffus for Aggressive, Northal, and Conservative Drivers

Figure 6.23 Simulation Results in a Closed CBD-Type Street Network	24
Figure 6.24 Comparison of Model System 1 with Observed Simulation Results	26
Figure 6.25 Comparison of Model System 2 with Observed Simulation Results	27
Figure 6.26 Comparison of Model System 3 with Observed Simulation Results	28
7. TRAFFIC IMPACT MODELS	
Figure 7.1 Safety Performance Function and Accident Rate	'-2
Figure 7.2 Shapes of Selected Model Equations	'-5
Figure 7.3 Two Forms of the Model in Equation 7.4	'-6
Figure 7.4 Fuel Consumption Data for a Ford Fairmont (6-Cyl.)	
Data Points represent both City and Highway Conditions	'-9
Figure 7.5 Fuel Consumption Versus Trip Time per Unit Distance for a Number of Passenger Car Models	10
Figure 7.6 Fuel Consumption Data and the Elemental Model Fit for Two Types of Passenger Cars7-	10
Figure 7.7 Constant-Speed Fuel Consumption per Unit Distance for the Melbourne University Test Car7-	12
8. UNSIGNALIZED INTERSECTION THEORY	
Figure 8.1	
Data Used to Evaluate Critical Gaps and Move-Up Times8	-3
Figure 8.2 Regression Line Types	i-4
Figure 8.3 Typical Values for the Proportion of Free Vehicles	3-9
Figure 8.4 Exponential and Displaced Exponential Curves (Low flows example)	3-9
Figure 8.5 Arterial Road Data and a Cowan (1975) Dichotomized Headway Distribution (Higher flows example) 8-	10
Figure 8.6 Arterial Road Data and a Hyper-Erlang Dichotomized Headway Distribution (Higher Flow Example) 8-	
Figure 8.7	
Illustration of the Basic Queuing System	
ComparisonRelation Between Capacity (q-m) and Priority Street Volume (q-p)	14
	11
Comparison of Capacities for Different Types of Headway Distributions in the Main Street Traffic Flow 8- Figure 8.10	14
Figure 8.10 The Effect of Changing α in Equation 8.31 and Tanner's Equation 8.36 8-Figure 8.11	

Figure 8.12	
Comparison of Some Delay Formulae	8-20
Figure 8.13	0.00
Average Steady State Delay per Vehicle Calculated Using Different Headway Distributions Figure 8.14	8-20
Average Steady State Delay per Vehicle by	
Geometric Platoon Size Distribution and Different Mean Platoon Sizes.	8-21
Figure 8.15	
95-Percentile Queue Length Based on Equation 8.59	8-22
Figure 8.16	
Approximate Threshold of the Length of Time Intervals For the Distinction Between Steady-State Conditions and Time Dependent Situations	8-25
Figure 8.17	0-23
The Co-ordinate Transform Technique	8-25
Figure 8.18	
A Family of Curves Produced from the Co-Ordinate Transform Technique.	8-27
Figure 8.19 Average Delay, D, in Relation to Reserve Capacity R	9 20
Figure 8.20	0-29
Modified 'Single Lane' Distribution of Headways	8-30
Figure 8.21	
Percentage Error in Estimating Adams' Delay Against the	
Major Stream Flow for a Modified Single Lane Model	8-31
Figure 8.22 Traffic Streams And Their Level Of Ranking	8-33
Figure 8.23	0-32
Reduction Factor to Account for the Statistical Dependence Between Streams of Ranks 2 and 3	8-33
Figure 8.24	
Minor Street Through Traffic (Movement 8) Crossing the Major Street in Two Phases	8-36
Figure 8.25 Average Delay For Vehicles on the Northbound Approach	0.40
Average Delay For Vehicles on the Northbound Approach.	0-40
9. TRAFFIC FLOW AT SIGNALIZED INTERSECTIONS	
9. TRAFFIC FLOW AT SIGNALIZED INTERSECTIONS	
Figure 9.1	
Deterministic Component of Delay Models	9-2
Figure 9.2	
Queuing Process During One Signal Cycle	9-3
Figure 9.3 Percentage Relative Errors for Approximate Delay Models by Flow Ratios	0_0
Figure 9.4	9-9
Relative Errors for Approximate Delay Models by Green to Cycle Ratios	9-9
Figure 9.5	
The Coordinate Transformation Method	9-11
Figure 9.6 Comparison of Delay Models Evaluated by Brilon and Wu (1990) with Moderate Peaking (z=0.50)	0.14
Figure 9.7	9-14
Comparison of Delay Models Evaluated by Brilon and Wu (1990) with High Peaking (z=0.70)	9-14
Figure 9.8	
Observations of Platoon Diffusion	9-16
Figure 9.9	0.40
HCM Progression Adjustment Factor vs Platoon Ratio Derived from TRANSYT-7F	9-18

Figure 9.10	
Analysis of Random Delay with Respect to the Differential Capacity Factor (f) and Var/Mean Ratio of Arrivals (I)- Steady State Queuing Conditions	9-10
Figure 9.11	
Queue Development Over Time Under Fully-Actuated Intersection Control	0-21
Figure 9.12	9-21
Example of a Fully-Actuated Two-Phase Timing Sequence	9-25
10. TRAFFIC SIMULATION	
Figure 10.1	
Several Statistical Distributions	10-7
Figure 10.2	
Vehicle Positions During Lane-Change Maneuver	10-8
Figure 10.3	
Structure Chart of Simulation Modules	10-9
Figure 10.4	
Comparison of Trajectories of Vehicles from Simulation Versus Field Data for Platoon 123	10-16
Figure 10.5	40.40
Graphical Displays	10-18
Figure 10.6 Animation Snapshot	10-19
11. KINETIC THEORIES	
Figure 11.1	
Dependence of the mean speed upon density normalized to jam density	11-5
Figure 11.2	
Evolution of the flow, according to a diffusively corrected Lighthill-Whitham model	11-8

List of Tables

3. HUMAN FACTORS

Table 3.1	
Hooper-McGee Chaining Model of Perception-Response Time	3-4
Table 3.2	2.6
Brake PRT - Log Normal Transformation	3-6
Summary of PRT to Emergence of Barrier or Obstacle	3-6
Table 3.4	
Percentile Estimates of PRT to an Unexpected Object	3-7
Table 3.5 Movement Time Estimates	3-0
Table 3.6	
Visual Acuity and Letter Sizes	3-11
Table 3.7	0.44
Within Subject Variation for Sign Legibility	3-12
Object Detection Visual Angles (Daytime) (Minutes of Arc)	3-15
Table 3.9	
Maneuver Classification	3-19
Table 3.10 Percentile Estimates of Steady State Unexpected Deceleration	2 24
Table 3.11	3-2
Percentile Estimates of Steady State Expected Deceleration	3-21
Table 3.12	
Critical Gap Values for Unsignalized Intersections	3-25
PRTs at Intersections	3-27
	=
4. CAR FOLLOWING MODELS	
Table 4.1	
Results from Car-Following Experiment	4-25
Table 4.2 Comparison of the Maximum Correlations obtained for the Linear and Reciprocal Spacing Models	
for the Fourteen Lincoln Tunnel Test Runs	4-27
Table 4.3	
Maximum Correlation Comparison for Nine Models, a, the Fourteen Lincoln Tunnel Test Runs	4-28
Table 4.4 Results from Car Following Experiments	4-30
Table 4.5	
Macroscopic Flow Data	4-33
Table 4.6	4.01
Parameter Comparison (Holland Tunnel Data)	4-35
5. CONTINUUM MODELS	
Table 5.1	
Oscillation Time and Magnitudes of Stop-and-go Traffic From German Measurement	5-12
Community Time and Magnitudes of Clop and go Traille From Cernian Measurement	0-12

7. TRAFFIC IMPACT MODELS

Table 7.1 Federal Emission Standards Table 7.2 Standard Input Values for the CALINE4 Table 7.3 Graphical Screening Test Results for Existing Network 8. UNSIGNALIZED INTERSECTION THEORY	7-17
Table 8.1 "A" Values for Equation 8.23 Table 8.2 Evaluation of Conflicting Rank Volume q_p 9. TRAFFIC FLOW AT SIGNALIZED INTERSECTIONS	
Table 9.1 Maximum Relative Discrepancy between the Approximate Expressions and Ohno's Algor Table 9.2 Cycle Length Used For Delay Estimation for Fixed-Time and Actuated Signals Using Web Table 9.3 Calibration Results of the Steady-State Overflow Delay Parameter (k)	oster's Formula 9-23
Table 10.1 Classification of the TRAF Family of Models Table 10.2 Executive Routine Table 10.3 Routine MOTIV Table 10.4 Routine CANLN Table 10. 5 Routine CHKLC Table 10.6 Routine SCORE Table 10.7 Routine LCHNG Table 10.8 Simulation Output Statistics: Measures of Effectiveness	
11. KINETIC THEORIES Table 11.1 Status of various kinetic models	14 C
Status of Various Kirietic models	11-6