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ABSTRACT  

While the existing applied length-based vehicle classification model has been to estimate vehicle lengths 

accurately with dual-loop traffic monitoring station data under free traffic condition, it produces 

considerable errors against congested traffic. In this study, both ground-truth vehicle trajectory and 

simultaneous loop event data are used to characterize the impact of congested traffic on vehicle 

classification. Eight scenarios are synthesized to define the vehicles’ stopping locations over two single 

loops of the dual-loop station. Under the synchronized traffic flow, acceleration or deceleration is 

considered in the new developed Vehicle Classification under Synchronized Traffic Model (VC-Sync 

model) to reflect the speed variation between loops. As a result, the error of the vehicle classification is 

reduced from 33.5% to 6.7%, compared to the existing applied model. Under the stop-and-go traffic 

condition, a Stop-on-Both-Loops-only (SBL) was developed along with the VC-Sync model to simplify the 

complexity of congested traffic situation in vehicle length estimation. The error is reduced by using the 

SBL model from 235% to 17.1%, compared to the existing applied model. Capability of identifying traffic 

phases is a critical prerequisite to applying the new vehicle classification models under congestions. 

An innovative method for identifying the traffic phases has been therefore proposed based on the 

existing traffic stream models along with the new findings of the authors’ empirical data analysis. As 

a result, a heuristic traffic phase identification model has developed and successfully applied in the 

case study for evaluating the new length-based vehicle classification models with dual-loop data.  
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INTRODUCTION  

This paper presents a scenario-based vehicle classification modeling method to estimate vehicle length via 

revealing possible scenarios of congested traffic impact on accuracy of vehicle length detection at a dual-

loop station. The modeling effort addresses two issues: 1) identifying a sound solution to the problem of 

distinguishing congestion conditions that could be measured by loop data based on traffic flow 

characteristics and new findings resulting from analysis of the video-based vehicular event data; and 2) 

developing scenario-based models for improving vehicle length estimation under congested traffic flows 

with evaluation of its improved accuracy by comparing the results with the existing applied model.  

A dual-loop detector consists of two single loop detectors placed with a fixed distance between 

single loops (e.g. 20 ft or 6 m), as shown by Figure 1. A vehicle can be detected by the dual-loop detector 

as electrical pulses of current are deduced in the loops when the vehicle enters and leaves the loop detection 

area. Each event of the electrical pulse is recorded as a timestamp. Normally, four timestamps, t1, t2, t3, and 

t4 are recorded when a vehicle is operating through the loop detector area, as illustrated by Figure 1. This 

feature enables measuring traffic speed over the detection area, which is one of the key factors in estimating 

the vehicle length. Vehicle types are then identified in three or four “bins” based on the detected vehicle 

lengths.  

 

 

 

 

 

 

 

 

 

 

 

FIGURE 1. Layout of a Dual-loop Detector on Highway 

In the existing applied vehicle classification model (which was then proven to be good for free 

traffic flow), no variation of a vehicle’s speed on both single loops is assumed (Nihan et al. 2002). The 

existing model is described as follows: 
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 D = distance between two loops (ft);  

 t = t3-t1; 

 OnT1=t2-t1; 

 OnT2=t4-t3; and 

t1, t2, t3, and t4 are timestamps when a vehicle enters or leaves the upstream loop (M loop) or 

downstream loop (S loop) (Figure 1). 

Under congested traffic, however, a vehicle’s speed changes frequently and even fiercely as it is 

traveling through the loops. In order to improve the accuracy of the vehicle length estimation against 

congested traffic, the authors extracted the ground-truth vehicle event data from video by using the software 

VEVID (Wei et al, 2005), which was finally complied into high-resolution vehicular trajectory data. 

Meanwhile, simultaneous event data is derived from the dual-loop data. The sampling dual-loop station is 

located in the freeway I-71/I-74 in Columbus, Ohio (Ai, 2013). Both datasets were used to define scenarios 

of vehicles’ maneuvers as traversing through the loops and model the traffic conditions based on applied 

traffic stream characteristics and relevant theories. Finally, new models suitable for congested flows were 

developed and evaluated with the ground-truth data.  

 

LITERATURE REVIEW 

Greenshield (1935) firstly proposed the traffic stream theory addressing the relationships among flow rate, 

speed, and density, in which speed and density is assumed to be linearly correlated. Greenberg (1959) 

revised the model of the speed and density to fit a logarithmic curve, based on a hydrodynamic analogy and 

assumption regarding the traffic flow as a perfect fluid and one-dimensional compressible flow. Underwood 

(1961) used exponential expression for such a model. The discontinuities of the relationships between 

traffic variables have been disclosed by researchers. Edie (1961) quantified the linear relationship between 

density and the logarithm of velocity above the “optimum velocity” for uncongested traffic and velocity 

and the logarithm of spacing (the inverse of density) for congested traffic. Multiple curves are often applied 

to depict the “discontinuities”. For instance, Koshi (1983) proposed a reverse lambda shape to describe the 

flow-density relationship. May (1990) developed the “two-regime” models to describe the relationship of 

flow and density. Hall (1986) proposed an inverted ‘V’ shape to represent the flow-occupancy relationship. 

Polus et al. (2002) proposed three regimes of traffic flows (free, dense, and unstable flows), and traffic 

breakdown was explained as the change from dense flow to unstable flow.  

Kerner et al. (1994 and 2010) defined traffic flows in three categories: free flow, synchronized flow, 

and stop-and-go flow. The free flow has high travel speed and low traffic volume and density. The 

congested traffic flow is further classified into synchronized flow (S) and wide moving jam (J). The 

synchronized flow has relative low speed and high volume and density. A wide moving jam is a moving 

jam that maintains the mean velocity of the downstream front of the jam as the jam propagates. They also 

disclosed the double Z-characteristic shape for relating speed and density. The empirical double Z-

characteristic shape is used to depict the phase transitions between two different phases. F→S (free flow to 

synchronized flow) and S→J (synchronized flow to jam flow) transitions can be illustrated by a double Z 

shape (or termed Z-characteristic) for the F→S→J (free to synchronized to jam conditions) transitions. The 

double Z-characteristic consists of a Z characteristic for an F→S transition and a Z-characteristic for an 

S→J transition, as well as the phases associated with the critical speeds required for the phase transitions. 

The synchronized traffic defined by Kerner is also described as the traffic oscillation by other researchers 

(Bertini and Leal, 2005;, Zielke et al., 2008; Ahn and Cassidy, 2007; Daganzo, 2002; and Mauch and 

Cassidy, 2002). Treiber M. and Kesting A. (2011) studied the convective instability in congested traffic 

flow, and they classified congested traffic flow into five classes according to the stability which lead to 

significantly different sets of traffic patterns (Blandin et al., 2013)  

It is necessary to determine what traffic variables and thresholds of the selected traffic variables 

will be used to describe the traffic phases and identify the transitions between them. Habib-Mattar et al. 

(2009) found out that the congestion would occur if the situation, where the speed is less than 37 mph and 

the density is greater than 64 vpmpl, lasts at least five minutes. Chow et al.’s study (2010) indicates that if 



Wei, Ai, Liu, Li, and Wang   3 

the speed drop is greater than 5 mph during a 5-minute period, the traffic flow is at the congestion situation. 

Lorenz et al. (2001) defined a traffic breakdown as the traffic condition in which the average speed of all 

lanes on a highway section decreases to below 90 km/h for at least a 15-minute period, and then Elefteriadou 

et al. (2003) changed the speed threshold as of below 80 km/h. On the other hand, other studies indicated 

that speed alone is insufficient to ensure the identification of congestion. Congestion may not be detected 

by the speed-based algorithm only, and “perhaps the optimal speed thresholds are different above a certain 

occupancy threshold” (Wieczorek et al. 2010). Zhang et al. (2009) used four features to characterize an 

oscillatory traffic pattern: the occurrence of oscillation, the offset of the oscillation patterns different lanes, 

the oscillation period, and the oscillation amplitude in flow levels. They set the extreme jam density of 240 

vpmpl, flow speed of 50 mph, and wave speed of 10 mph. Deng et al. (2013) proposed a three detector 

approach to identify traffic states using multiple data sources, including loop detector counts, AVI 

Bluetooth travel time readings and GPS location samples. However, it is always not easy in practice to 

obtain the all three sensor data for the traffic flow on a certain highway segment. 

Since the event dual-loop data records individual vehicles’ timestamps over the loops, it is usually 

applied in traffic analysis to derive traveling features of the vehicles (Chen et al., 1987; Turner et al., 2000; 

Coifman, 2004; Nihan et al., 2002 and 2006; and Cheevarunothai et al., 2005). The traffic parameters, such 

as traffic volume, speed, and occupancy or density can be extracted or calculated from the event dual-loop 

detector datasets, which further enable calculating vehicle lengths. The existing applied model of estimating 

vehicle lengths via dual-loop data (Nihan et al., 2006) is based on the assumption that vehicles drive across 

the dual-loop detection area at a constant speed. The model has been validated well against light traffic. 

Under light traffic condition, vehicles operate at a relatively high and stable speed, which can be considered 

at a constant speed. According to Kerner’s Three Phases Theory, during uncongested traffic flow, it is 

reasonable that vehicle speeds are regarded as constant. However, during congested traffic, especially stop-

and-go traffic, vehicle speeds become very unstable and are not constant. When the existing model is used 

to estimate vehicle lengths, the accelerations and decelerations of vehicles will distort the outputs of the 

model. Accuracy of vehicle classification drops greatly under very congested traffic (Fekpe et al., 2004). It 

is reported that observed errors in truck misclassification ranged from 30 to 41 percent for off-peak hours, 

and from 33 to 55 percent for peak hours (Nihan et al. 2006). Li (2009) developed a method of Bayesian 

inference for vehicle speed and length estimation using dual-loop data. But the congested traffic flow 

features were not addressed in the method and it was only tested using the traffic flow data with the average 

speed of 56 mph. 

 

DATA COLLECTION  

The selected dual-loop detector station, numbered as V1002, is located in the interstate freeway I-70/71 at 

West Mound Street downtown Columbus, and has 6 dual-loop detectors in both directions of the highway. 

A video camera was placed on the top of The Franklin County Juvenile Parking Garage that is close to the 

station to videotape the traffic flow on I-70/71 over the dual-loop detector station, as shown by Figure 2. 

 

 

FIGURE 2. Video Data Collection and Loop Station at Study Site 
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Three-day traffic videotaping was conducted on July 14 - 16, 2009. A total of 26 hour traffic video 

data were collected, including light traffic and congestion traffic flows. The concurrent event dual-loop data 

was obtained from the Traffic Management Center (TMC) at the Ohio Department of Transportation 

(ODOT). The event loop data is the raw data from the dual-loop station, which records the timestamps of 

each vehicle as it enters and leaves each loop. The scanning frequency of the loop is 60 Hz, that is, occupied 

status of a loop is automatically updated 60 times per second.  

The ground-truth data used in this study is the vehicle trajectory data extracted from the collected 

traffic video footage. The software VEVID (Wei et al., 2005) was employed to extract the ground-truth 

vehicle trajectory data from the video.  

A QSTARZTM BT-Q1200 Ultra GPS Travel Recorder was adopted as the data logger to collect GPS 

data. The GPS travel data logger was equipped in a probe car running roundly along freeway segments of 

the I-70/I-71 which cover the selected station. The probe vehicle’s speed and location information can be 

collected by the data logger by second. Some parameters which represent characteristics of very congested 

traffic can be derived from the statistical analysis of the collected GPS data, which includes range of 

acceleration or deceleration rate and average minimum speed to maintain a vehicle’s moving.  

 

DISTINGUISHING TRAFFIC FLOW STATES OR CONDITIONS 

Traffic Flow Condition Determined by “Phase Representative Variables” 

Flow rate has been conventionally used as one of measurable variables to depict the characteristics of the 

traffic flow in previous studies; however, application of the flow rate along may be problematic to 

identifying the traffic conditions (or phases) when the length-based vehicle classification is practiced with 

dual-loop data. Firstly, any flow rate value may be explained by two or more traffic phases (e.g., 

uncongested or congested traffic), which may cause a wrong identification of traffic condition. Secondly, 

the flow rate is an aggregated outcome from the dual-loop based vehicle classification model and supposed 

to be produced after the traffic phase is identified. That leads to an illogic procedure in practice. Timestamps 

and occupancies of a vehicle entering and leaving the loops are direct outputs of the loop data. Speed and 

density can be estimated as a mathematical function of the timestamps and occupancies. According to 

Kerner’s empirical double Z-characteristic shape (as shown in Figure 3), the speed and density are two 

variables that can be used to determine the boundaries of each traffic flow phase. The speed and 

density/occupancy are accordingly identified as the “phase representative variables” in this study.  

 

 
FIGURE 3: Classified traffic flow states (based on Kerner’s Z-curve & data in this study) 
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In Kerner’s study (2010) speed and density were applied to depict the empirical double Z-

characteristic shape for the phase transitions between two different phases. The original Z-characteristic 

shape was enhanced and simplified in the study, as illustrated in Figure 3. It conceptually provides a profile 

of all the possible phases of traffic flows that could be justified by speed and density (or occupancy). 

Density can be estimated from the loop data by Equation (3) if the average vehicle length of the traffic flow 

for varying time of a day could be predetermined based on the historical traffic data.  

 

𝐾𝑖 =
1000×𝑂𝑐𝑐

𝐿𝑉+𝐿𝑒𝑓𝑓
         (3) 

 

Where, Ki = density of the traffic flow (vpkmpl) for time period i of a day;  

Occ = loop occupancy measurement (%);  

Lv = average vehicle length (m); and 

Leff = effective detector length (m).  

To simplify the procedure of the traffic condition identification, the F→S transition was merged 

into the free flow phase and S→J transition into the synchronized phase. Equation (4) was proposed to 

facilitate the development of a computing algorithm that will be used to determine the traffic flow phase 

F(ti) of any time period i. 

 

F(ti)= 

 FF, IF [u ≥ 80 & k ≤ 28.1] OR IF [𝑣̅(𝑡) − 𝑣̅(𝑡 + 1) ≤ ∆𝑣 & 𝑣𝑎𝑟(𝑣) < 𝑣∗] 
SF, IF [32 ≤ u < 80 & 11.2 ≤ k ≤ 49.7] OR IF [(𝑣̅(𝑡) − 𝑣̅(𝑡 + 1) > ∆𝑣 or 𝑣𝑎𝑟(𝑣) ≥ 𝑣∗) & 

(𝑜𝑐𝑐̅̅ ̅̅̅(𝑡) − 𝑜𝑐𝑐̅̅ ̅̅̅(𝑡 + 1) ≤ ∆𝑜𝑐𝑐)  & (𝑜𝑐𝑐̅̅ ̅̅ ̅̅ (𝑡) ≤ 𝑜𝑐𝑐 ∗)] 

TJ, IF [0 ≤ u < 32 & k ≥ 31.1] OR IF [ (𝑣̅(𝑡) − 𝑣̅(𝑡 + 1) > ∆𝑣  or 𝑣𝑎𝑟(𝑣) ≥ 𝑣∗)  & 

(𝑜𝑐𝑐̅̅ ̅̅̅(𝑡) − 𝑜𝑐𝑐̅̅ ̅̅̅(𝑡 + 1) > ∆𝑜𝑐𝑐)  or (𝑜𝑐𝑐̅̅ ̅̅ ̅̅ (𝑡) > 𝑜𝑐𝑐 ∗)]  

SU, IF others  

(4) 

 

Where:  𝑘 = density, vehicle km lane;⁄⁄   

𝑢 = speed, km/h;  
 𝑖 = time periond 𝑖; 
𝐹𝐹 = Free flow phase;  
𝑆𝐹 = Synchronized flow phase;  
𝑇𝐽 = Traffic jam phase;  
SU = special or unreasonable case;  

t = a short period of time (5 minutes in this study);  

𝑣̅(𝑡) = the average speed in time interval t, km/h;  

𝑣̅(𝑡 + 1) = the average speed in the successive time interval t+1, km/h; 

var(v) = the variation of all vehicles’ speed during time interval t;  

Δv = predefined threshold of spot speed difference in successive time intervals, km/h;  

v* = predefined threshold of the speed variation range in successive time intervals, km/h; 

𝑜𝑐𝑐̅̅̅̅̅(𝑡) = the average occupancy during time interval t; and  𝑜𝑐𝑐̅̅̅̅̅(𝑡 + 1) = the average occupancy 

in the successive time interval t+1;  

Δocc = the predefined occupancy bandwidth during the time interval t; and 

occ* = the maximum average occupancy during the time interval t.  

In this study, the percentage of types of vehicles and their average lengths are obtained from the 

sample dual-loop data at the dual-loop station V1002. The sample size is 13,722. The 3-bin scheme standard 

adopted by ODOT is used. The sample data indicates that the percentages of small vehicle (length ≤ 8.5 m), 

medium vehicle (8.5 m <length< 14.0 m), and large vehicle (length ≥ 14.0 m) are 86%, 4%, and 10%, 

respectively. Their mean lengths are estimated as 5.0 m, 11.1 m, and 22.6 m, respectively. At V1002, Leff is 

2.6 m, and then, Lv = 0.86×5.0+0.04×11.1+0.10×22.6 = 7.0 m.  The assumed “phase representative 

variables” are evaluated against the real-world dual-loop data and the VEVID-based vehicular trajectory 
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data. In light of the statistical analysis performed on the collected ground-truth and loop data, the thresholds 

of Δv is determined as 16.1 km/h, and v* is determined as 127.7 km/h2 (or the standard deviation is 11.3 

km/h), Δocc is defined as 0.3, and occ* is 0.35. To better understand the relationship between each defined 

traffic phase and the associated level of service (LOS), the LOS is overlaid in Figure 3 with their 

corresponding density ranges as defined in the Highway Capacity Manual 2010 (TRB, 2010).  

 

MODELING SCENARIOS OF CONGESTED VEHICLE MANEUVERS OVER LOOPS 

Under the synchronized traffic, vehicles speeds may change rapidly and frequently. In other words, a 

vehicle may drive over the upstream and downstream loops at different speeds as it increases or decreases 

its speed after leaving the upstream loop. Under this circumstance, the vehicle’s acceleration or 

deceleration, which is not considered in the existing applied model, should not be ignored and is assumed 

to affect measurement of the vehicle length in great part. The characteristics of vehicle movement in the 

stop-and-go traffic flow are much different from the free or synchronized flow traffic. Vehicles are 

operating at a high, relatively constant speed under the free flow traffic, and the free flow traffic will transit 

to the synchronized traffic flow when the traffic speed drops significantly. The synchronized traffic flow 

will change into stop-and-go traffic when the traffic speed becomes very slow with more frequently 

acceleration or deceleration involved, and from time to time vehicles have to experience one or more stops. 

Under the stop-and-go traffic phase, a vehicle may stop within the dual-loop detection area for at least one 

time. The existing applied vehicle classification model produced more errors under the stop-and-go traffic, 

especially for large vehicles (See Figure 4), and the sample error even reaches 235%. It is observed from 

the comparison of the video-based vehicular event data and result from the existing applied model that the 

vehicle traveling features against stop-and-go traffic, such as acceleration or deceleration, and situation of 

vehicle stopping on loops, actually affect the estimation of vehicle lengths. An updated length-based vehicle 

classification model is therefore developed to improve the accuracy of vehicle length estimation under the 

stop-and-go traffic.  

 

 

FIGURE 4. Vehicle Length Estimation of the Existing Applied Model under Stop-and-Go Traffic 

 

After careful analysis of synchronizing the ground-truth vehicular trajectory data and the dual-loop 

data, eight possible scenarios were synthesized based on possible stopping locations of the detected vehicles 

within the detection area, as illustrated by Figure 5. Those eight scenarios are briefly described as follows. 

Scenario 1: the vehicle drives across the dual-loop detection area without a stop, which is a typical 

synchronized flow feature; Scenario 2: the vehicle stops merely on the M loop and then leaves the dual-
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loop detection area without another stop; Scenario 3: the vehicle runs across the M loop and stops only on 

the S loop; Scenario 4: the vehicle comes into the dual-loop detection area and stops only on both the M 

and S loops, and leaves the detection area without another stop; Scenario 5: the vehicle stops on the M loop 

and then move on, and then stops on the S loop and finally leaves the detection area without another stop; 

Scenario 6: the vehicle stops firstly on the M loop and then stops on both the M and S loops and finally 

leaves the detection area; Scenario 7: the vehicle stops firstly on both of the M and S loops, and then stops 

only on S loop; and Scenario 8: the vehicle stops firstly only on the M loop and then stops on both of the 

M and S loop, and finally stops only on the S loop. Eventually the vehicle leaves the dual-loop detection 

area without another stop.  

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 5: Scenarios of Vehicle Stopping on Dual-loops under Congestion 

 

Statistical analysis of the sample data indicates that Scenarios 1 through 4 happened much more 

frequently than other scenarios (Figure 6 and Table 1). Scenarios 1 through 4 were hence focused in the 

study, and other scenarios will be considered in the future once sufficient sample data will be gained. 
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FIGURE 6. Percentage of Vehicle Stopping Status in Congested Traffic 

 

TABLE 1. Vehicle Stopping Status Statistics 

Scenario 1 2 3 4 5 6 7 8 

Percentage 67.3% 9.7% 12.1% 4.6% 4.2% 0.9% 0.7% 0.5% 

 

Under the stop-and-go traffic flow, a detected vehicle’s stopping status can be estimated based on 

its corresponding dual-loop data, i.e., the time stamps.  An algorithm, as illustrated by Figure 7, was 

developed using On-times and difference of On-times to determine the scenario that the detected vehicle 

has fallen in. Based on the determined scenario, a suitable vehicle classification model can be applied to 

estimate the vehicle length. 

 

 

FIGURE 7. Scenario Identification Algorithm 
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In this algorithm, timestamp t1, t2, t3, t4, OnT1, and OnT2 are adopted as the variables. ts1 is defined 

as the threshold of OnT1 and OnT2, and ts2 is defined as the threshold of the differences the timestamps. For 

a vehicle operating under stop-and-go traffic condition: 

(1) If both of OnT1 and OnT2 are less than ts1, it indicates that the vehicle did not make a stop 
within the dual-loop detection area, which means this vehicle falls into Scenario 1. 

(2)  If OnT1 is larger than ts1, and OnT2 is less than ts1, it indicates that the vehicle spent much 

longer time on the upstream loop, and this vehicle will be identified into Scenario 2.  

(3) If OnT1 is less than ts1, and OnT2 is larger than ts1, it indicates that the vehicle spent much longer 

time on the downstream loop, and this vehicle will be identified into Scenario 3.  

(4) If both of OnT1 and OnT2 are larger than ts1, and t3-t1<ts2 and t4-t2<ts2 (t1, t2, t3, and t4, are the 

same as defined previously), the vehicle can be identified as falling into Scenario 4. 

In this study, in light of the statistical analysis on the dual-loop data under stop-and-go traffic, the 

thresholds are determined as: ts1 = 4.1s, and ts2 = 3.0s. A flow chart of the scenario identification algorithm 

is illustrated by Figure 7.  

 

LENGTH-BASED VEHICLE CLASSIFICATION MODELS UNDER CONGESTION  

Vehicle Classification Model under Synchronized Flow (Scenarios 1 through 3) 

Scenario 1 is a typical case of the synchronized traffic. Its flow density is higher than the free flow, and the 

freedom of maneuvers is greatly restricted. The travel speed is lower than the free flow, and higher than the 

stop-and-go flow. A new model, Vehicle Classification under Synchronized Traffic Model (VC-Sync 

model), was proposed to estimate vehicle lengths under the synchronized traffic flow. In the model, a 

vehicle is assumed to pass the detection area at a constant acceleration rate a (a can be either positive or 

negative) without a stop. The length of the vehicle passing over the dual-loop detection area can be 

calculated by the equations as follows:  
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                                                                              (7) 

 

Where,  

Lv = length of the detected vehicle (ft);  

Ls = length of each single loop which makes up a dual-loop detector (ft);  

vo = speed of the vehicle at the moment it is to enter the upstream loop (M loop) (ft/s); 

a = vehicle acceleration (ft/s2);  

D = distance between two loops (ft);  

t = t3-t1; OnT1=t2-t1; and OnT2=t4-t3. t1, t2, t3, and t4 are timestamps when a vehicle enters or leaves 

the upstream loop (M loop) or downstream loop (S loop) (Figure 1) 

Scenarios 2 and 3 can be viewed as special cases of Scenario 1. Scenarios 2 is approximately 

equivalent to the situation in which a vehicle stops merely at the front edge of the upstream loop and then 

goes across the detection area without a further stop. This situation can be explained that a vehicle under 

the synchronized traffic is traversing through the detection area with acceleration and an initial speed of 

zero. Similarly, Scenario 3 is approximately equivalent to the situation in which a vehicle goes across the 

detection area without a stop and only stops at the end edge of the downstream loop. This situation can be 
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interpreted that a vehicle under the synchronized traffic is traversing through the detection area with 

deceleration and a final speed of zero.  

Vehicle Classification Model under Stop-and-Go Flow (Scenario 4) 

The stop-and-go traffic has much slower speeds, involving more frequent acceleration or deceleration 

maneuvers. Under the stop-and-go condition, a vehicle may stop within the detection area for at least once. 

Based on the ground-truth data, a statistical analysis was conducted to identify the pattern of vehicle 

stopping locations. As a result, a Stop-on-Both-Loops-only (SBL) model was developed to estimate the 

vehicle lengths under Scenario 4. For simplicity, it is assumed that the detected vehicle stops right in the 

middle of the dual loop. After stopping for a period of time ts, the vehicle restarts to leave the dual-loop 

detection area at an acceleration rate a. The SBL model is expressed by Equation (8): 

 

2

1 2

1 1

2
v dec acc sL f t D f a t L

t
                                                                                    (8) 

 

Where, 1dec acc st t OnT t    and ts = t2 – t3 – f3*t2
acc/vmin;  

Lv = length of vehicle (ft);  

Ls = length of each single loop (ft);  

tdec = time period as a vehicle enters the M loop until it stops (s);  

tacc = time period as a vehicle starts to move and leaves the M loop (s);  

a = the average acceleration of vehicles as they start to move under stop-and go traffic (ft/s2);  

ts = time period for a vehicle to stop on both loops (s);  

vmin =  average minimum speed remaining without stop (ft/s);  

f1, f2, and f3  = adjusting factors for different vehicle types (in this study, f1= f2= f3=1); and 

D, t, t2, t3, OnT1, and OnT2 = as the same as defined previously. 

In order to make the SBL model applicable to estimating vehicle lengths in practice, the vehicle’s 

acceleration rate (a) and average minimum non-stop speed (vmin) need to be predetermined. In reality, 

however, it’s extremely difficult to simply derive the acceleration rate of a detected vehicle from its 

corresponding dual-loop raw data under the stop-and-go condition. The GPS data collected by using GPS 

data loggers is therefore used to obtain a and vmin. Based on the collected GPS data, the variables involved 

in the SBL model were eventually determined as follows: the average acceleration rate is 2.5 ft/s2 and the 

average minimum speed vmin is 7 ft/s.  

Finally, the simulated vehicle lengths from the new developed models were compared with the 

results from the existing model while the ground-truth event data was used as a benchmark. The relative 

error is reduced from 33.5% of the existing model to 6.7% of the VC-Sync model under Scenarios 1 through 

3 (see Figure 8). Under the stop-and-go traffic condition as represented by Scenario 4, the relative error 

was reduced from 235% of the existing model to 17.1% of the SBL model (Figure 9 and Table 2).  
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FIGURE 8. Estimated Vehicle Lengths under Synchronized Traffic 

 

 

FIGURE 9. Estimated Vehicle Lengths under Stop-and-go Traffic 

 
TABLE 2. Relative Errors Produced by Classification Models 

Traffic Flow Condition Vehicle Classification Model Error Produced 

Synchronized flow 
VC-Sync Model 6.7% 

Existing Model 33.5% 

Stop-and-Go flow 
SBL Model 17.1% 

Existing Model 235% 
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CONCLUSION 

The scenario-based vehicle classification models against both synchronized and stop-and-go traffic flows 

were developed by fully considering the impact of congested traffic flows. On the basis of watching 

synchronizing the ground-truth vehicular trajectory data and the dual-loop data, eight possible scenarios 

were synthesized based on possible stopping locations of the detected vehicles within the detection area. 

Those eight scenarios reflect the situations of vehicle stopping over loops, which were observed to occur 

with high possibility in the dual-loop detection area. This synthesized method simplifies the modeling of 

the vehicles’ movements to reveal the impact of traffic on the identification of vehicle lengths at the dual-

loop station. Under the synchronized traffic flow, acceleration or deceleration is considered in the VC-Sync 

model to reflect the speed variation between both loops, which were not conventionally considered in the 

existing applied models. As a result, the error of the vehicle length estimation is reduced from 33.5% by 

using the existing model to 6.7% by using the VC-Sync model. Under the stop-and-go traffic condition, the 

stopping status was synthesized into typical scenarios in the SBL model, which makes it easier to identify 

the variables involved in the associate vehicle length modeling. As a result, the error is reduced by using 

the SBL model from 235% to 17.1%, compared with the existing applied model. 

Capability of identifying traffic phases is a critical support to applying the length-based vehicle 

classification models. This paper presents an innovative method for identifying the traffic phases that 

was developed based on integrated analysis of the existing traffic stream models and the new findings 

from the authors’ empirical data analysis and modeling efforts. As a result, a heuristic traffic phase 

identification model has developed and successfully applied in the case study for evaluating the new 

length-based vehicle classification models with dual-loop data. 
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