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The twofold representation of traffic 
provided by NGSIM(-like) data 

• NGSIM: trajectory of each single vehicle crossing the observed time-

space domain  spatiotemporal traffic patterns from microscopic data 

• Other traffic data: very partial view of the traffic phenomenon 

Time-space trajectory plot 

s
p

a
c
e

 

Time 

Time-space Edie’s speed contour plot 

Time 

s
p

a
c
e

 

• The traffic scientific community has not yet thoroughly exploited 

this twofold ‘value’ of NGSIM data 



Twofold representation and TFT studies (1) 

In microscopic modelling of traffic: 

 

• We rather know how each single component works alone: 

 Theorethical investigations and empirical analyses of single ‘driver’ models 

(CF or LC models) 

 In car-following, most often single-lane, homogeneous-flow assumptions 

 Calibration and validation on disaggregate data focused on riproducing the 

single behaviour 

 

• We do not really know what happens when single components 

interact in a stochastic traffic simulation environment: 

 Interaction effect of LC and CF decisions (i.e. of models output)? 

 Impact of parameter heterogeneity? 

 Impact of assumptions on the probabilistic model of parametric inputs? 



• What is the impact of microscopic features and assumptions on the 

collective behaviour of traffic? i.e. as captured by spatiotemporal 

congested patterns? 

 Spatiotemporal patterns are not the most often used measure to 

investigate microscopic models (often in simple settings like e.g. car-

following only; Treiber & Kesting, 2012, TR-C)  

• Dichotomy between microscopic TFT and traffic micro-simulation 

 Traffic simulation outcomes mostly investigated by means of time series 

or frequency plots 

Twofold representation and TFT studies (2) 



Methodology in extreme synthesis 

• Using measured and simulated macroscopic 

spatiotemporal traffic patterns to investigate impact 

of microscopic features 

 

• Calibrating on disaggregate data and validating on 

collective data 

 

  



Analysis framework 

Analysis of macroscopic traffic patterns

Raw NGSIM trajectories
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Impact of microscopic 

features like: 

• Modelling assumptions 

• Calibration methods and 

settings 

• Set of parameters to 

calibrate 

• Assumptions on 

parameters’ pdf 

• … 



Calibration of IDM and MOBIL 
(Treiber et al., 2000, Ph. Rev. E;   Kesting et al., 2007, TRR)  

• IDM: 

 min
𝛽

RMSE 𝑠𝑝𝑎𝑐𝑖𝑛𝑔  

 OptQuest Multistart    (Punzo et al. 2012, TRR) 

 Uncertainty analysis and physical informed criteria to set parameters 

bounds    (Punzo et al. 2014, IEEE T-ITS) 

 

• MOBIL (no calibration attempts in literature; (*) Zheng, 2014, TR-B): 

 The lane-changing event is rare  not interested in the instant and its 

traffic conditions but in the prevailing traffic conditions that generate it 

 scenario  leaders & followers in current and target lanes do not change 

min
𝛽

#LC

𝜎𝐿𝐶
+

#noLC

𝜎𝑛𝑜𝐿𝐶
;  where: 

   #LC = number of unsuccessful LC scenarios (1-detection rate(*)) 

   #noLC = number of unsuccessful noLC scenarios (false alarm rate(*)) 

   𝜎𝐿𝐶 e 𝜎𝑛𝑜𝐿𝐶 computed through Monte Carlo uncertainty analysis 



Calibration of MOBIL (2) 

MOBIL LC model calculates the potential advantage of all the 

vehicles involved in the LC maneuver in terms of acceleration, as 

given by the IDM model; 

MOBIL calibration is therefore conditional on the IDM calibration; 

 In calibration: 

 vehicles are moved according to the NGSIM measurements 

(and not using the IDM). 

 The IDM is used to calculate accelerations yielding the potential 

advantage, by using for each vehicle its own IDM calibrated 

parameters; 



Trace driven micro-simulation (NGSIM I80) 

• Trace-driven traffic micro-simulation  fair comparison 

• Vehicle insertion as in measured data 

• Downstream conditions superimposed to exiting vehicles 

• … 

• Car-following: IDM 

• Lane Changing: MOBIL 

• Merging: mandatory lane-changing with MOBIL 



NGSIM DATA ERROR ANALYSIS AND 
RECONSTRUCTION 



Background on analysis of NGSIM data 

Thieman, Treiber & Kesting, 2008, TRR 

• Because of the noise in the positional data, velocity and 

acceleration information cannot be extracted directly 

• Symmetric exponential moving average filter to be applied “to 

all trajectories before any further data analysis” 

Punzo, Borzacchiello & Ciuffo, 2009, TRB;  2011, TR-C 

• General methodology to quantify the degree of accuracy/bias in 

vehicle trajectory data 

• Different criteria: 

 Analysis of accelerations, jerks, amplitude frequency spectrum 

 Internal consistency, platoon consistency 

• Application to all the NGSIM datasets  

• High level of measurement errors 

• 4.0-12.4% of leader-follower couples show unphysical inter-

vehicle spacing  



Opened issues 

• To which analyses can NGSIM data be reliably applied to without 

any processing? 

• Which is the impact of such errors on analyses made on NGSIM 

data? 

• Which the accuracy requirements for future data gathering? 

• … 

 

• Since 2012, 5 out of 19 studies published on journals(*) using 

NGSIM trajectories applied some kind of filter to data: 

 2 out of 11 on car-following 

 3 out of 8 on lane-changing 

 

 

(*) source Scopus, accessed 28/07/2014 



Filtering NGSIM data 

• Usual filtering techniques are inadequate (e.g. kernel smoothing) 

 

• If you cannot filter the data, just throw them away... 

 

• If the time window of eliminated points is short, lots of available 

information/constraints to reconstruct the missing trajectory:  

 space travelled within the window; 

 physical capabilities of cars; 

 car-following dynamics (inter-vehicle spacing integrity). 

 

Multi-step reconstruction procedure 

Montanino and Punzo 2011, TRR 

Montanino and Punzo 2015, TRB 

Application to I80-1 dataset (available at www.multitude-project.eu ) 

http://www.multitude-project.eu/
http://www.multitude-project.eu/
http://www.multitude-project.eu/


Inadequateness of low-pass filters 
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NGSIM Data

Low-pass (0.75 Hz)

Low-pass (0.25 Hz)

Proposed Technique
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Removal of:  1) outliers and 2) noise 
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NGSIM data

Filter Step 1
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NGSIM data

Filter Step 1
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Filter Step 1

Filter Steps 1+2
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Filter Step 1

Filter Steps 1+2



3) reconstruction   4) residual noise removal 
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Speed Profile after step 3

 

 

Filter Steps 1+2

Filter Steps 1+2+3
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Filter Steps 1+2

Filter Steps 1+2+3
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Filter Steps 1+2+3

Filter Steps 1+2+3+4
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Filter Steps 1+2+3

Filter Steps 1+2+3+4



Imposing platoon consistency  
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Lane 3

Lane 4

8900 9000 9100 9200 9300 9400 9500 9600 9700 9800

100

150

200

250

300

350

400

Frame

S
p

a
c

e
 [

m
]

Complex circular dependency among 53 vehicles

 

 

Lane 1

Lane 2

Lane 3

Lane 4

Lane 5

Lane 6

Lane 7

8900 9000 9100 9200 9300 9400 9500 9600 9700 9800

100

150

200

250

300

350

400

Frame

S
p

a
c

e
 [

m
]

Complex circular dependency among 53 vehicles

 

 

Lane 1

Lane 2

Lane 3

Lane 4

Lane 5

Lane 6

Lane 7

8900 9000 9100 9200 9300 9400 9500 9600 9700 9800

100

150

200

250

300

350

400

Frame

S
p

a
c

e
 [

m
]

Complex circular dependency among 53 vehicles

 

 

Lane 1

Lane 2

Lane 3

Lane 4

Lane 5

Lane 6

Lane 7

8970 9030

8900 9000 9100 9200 9300 9400 9500 9600 9700 9800

100

150

200

250

300

350

400

Frame

S
p

a
c

e
 [

m
]

Complex circular dependency among 53 vehicles

 

 

Lane 1

Lane 2

Lane 3

Lane 4

Lane 5

Lane 6

Lane 7



Raw vs. Reconstructed trajectories (I80-1) 
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Raw vs. reconstructed macroscopic patterns  
 
resolution 10m x 10s 

Aggregating trajectory data, differences are barely visible 
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IMPACT OF MEASUREMENT ERRORS 
ON CALIBRATION OF DRIVER 
MODELS (CF AND LC) 



Impacts of trajectory measurement errors: 
background  

• Ossen and Hoogendoorn, 2008, TRR 

 Impact of errors on calibration of car-following models 

 Experiment with synthetic data 

 white Gaussian noise assumption 

 

 Significant impact of errors on calibration results 

 

 

• Only impact on calibration: no lane changing and no impact on 

aggregate results that is on traffic simulation outputs 

 



Analysis of macroscopic traffic patterns

Reconstructed  traject.
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Frequencies of calibrated IDM parameters 
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Calibration against Raw data

Calibration against Reconstructed data
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Calibration against Raw data

Calibration against Reconstructed data
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Calibration against Raw data

Calibration against Reconstructed data
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Calibration against Raw data

Calibration against Reconstructed data
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Calibration against Raw data

Calibration against Reconstructed data
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Calibration against Raw data

Calibration against Reconstructed data

H0(different distributions) rejected  (5% level of significance) 



The car-following model acts as a filter 
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Measured Leader

Measured Follower

Simulated Follower
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Measured Leader
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Simulated Follower (calibration against Raw data)

Simulated Follower (calibration against Reconstructed data)

a) b) 

c) 

Negligible impact of 

errors on calibration 

results. 

 

Ossen and 

Hoogendoorn, 2008? 
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Estimated Normal Residuals

Observed Residual (mean=0.035 m, std=0.520 m)
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95% confidence bounds
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95% confidence bounds
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95% confidence bounds
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95% confidence bounds
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95% confidence bounds
c) 

a) b) 

Hp: Measurement errors = residuals between raw and 
reconstructed positions 

Residuals are 

not normal 

and are auto-

correlated  



Frequencies of calibrated MOBIL parameters 

 1 
1 2 3 4 5 6 7 8

0

0.1

0.2

0.3

0.4

0.5

b
safe

 [m/s
2
]

F
re

q
u

e
n

c
y

Frequency plot of b
safe

 

 

Calibration against Raw data

Calibration against Reconstructed data
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Calibration against Raw data

Calibration against Reconstructed data
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Calibration against Raw data

Calibration against Reconstructed data

H0(different distributions) not rejected (5% level of significance) 



Correlation matrices of «raw and clean 
parameters» (i.e. parameters calibrated against raw and 

reconstructed data) 

Correlation Matrix - Calibration against Raw data
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Correlation Matrix - Calibration against Reconstruted data
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• Correlation among CF parameters does not change; 

• correlation of amax CF parameter with LC parameters increases (in abs.); 

• correlation among LC parameters increases. 

• Hp. explanatory capability of the LC model is reduced by errors 



Summary of impacts on calibration 

• Not normal, auto-correlated residuals 

• No impact on car-following calibration results (both on 

parameters PDF and correlation structure) 

• Impact on Lane-changing calibration results (both on parameters 

PDF and correlation structure) 

• … 

 

• Analysis results not informative on the impacts on traffic 

simulation 

 



Remarks 

No car-following calibration possible on raw data without ‘tricks’ 

(negative inter-vehicle spacing) 

 

To calibrate a CF and LC model over a whole set of 2000 

trajectories is not just running 2000 times an optimisation 

algorithm! 

 

Major critical steps: 

• To verify the calibration setting (MoP, GoF, algorithm) 

• To set the bounds for the parameters (Punzo et al. 2014, IEEE T-ITS) 

 Uncertainty analysis 

 Physical criteria 

 Verification after simulation 



IMPACT OF MEASUREMENT ERRORS 
ON SIMULATION OUTPUTS AND 
MACROSCOPIC TRAFFIC PATTERNS 



Analysis of macroscopic traffic patterns
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«Raw vs. clean parameters» simulations 
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Real Raw

Measured

Simulated with parameters calibrated against Raw data

Simulated with parameters calibrated against Reconstructed data
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Real Raw

Measured

Simulated with parameters calibrated against Raw data

Simulated with parameters calibrated against Reconstructed data
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Real Raw

Measured

Simulated with parameters calibrated against Raw data

Simulated with parameters calibrated against Reconstructed data
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Real measurements 

«Clean parameters» sim. «Raw parameters» sim. 

Measured vs. simulated Edie’s speed 



Remarks 

• Impacts of errors on simulation less than expected, given the big 

errors in raw data 

• Measures other than macroscopic patterns could not capture the 

true behavior of models 

• In both the simulations congestion patterns are different from that 

measured: 

 congestion is lower at the beginning of the stretch, higher at the end.  

 Models are not able to reproduce the full upstream propagation of 

congestion 

• Yet, the ‘clean data simulation’ provided slightly better description 

of traffic at both disaggregate and collective description 



IMPACTS OF ASSUMPTIONS ON THE 
INPUT PARAMETER PROBABILITY 
DENSITY FUNCTIONS (PDF) 



Assigning calibrated parameters to vehicles 

 

Reconstructed  traject.

Time [s]

Sp
ac

e
[m

]

Estimated model
parameters 

for each vehicle

Disaggregate 
Calibration

CF LC

Sampling from
Empirical Joint 

Distribution

Sampling from
Empirical Marginal

Distributions

Sampling from
Normal Marginal

Distributions

Assigning
Vehicle-specific calibrated

parameters

Deterministic Sim.

Stochastic Simulations Stochastic Simulations Stochastic Simulations 

Sampling from
Uniform Marginal 

Distributions

Stochastic Simulations 



Real measurements 

Uniform marginal Normal marginal Empirical marginal 

Veh-specific param. Empirical joint 

Real Measurements vs. best replication of 
scenarios 



Virtual queue at the entrance 

Empirical marginal 
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SSE = Sumij (euclidean normij) 

In general, non robust for pattern recognition 

but suitable for ‘constrained’ patterns like these 



Remarks 

• Huge impact on results of the assumption on the input 

parameter PDFs 

• CDFs on SSE offer a clear ranking of the performances of 

different input PDFs 

• Sampling from ‘empirical marginal’ PDF (i.e. no correlation) 

yields ‘unrealistic’ parameters combinations (i.e. virtual queues 

at the entrance) 

• Sampling from normal marginal, all the behaviours are averaged 

 no congestion propagation 

• If the parameter correlation structure is unknown, the safest 

assumption is to sample the parameters from uniform PDFs 

(customary assumption in case of no prior information on the 

PDF) 

 



Summary (1) 

• Impact of measurement errors in trajectory data substantially 

neglected in the field literature. 

• Enhanced methodology to reconstruct trajectory data, 

accounting for inter-vehicle spacing consistency; 

• Application to the NGSIM I80-1 dataset; 

• Straightforward methodology to evaluate the impacts of 

microscopic features on collective behaviour of traffic based on: 

 consistent calibration of individual driver models (lane changing and 

car-following) over the entire trajectory dataset 

 trace-driven traffic simulation over the same time-space domain of 

trajectory data. 

 New methodology to calibrate rule-based lane changing models 

(e.g. MOBIL), based on the concept of lane-changing scenario. 

 Quantification of measurement errors impact on both car-

following and lane changing calibration: 

 Negligible impact on CF 

 Quantified impact on LC 



Summary (2) 

• Quantification of measurement errors impact on the collective 

behaviour of traffic; 

• Analysis of the impact of assumptions on the probabilistic model 

of inputs on the simulation results, in terms of macroscopic 

spatiotemporal traffic patterns. 



Conclusions 

• Previous studies using NGSIM-like data rarely made use of 

collective description of traffic, as resulting from macroscopic 

spatiotemporal traffic patterns, to corroborate models and model 

assumptions 

• NGSIM-like data open up new horizons in researching traffic flow 

theory and simulation, enabling the study of the collective 

behavior of traffic resulting from single driver models (i.e. car-

following and lane-changing) 

• Investigations made on NGSIM-like data will hopefully contribute 

to solve the dichotomy between TFT and traffic simulations as 

well as micro/macro dualism 

• New data gathering efforts of NGSIM-like data are needed 

around the world 
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