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Motivation

NETWORK TRAFFIC FLOW MODELING needs high quality traffic data with
broad network level coverage, for calibration, validation, and input to
real-time predictive management strategies.

CHARACTERIZATION OF NETWORK PERFORMANCE, and the quality of service
experienced by users increasingly encompasses broader array of
dimensions— e.g. reliability — that call for tracking vehicles as they
travel through the network, and not only as they pass selected points

Development of telecommunication and wireless technology are
augmenting conventional point-based data collection methods with

low-cost and widely available probe data.
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Motivation I

e LOOKING AHEAD—

Autonomous Vehicles and Connected Vehicles/Systems will play a
growing role part within the advanced traffic data environment,
both as a major generator (data source) as well as end-user.




Segment Traffic Data

* Segment Data

— collected by electronic transponders

— Automatic Vehicle Identification (AVI), electronic toll data (I-PASS),
blue tooth data, etc




Trajectory Data

e Collected by probe vehicles equipped with on board GPS devices

 Atrajectory is the path followed by the moving object through the
spatial area over which it moves
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Trajectory Data

Information that can be extracted from trajectory data

— from individual trajectory:
* Time, i.e. position of this moment on the timescale;
* Position of the vehicle in space;
* Trip origins and destinations ;
* Direction of the vehicle‘s movement;
e Speed of the movement;
* Dynamics of the speed (acceleration/deceleration);
* Accumulated travel time and distance.
* Individual path and temporal characteristics

— from groups of trajectories:
 Distribution of speed/travel time;
* Probe vehicle density;
* Inferred traffic volume.



Trajectory Data

 Advantages and limitations of trajectory data as compared to
traditional traffic data

Advantages Limitations




[ 2D Trajectories ]
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2D trajectories (along segment) have played essential role in
development of traffic theories for individual highway facilities.

However, in validation and application of traffic simulation
models, the focus has been on measurements taken at a point
(using fixed sensors)
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Measurements from Multiple Trajectories
along a Single Road Segment
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Edie’s

Definitions

Highway traffic (unidirectional)

Trajectory-based definitions of nefwork flow variables
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where dn is the total distance traveled by vehicle n in region A, T, is
the total time spent by vehicle n in region A, and |A| is the area

covered by region A.

Edie (1965)
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Network Fundamental Diagram
Trajectory-based definitions

It is possible to extend Edie’s well-known generalized variable definitions
of vehicle traffic flow along a highway to a network, as recently
recognized by Courbon and Leclercqg (2011).

Recently, in Saberi, Mahmassani and Zockaie (2014)

> Operationalize and validate the extension of Edie’s definitions to
the network level.

> Formalize and test a method using three-dimensional (3D)
vehicle trajectories in time and space to estimate network flow,

density, and speed.
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3D Trajectories in a Network
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Network 3D Time-Space Diagram

In order to estimate network-
wide traffic flow variables using t A
trajectories, we introduce a
closed 3D shape w, for example
a cube, similar to region A in the
2D time-space diagram.

3D shape w

The network structure is laid At
down on the x-y plane.

origin

destination
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Network 3D Time-Space Diagram

3D trajectories of 1,000 simulated vehicles in Irvine, California

Saberi, Mahmassani, Zockaie (2014)

16



Edie’s Definitions

Extension to Networks

Courbon and Leclercq (2011)
Saberi, Mahmassani, Zockaie (2014)

th

d(w)

O(w) =

3D shape w

L. (w)x At

At

K(w) = Hw)
L (w)x At .

where Q(w) and K(w) are the network-wide average flow and density for

the specified shape w; d(w) is the total distance traveled by all the
vehicles in the shape w, t(w) is the total time spent by all vehicles in the
shape w, L, (w) is the total length (in lane-miles or lane-kms) of the
network on the x-y plane associated with the shape w, and At is the

time height of the shape w.
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Background

Network Fundamental Diagram
Link-based definitions

Most of the studies to date have used
the classical link-based measurement
method to estimate the NFD by
taking the distance-weighted
averages of flow and density over all
the links in the network.
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Network Fundamental Diagram
Trajectory-based definitions

It is possible to extend Edie’s well-known generalized variable definitions
of vehicle traffic flow along a highway to a network, as recently
recognized by Courbon and Leclercqg (2011):

il
g(t = t + At, Ax) =
gt —»t+At,x > x + Ax) AtAr
E(t—>t+At,x—>x+Ax)=Ziti
AtAx

where /; and t; are respectively the distance traveled and the time
spent by vehicle j in a time-space area of Ax.At.
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Network Traffic Simulation

Networks of Chicago and Salt Lake City are
simulated in a simulation-based dynamic

traffic assignment platform (DYNASMART-P) 1
with normal daily demand and 20% adaptive

drivers to prevent formation of large gridlock.
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Network Flow (vph)

Chicago Network
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Trajectory vs. Link based NFD

In both networks, for network densities greater than 20 vpmpl,
the link-based method underestimates average network
densities.

Both estimation methods yield near-identical network flows.

When densities are high, the link-based method does not fully
capture the variability of the congestion effects in the network.

Averaging the number of simulated vehicles on individual links
in each time interval creates a bias in the link-based method
when estimating network densities.
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3D Time-Space Diagram
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The three-dimensional time-space diagram of
walking areas can be defined as a space in which

the x and y axes represent the walking surface
and the z axis represents time.
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3D Time-Space Diagram
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Three-Dimensional Illustration of (/left) Pilgrims Trajectories in
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25



Edie’s Definitions

Extension to multi-directional pedestrian areas

tA

20 2T AT X

k =

where T, is the total time spent by pedestrian n in shape V
and |V/| is the spatial volume covered by shape V. Also, |V|
can be expressed as the geometric area of the walking area
(|JA|=X.Y) multiplied by the time interval T=(t;-t,).

ncEN _ neN /I--/---__l y
\V\ T|A T(XY) | % x /
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Edie’s Definitions

Extension to multi-directional pedestrian areas

th
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where dn is the total distance traveled by pedestrian n in
shape V and |V| is the spatial volume covered by shape V.
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Density (1/m?2)

Pedestrian Traffic Measures

3.5 2

1.8 -
1.6 -
1.4 -
1.2 -

1 -
0.8 -
0.6 -
04 A
0.2

Flow (1/m/s)
Speed (m/s)

T T O T T T T
0 25 50 75 0 25 50 75 0 25 50

Time (sec) Time (sec) Time (sec)

Time series of area-wide density, flow, and speed

7:

29



Area-wide Fundamental Diagram

Flow (1/m/s)

Density (1/m?2)

Similar to vehicular traffic flow on
both individual facilities and
networks, pedestrian traffic exhibits
hysteretic behavior too.

The capacity drop phenomenon
seems to exist in pedestrian crowds
too.

The observed capacity drop (t =
9-17 sec) is followed by a relatively
stable period in which the area-
wide flow remains roughly constant
while density continues to increase
due to formation of stable self-
organized lanes.
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Complex interactions, Collective Effects
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Theoretical Background -
Travel Time Reliabllity

Model has been validated and tested at different aggregation levels using
different data sources (Mahmassani, H., Hou, T., Dong, J., TRB 2012)

Data sources
— Vehicle trajectories from simulation output
— GPS probe data (location and time)

Model works for different aggregation levels
— Network level

— 0O-D level

— Path level

— Link level

33



Simulated Trajectory Data

= Models are calibrated for different
sizes of networks at different
aggregation levels

=  Three model forms are tested

* Linear model
* Square root model
* Quadratic model

= Linear model gives best results
= Model parameters are estimated by

Weighted Least Square (WLS) to
accommodate heteroscedasticity

111

S\ Number of Zones 61 =67
Number of Nodes 326 2182 28406

Number of Links 626 3387 68490
Number of Vehicles 58385 151973 6766805
Demand Duration (hr) 2 2 4
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Std Dev of Travel Time per Mile
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GPS Probe Data

. = Seattle network

"k \ *  ~600 zones

. . *  ~6000 nodes
* 549,624 trips
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GPS Probe Data

e Seattle network
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Validation by GPS Trajectory Data

= NYC network

Vehicle trajectories
collected by GPS
devices

Two-week period
from 2010/05/02 to
2010/05/17
~10,000 trips are
recorded on each
day
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Characterizing Different Types of Travel Time Variability

Time /Of\ Day
Vehicle index
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Characterizing Different Types of Travel Time Variability

Vehicle-to-vehicle
distribution of individual
travel time at t

Vehicle index

.....

t=T




Characterizing Different Types of Travel Time Variability

Day-to-day distribution of
mean travel time at t

Vehicle index

.....




Characterizing Different Types of Travel Time Variability

Overall distribution of
individual travel times at t

Vehicle index

.....




Characterizing Vehicle-to-vehicle Variability

e Linear Relationship between Standard Deviation (SD) and Mean
— Jones et al. (1989) and Mahmassani et al. (2012, 2013)

o =0 +0,u

° T : travel time per unit distance; travel time per mile (TTPM)
e 0., U, : mean and SD of t; 6,,0, :coefficients

__ 4
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Ess ¢
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Characterizing Vehicle-to-vehicle Variability

* Travel Delay per Unit Distance
TTPM — minimum TTPM
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Characterizing Day-to-day Variability

Strong Correlation

between SD and

Mean

— Herman and
Lam(1974); and

Richardson and Taylor
(1978)

Linear Relation
between SD and
Mean

— May et al. (1989);
Mazloumi et al. (2010);
Yildrimoglu et al.
(2013); Fosgerau
(2010); and Fosgerau
and Fukuda (2012)
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Multiplicative Error Models

Vehicle-to-vehicle Distribution Day-to-day Distribution
Oxzn =a‘uxm OYt =/))MJ’t
X, =V, €y yt:ﬂ)’tgy
.~ Gamma(m,1/7) ¢, ~ Gamma(g, 1/¢)
SD[x1=SD[e ]y, SD, [y, ]=5D, e Ju,
. ,

a=l/\/; /3)=;/r\/¥
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Gamma-Gamma Distribution

Describe diverse scattering phenomena

— target and clutter scattering in radar (Jakeman and Pusey,
1976; Lewinski, 1983);

— irradiance fluctuations in optics (Al-Habash et al., 2001; Teich
and Diament, 1989);

— reverberation in sonar systems (Gu and Abraham, 2001); and
— fading and shadowing in wireless systems (Shankar, 2004)

For Modeling Travel Time Variability

— Shape 7 reflects veh-to-veh variability (i.e., o = 1/\/; : CV
of individual travel delay across vehicles)

— Shape ¢ reflects day-to-day variability (i.e., & = 1/\/5 : CV
of daily mean level of travel delay across days)

— Mean K, represents the mean level of travel delay at time t

/(X)) =GG(a,B, 1)

Moments
T+¢+1
ElX,]=pn, Var[Xt]=yf”—Z=ﬂf(a2+[3’2+a2 2)
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point under normal conditions

T ra Ve | Tl m e encompassing any systematic variations
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Indicators - Travel time index,
\_ - Probability of on-time arrival



Scenario-based Reliability Analysis
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Case Study

Understand the
impact of each
scenario category

Observe the overall
travel time
distribution
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Vehicle Trajectory Processor J

Main Role: Extract reliability-related measures from
the vehicle trajectory output of the simulation models.

Scenario 1

Scenario 2

Scenario

Manager

Scenario N

Dynamic
Traffic

Simulation
Model

Trajectory 1
Trajectory 2
Trajectory
Processor
Trajectory N

~

- Reliability performance indicators
- Travel time variance
- 95th Percentile Travel Time
- Buffer Index
- Planning Time Index

- User-centric reliability measures
- Probability of on time arrival
- Schedule delay

- Volatility
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( Trajectory Processor ]

Application Main Functionalities

e Define critical O-D pairs, paths and links either via
input text files of by selecting on the map

* From simulation outputs, for selected OD/path/links,

* show scenario-specific travel
time distributions

* show combined travel time
distribution (weighted by
scenario probabilities)

* extract various reliability
performance measures

= Compare simulated trajector
with observed trajectories

¥ Trajectory Processor

[=[@] % ]

(e.g., TomTom GPS data)

&0

ies
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Trajectory Processor

)

Select O-D pair from the map

ODTravelTimeStatisti

Destination Zone ID Departure Interval

8:00 AM v

Origin Zone ID
20 v 182 v

Display

Origin Dest Departure Total Total Total
Zone Hour Counts Average Std

{LLJ

Basecase
Counts

»

Basecase
Counts

Total Total

Total Std

Counts Average Average

Basecase

Basecase Snov
Std Coun

Select two points on the map by clicking on the Google Earth GUI.

Associated O-D pair is identified (straight (green) line).

i Show Detailed
: OD Statistics

Two alternative paths between the selected OD are identified (blue and

).



Trajectory Processor J

View travel time distributions for selected OD

Origin Zone ID Destination Zone ID Departure Interval o |
An _ 129 = 2.0n AM - Display ,’ ~ |
I T = I y 4
) =B X ]
@ Chartform | b | = ( B | Show Detailed
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100 T . : 100 : > |
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80— 84.4 b/ Ll
g 601+ 2% 688 |
g 40— ES 532
iy N o
20 — N~~~ 37.6 /
e SV SR '
0 — — 22
) 19 39 59 79 19 39 59 79
Travel Time: (min) Travel Time: (min) -
| 1
5 Scenario Specific Travel Time Histogram CDF of Combined Travel Time Distribution
¥ X i
o 80 . 100 : . . .
2 : —— Combined PDF — Planning Time — Preferred Arrival Time
iz J 60 80 -
z |
g E o6
g 40 H
& \ E 4
| 2 — 00 i S et
0 —— 0L+ I_I_F_l_l_l_!_IJ_L-_I_
19 39 59 79 700AM  8:00 AM 900AM  10:00AM  11:00 AM
* Sele JI
Travel Time: (min) Time of Day 1
Combined Travel Time Histogram Schedule Delay
* Assc

* Two alternative paths between the selected OD are identified (blue and

).



( Trajectory Processor

)
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[ Trajectory Processor )

,a ---------------------------------------------------------------- -~
I . )
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2D Trajectories

Calibrate microscopic traffic
relations (e.g. NGSIM)

Extract point measurements for
mesoscopic and macroscopic model
calibration and validation

3D Trajectories

MICROSCOPIC LEVEL

In addition to 2D capabilities, could model travel behavior
choices

route choice; responses to information, pricing, controls
trip timing

Reliability characterization at individual vehicle level; both
within day and across day variability

Ideal Revealed Preference manifestation

When based on smart phones or personal devices, not
limited to car trips

When complete, allow capturing social influences and
information

When coupled with transaction data enables wider range of
behavioral responses



3D Trajectories

MESOSCOPIC and MACROSCOPIC
Retains ability to do same things as with point data

Time-dependent O-D demand estimation as input
to dynamic network models

Takes validation to new levels, from patterns at
points to spatio-temporal variation and user
experience over entire travel; from facility-level to
network-level.

Network-level relations
Network fundamental diagram
Reliability signature relations



Takeaways?

New era of trajectory-driven traffic and network
performance analysis:

More complete and compact description of system state

Capture all aspects of individual actions (most complete record of actual
behavior), with no loss of ability to characterize systems at any desired
level of spatial and temporal aggregation/disaggregation

Retain ability to extract stochastic properties of both individual behaviors
and performance metrics

Enable better model formulation/specification at all levels of resolution,
and model calibration

Most promising hope to recognize and capture collective effects and
interaction mechanisms.
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Limitations and Interesting

Methodological Issues

Partial trajectories
— Censoring: incomplete trajectories of individual particles
— Estimation of partially observed state variables: flow, density
— Recognizing and correcting for selection bias

Sampling trajectories
— Sample designs and implications for estimation and model validation

Non-uniqueness of underlying set of individual trajectories corresponding to
observed aggregate (point-based) measurements

s it fair/reasonable to expect simulation tools to replicate individual vehicle
trajectories, or only to replicate flow patterns in some aggregated fashion on
links and

Person trajectories, multimodal travel and activity-based modeling
“Big data” aspects of very detailed trajectories

Make trajectories your friend!
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THANK YOU!
QUESTIONS?

masmah@northwestern.edu



