
The Game of Lolo

An Exploration of Object-Oriented Programming

Timothy A. Budd

Oregon State University

May 4, 2000

Introduction

The game of Lolo is a classic Nintindo game. Lolo is a game in the puzzle tradutuib. Lolo
is a creature that lives in a two-dimensional world of grids. Also in the world are walls,
water, trees, blocks, and hearts. Lolo can move around the world in any of the four compass
directions, but can only occupy an empty square. Lolo cannot jump over walls, or run into
trees. When lolo moves into a square in which there is a Heart the score is incremented.
The objective is to capture as many hearts as possible. Figure 1 shows a typical Lolo world.

Trees, Walls and water are immovable, but Lolo does have the power to slide a block.
When Lolo pushes on a block, if the adjacent square Lolo is pushing the square into is
empty, then the block is moved one square. Moving blocks is the major technique used to
make a Lolo puzzle. Consider the world shown in Figure 1. To reach some of the hearts on
the left of the picture Lolo must slide one block to the left, then another block to the top,
capture a heart, move another block upwards, and so on. Only then can all the hearts be
accessed.

We will develop the Lolo game in a series of small steps. Each step will bring out a
di�erent aspect of Object-Oriented programming.

Step 1: Getting Started { Building a Universe

As we emphasize in the textbook, an object-oriented program can often be envisioned as a
universe of interacting agents. Each object in this universe has certain behavior, and certain
responsibility. Most object-oriented programs begin by creating an initial set of objects, and
setting them in motion.

Figure 2 is our �rst version if a simple Lolo game. Like all Java programs, execution
begins at the static procedure named main. A static procedure, you will recall, is one that
exists \outside" of any instances, and hence will exist even before an instance of the class
is created. In this case our main program simply creates one instance of the class LoloGame
and displays it.

1



Figure 1: Screen Shot of Lolo World

2



import java.awt.�;

class LoloGame extends Frame f
public static void main (String [ ] args) f

LoloGame world = new LoloGame();

world.show();

g

public LoloGame () f
// awt initialization

setTitle("Lolo Game");

setSize(20 + BoardWidth � Cell.CellWidth,

40 + BoardHeight � Cell.CellHeight);

// game speci�c initialization

for (int i = 0; i < BoardWidth; i++)

for (int j = 0; j < BoardHeight; j++)

board[i][j] = new Cell();

board[loloX][loloY] = lolo;

g

private static final int BoardWidth = 20;

private static final int BoardHeight = 15;

protected static Cell [ ] [ ] board =

new Cell[BoardWidth][BoardHeight];

protected int score = 0;

private int loloX = 10;

private int loloY = 10;

private Lolo lolo = new Lolo();

public void paint (Graphics g) f
for (int i = 0; i < BoardWidth; i++) f

for (int j = 0; j < BoardHeight; j++) f
board[i][j].paint(g,

10 + Cell.CellWidth � i,

30 + Cell.CellHeight � j);

g
g
g.drawString("score is " + score,

10, 40 + BoardHeight � Cell.CellHeight);

g
g

Figure 2: Our Initial Lolo Game

3



import java.awt.�;

class Cell f
// paint a cell starting at x and y

public void paint (Graphics g, int x, int y) f
g.setColor(Color.lightGray);

g.fillRect(x, y, CellWidth, CellHeight);

g

public final static int CellWidth = 10;

public final static int CellHeight = 10;

g

class Lolo extends Cell f
public void paint (Graphics g, int x, int y) f

g.setColor(Color.white);

g.fillRect(x, y, CellWidth, CellHeight);

g
g

Figure 3: The class Cell

The class LoloGame is declared as an instance of the Java library class Frame. This is
the way that Java programs can create a graphical window. Part of the initialization of the
class (performed in the constructor) will set the title of this window, and set its size.

There are a number of data �elds declared as part of this class. Those labelled static

are like static functions, they exist outside of any instance. Those labeled �nal cannot be
changed once they are assigned. A value that is both static and �nal is commonly used to
create a symbolic constant. The data �elds BoardWidth and BoardHeight, which establishes
the dimension of the Lolo world, are examples of this.

The playing board will be a two-dimenisional array of cells. The class Cell is shown in
Figure 3. At least initially the only behavior for a cell will be to draw itself.

The Java AWT library draws the contents of a window by invoking the method named
paint. The argument passed to this method is an instance of the class Graphics, which
provides a number of useful graphical operations. The paint method in class LoloGame

simply loops over each of the cells, asking them to paint themselves. A text message giving
the current score is then drawn at the bottom of the screen. Note that the AWT, like most
computer windowing systems, places the origin (0,0) at the upper right corner, and values
increase as they move DOWN the window.

The class Cell (Figure 3) de�nes a pair of symbolic constants that represent the height
and width of each cell in the Lolo world. The only responsibility given to an instance of the
class is to paint its image on a window. The paint method is given both a Graphics object
and an x and y coordinate pair that represents the upper left corner of the cell. At least

4



initially we will simply use a solid block of color to represent the the various di�erent forms.
The method �llRect in class Graphics allows one to draw a solid rectangle of color. A cell is
drawn as a lightGray color (note the use of another symbolic constant, this one de�ned in
the Java library class Color) and the Lolo piece is a white block.

The class Lolo is formed using inheritance from class Cell, in just the same way that the
class LoloGame was extended from Frame. We will have more to say about inheritance and
its uses in Step 3.

You should be able to take the classes shown in Figures 2 and 3, compile them and
execute. However, the resulting system is not very interesting, since we do not yet have any
game speci�c behavior, nor any way to allow the user to interact with the game.

While not absolutely necessary, the reader may wish to investigate how we can use the
Java Graphics library to make a better representation for our game pieces. This topic is
explored in Appendix A.

Step 2: Event-Driven Execution

Most graphical interfaces use a style of execution that is termed event-driven control ow.
An event-driven program responds to user-generated actions. Users can generate actions by
means of the mouse, the keyboard, or other activities (an example of another activity might
be inserting a disk into a disk drive; however our programs will not explore this feature).

In Java events are handled using a technique called a listener. A listener is an object
with sole responsibility to sit and wait, to \listen" as it were, for a speci�c event to occur.
In this sense a listener is like a sentry in a castle guard-tower. Each listener looks for just a
single type of event. When the listener senses that the event it is waiting for has occurred,
it executes a method to respond. Typically this method will then interact with the main
program.

We will create two listeners for our Lolo game. One will listen for window events, and
the second will listen for keys being pressed. You may have noticed (depending upon your
platform) that the Lolo program we created in Step 1 was di�cult to halt. On Unix systems
you needed to type control-C to halt the program. On other platforms you needed another
platform-speci�c set of commands. Our �rst listener simply senses a click in the window
close box, and when it occurs it halts the program. It can be written as follows:

import java.awt.event.�;

class CloseQuit extends WindowAdapter f
public void windowClosing (WindowEvent e) f

System.exit(0);

g
g

The classWindowAdapter is found in the Java library in the awt.event subdirectory, which
is why we need a special import statement. The method windowClosingwill be executed when

5



the user clicks in the close box. In this case, we respond by exiting the program, using the
method System.exit (another part of the Java standard library).

To attach this to our program, we simply create an instance of this class, and register it
with the system. This all happens in the constructor for LoloGame:

public LoloGame () f
...

// make listeners

addWindowListener(new CloseQuit());

addKeyListener(new KeyReader());

g

Our second listener is slightly more complicated, because we want it to interact with
other elements of the game. The Java library provides a class called KeyAdapter that will
listen for key-press events. Just as with the window listener, we can add actions speci�c to
our game by making a subclass of KeyAdapter:

class LoloGame extends Frame f
...

class KeyReader extends KeyAdapter f
public void keyPressed(KeyEvent e) f

char key = e.getKeyChar();

... // do game speci�c actions

g
g

g

By placing this class inside the LoloGame class we create what is termed an inner class.
The advantage of an inner class is that it is permitted to perform actions and access data
values from the surrounding class. In this case the data value we want is the variable lolo.

We will use a set of four letters to move Lolo either upwards, downwards, left or right.
The letter q will be an alternative way to halt the program. To move lolo we simply replace
the square currently being occupied with a new empty cell, then replace the board position
of the new square with the lolo piece:

public void keyPressed(KeyEvent e) f
char key = e.getKeyChar();

board[loloX][loloY] = new Cell();

switch (key) f
case j: // move left

loloX = loloX - 1;

break;

case k: // move right

6



loloX = loloX + 1;

break;

case i: // move upwards

loloY = loloY - 1;

break;

case m: // move downwards

loloY = loloY + 1;

break;

case q: System.exit(0); // stop game

g
board[loloX][loloY] = lolo;

repaint();

g

After the piece has been moved, a call is made on the method repaint. This will schedule
the window for a refresh operation. Since the value of the board has changed, the refresh
will draw the new board.

Try adding this code to your lolo game. Try entering keypresses, and note how the Lolo
piece moves around the window. On many platforms there will be an annoying icker each
time the window is redrawn. In Appendix B we suggest one way that this can be eliminated.
What happens if you try to move Lolo o� the edge of the playing board?

Step 3: Creating Useful Objects via Inheritance

We have actually seen already how we are going to create a large collection of useful objects.
In Figure 3 we created the class Lolo using inheritance from the parent class Cell. By using
inheritance, we are asserting that the Lolo piece is a type of cell, and in particular this means
that it can be stored in the array board, which we declared as maintaining a collection of
Cell values.

In this section we continue this theme, creating new classes for each of the di�erent
types of objects in our world. Classes will represent water, trees, walls, and so on. (You
may already in Appendix A have explored the graphical operations necessary to draw the
images for these objects).

These objects will be distinguished not only by their graphical representation, but by
their behavior. In large part we can encapsulate this behavior into a single method, which
will both answer the question \can Lolo move into this square?", and perform the actions
necessary when Lolo does move into a square. We will call this method loloCanMove and
add it to the de�nition of class Cell:

class Cell f
...

public boolean loloCanMove (int direction, int i, int j) f
return true;

7



g
g

The arguments passed to this method will be the direction that Lolo is moving, and
the i and j board coordinates for the cell. (Note that these are di�erent from the graphics
coordinates).

The behavior of the various di�erent categories of Cell can be de�ned by the following
table:

category image can lolo move?

EmptyCell gray yes, always
Wall black square no, never
Tree green no, never
Water blue no, never
Heart red yes, and score is increased
Stone brown yes if stone can slide, otherwise no
Bridge brown yes if approached from right direction

A typical example is the class Wall, which is de�ned as follows:

class Wall extends Cell f
public void paint (Graphics g, int x, int y) f

g.setColor(Color.black);

g.fillRect(x, y, CellWidth, CellHeight);

g

public boolean loloCanMove (int direction, int i, int j) f
return false;

g
g

Ignoring for the moment the more complex behavior of stones and hearts, de�ne now
the classes for all these categories of objects.

In order to make use of the loloCanMove behavior, we need to change the key press
listener to test a square before it moves into it. Since the same action is repeated four times
with only minor variations, we can abstract it into a function:

private class KeyReader extends KeyAdapter f
private boolean test (int direction, int newx, int newy) f

return board[newx][newy].loloCanMove(direction, newx, newy);

g

public void keyPressed(KeyEvent e) f
char key = e.getKeyChar();

8



board[loloX][loloY] = new Cell();

switch (key) f
case j:

if (test(Cell.left, loloX-1, loloY)

loloX = loloX - 1;

break;

case k:

...

g
g

g

Make this change, then revise the initialization of the game board to place a wall around
the edge of the playing surface. You might try placing other items in various places as well.
Note how this now solves the problem of Lolo running o� the edge of the playing area.

An important feature to note is that we have declared the board to be class Cell, but in
fact it is holding values that are created as instances of subclasses of Cell. This capability is
termed polymorphism. When we pass the message loloCanMove to a board piece, the method
executed will be determined by the current value in the cell (for example, an instance of
Water or Heart), and not by the declared class of the board. This seemingly simple idea
turns out to be extremely powerful.

For example, you might now go back and reconsider the operations of the listener objects.
This technique only works because our listeners will override a method that is de�ned
in a parent class found in the Java standard library. This is yet again an example of
polymorphism.

Step 4: Adding the Game Logic

Much of the game logic now consists in changing the behavior of the method loloCanMove

in each of the various subclasses. We will describe the various modi�cations needed, and
leave the implementation to the reader:

Bridge Actually it is easier to split this into two classes, Horizontal bridge and vertical
bridge. This makes both the printing easier and the game logic. This method uses the
direction �eld to decide whether or not it is legal for Lolo go pass. If Lolo approaches
from the right direction, then the method will return true, otherwise it will return
false.

Heart This method will add 1 to the static �eld LoloGame.score before returning true.

Stone This method uses both the x and y coordinate and the direction. It tests whether
or not the adjacent square (where adjacent is determined by the direction) is empty.
If so, then it moves the stone to the adjacent square, and returns true. Otherwise, it
returns false.

9



This is su�cient to create a workable game. In the next section we will describe various
features that can be used to improve the game.

Step 5: More Objects

There are other objects that can be envisioned for the Lolo game. One example might be
giant Balls. Like a square, Lolo can push on a ball. Unlike a square, a ball can roll as long as
there are empty squares. Perhaps a sequence of balls can be rolled together. Perhaps when
a ball strikes a stone it shatters both the ball and stone, leaving only an empty square.

The blocks as we have designed them can only be pushed into empty squares. Another
form of block could be created that could be pushed into water, and when it hits water it
becomes a bridge (or an empty square). In this way Lolo can create a bridge where there is
none already existing.

Use your imagination to create other types of objects.

Step 6: Improvements

While after step 4 we have a working game, there are various improvements that can be
made.

The Java system makes it very easy to incorporate and play sound clips. If you can
make or �nd such clips you can add sounds for the various Lolo activities { moving into a
new square, pushing a block, crossing a bridge, �nding a heart, and so on.

Next, there is the technique used to create the initial game board. In the description
in Step 2 we hard-wired the initial positions of the pieces into the program logic. A more
exible alternative that allows the board description to be easily changed is to read a textual
description of a board. We can represent each piece by a character, for example A for wall,
W for wall, T for tree, R for rock, H for vertical bridge and = for horizontal bridge, and so
on. Using this encoding the game shown in Figure 1 can be described by a set of strings, as
in the following:

WWWWWWWWWWWWWWWWWWWW

WEEEEEEEEEAEEEEEEEEW

WEAAAAAAAEAEEEEEEHEW

WEAETETTEEAEEEEEEEEW

WEATEBETEEAEEEEEHEEW

WEAHEEBTLEAEEEEEEEEW

WEATEEBEEEAEEEEEEEEW

WEATTAAAEEAETHEEEEEW

WEAAAAEEEEAETGEEEEEW

WEEEEEEEEB=BEEEETEEW

WEEEEEEEEEAEBEEEETEW

WEEEEEEEEEAETEEEAEEW

WEEEEEEEEEAAAAAAAEEW

10



WEEEEEEEEEAEEHEEEEEW

WWWWWWWWWWWWWWWWWWWW

An array of such values can be initialized in Java in a single statement, as in the following:

String [ ] initialBoard = f
"WWWWWWWWWWWWWWWWWWWW",

"WEEEEEEEEEAEEEEEEEEW", ...

"WWWWWWWWWWWWWWWWWWWW"g;

A method can then be written that will use such an array and reading the values initialize
the board array, creating the di�erent types of values as necessary.

The next level of complexity would be to store the initial values in a �le, and read the
array of strings one line at a time from the �le.

In the original Lolo game there are levels of play of increasing di�culty. We can incorpo-
rate this feature by having a Stairwell object. The stairwell object returns false in response
to the loloCanMove command as long as there are hearts that remain on the playing board.
Once all the hearts have been gathered the stairwell permits Lolo to move onto the square,
and in response loads the next level of play.

The text area at the bottom of the window can be used for more than simple scoring.
You could display messages here when Lolo tries to perform an illegal action, for example
running into a tree.

Once you have multiple levels of play it becomes annoying to always have to restart at
the beginning. The bit of complexity asks the user for a name, and when play ends it will
save the current name and level in a �le. When the user begins at a later point execution
can commence at the largest completed level.

Note that when Lolo leaves a square it is changed to an empty square. Most of the time
this is correct. The one place this seems odd is when Lolo crosses a bridge { which somehow
suddenly becomes solid ground. This can be �xed by having the Lolo piece remember the
type of square it is moving onto, and then restoring the cell once the lolo piece moves o�.

If Lolo is given a face (see Appendix A) an interesting e�ect is to have the eyes change
as the direction of movement changes.

A Giving Lolo a face

Simple square blocks of color do not make very interesting game pieces. Although the
Graphics class provides only a few primitive operations, even these can be used in a variety
of interesting ways.

The method �llOval takes the same arguments as �llRect, and �lls an oval that �ts into
the given rectangle. We can use this to draw the face of Lolo as a white circle, with two red
eyes:

class Lolo extends Cell f

11



public void paint (Graphics g, int x, int y) f
g.setColor(Color.white);

g.fillOval(x, y, CellWidth, CellHeight); // face

g.setColor(Color.red);

g.fillOval(x+4, y+4, 4, 4); // left eye

g.fillOval(x+12, y+4, 4, 4); // right eye

g.drawArc(x+4, y+12, 12, 6, 190, 160); // smile

g
g

To make the \mouth" we have used the method drawArc, which de�nes a bounding box
by the �rst four arguments, (as with �llRect and �llOval, the bound is de�ned by the upper
left corner and a width and height). The next argument is the starting angle for the arc,
and the �nal argument is the number of degrees to draw.

Other images can be drawn in a similar fashion. A tree can be drawn as a green oval
over a brown rectangle. A bridge is drawn using three rectangles, two for the water and one
for the bridge.

A Heart can be drawn using two circles and a triangle. The latter can be formed using
a more general method called �llPoly, which takes an array of x values and an array of y
values, and �lls the polygon between the points:

class Heart extends Cell f
public void paint (Graphics g, int x, int y) f

g.setColor(Color.red);

// assumes CellWidth and height are 20

g.fillOval(x, y, 10, 10); // left circle

g.fillOval(x+10, y, 10, 10); // right circle

int [ ] xpts = new int[3]; // make triangle

int [ ] ypts = new int[3]; // for body

xpts[0] = x+1;

ypts[0] = y+8;

xpts[1] = x+10;

ypts[1] = y+20;

xpts[2] = x+18;

ypts[2] = y+8;

g.fillPolygon(xpts, ypts, 3); // draw triangle

g
g

More advanced users may wish to investigate the ability to load and print gif or jpeg
images, which allows for a much wider range of possibilities for the pieces.

12



B Removing The Flicker by Double Bu�ering

Many graphical applications will have an annoying icker because the window is �rst re-
painted in the background color, and then repainted according the user speci�cations. The
�rst repainting can be eliminated by overriding the update method as well as the paint

method. Simply rename the paint method as update, then add the following as a new paint

method:

public void paint (Graphics g) f
update(g);

g

public void update (Graphics g) f
// user de�ned painting routines

g

13


